Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Preface xiii
Abbreviations xvii
Part I The Basics of Peptidomimetics 1
1. The Basics of Peptidomimetics 3
1.1 Introduction 3
1.2 Definition and Classification 5
1.3 Strategic Approaches to Peptidomimetic Design 7
1.3.1 Modification of Amino Acids 8
1.3.2 Compounds with Global Restrictions 9
1.3.3 Molecular Scaffolds Mimicking the Peptidic Backbone 10
1.4 Successful Examples of Peptidomimetic Drugs 12
1.4.1 ACE Inhibitors 13
1.4.2 Thrombin Inhibitors 13
1.5 Conclusion 16
References 16
2. Synthetic Approaches towards Peptidomimetic Design 19
2.1 Introduction 19
2.2 Local Modifications 20
2.2.1 Single Amino Acid Modifications 23
2.2.2 Dipeptide Isosteres 26
2.2.3 Retro-inverso Peptides 29
2.2.4 N-Methylation of Peptides 30
2.2.5 Azapeptides 31
2.2.6 Peptoids 31
2.3 Global Restrictions through Cyclic Peptidomimetics 32
2.4 Peptidomimetic Scaffolds 34
2.5 Conclusions 35
References 35
Part II Synthetic Methods and Molecules 37
3. Peptidomimetic Bioisosteres 39
3.1 Introduction 39
3.2 Peptide Bond Isosteres 40
3.2.1 Thioamides 41
3.2.2 Esters 41
3.2.3 Alkenes and Fluoroalkenes 41
3.2.4 Transition-State Isosteres 42
3.3 Side-Chain Isosteres 45
3.3.1 Guanidine Isosteres in Arginine Peptidomimetics 45
3.3.2 Isosteres of Aspartic Acid and Glutamic Acid 49
3.3.3 Tethered a-Amino Acids: Constraining the ¿-Space 53
3.4 Dipeptide Isosteres 59
3.4.1 d-Amino Acids 63
3.5 Tripeptide Isosteres 67
3.6 Conclusion 68
References 69
4. Solid-Phase Synthesis and Combinatorial Approaches to Peptidomimetics 75
4.1 Introduction 75
4.2 Solid-Phase Synthesis of Peptidomimetics 76
4.2.1 Scaffolds from a-Amino Acids 76
4.2.2 Scaffolds from Amino Aldehyde Intermediates 85
4.2.3 Pyrrolidine-Containing Scaffolds 89
4.3 Conclusion 94
References 95
5. Click Chemistry: The Triazole Ring as a Privileged Peptidomimetic Scaffold 99
5.1 Introduction 99
5.1.1 CuAAC Reaction 100
5.1.2 Triazole Ring as a Peptidomimetic Isostere 101
5.2 Triazole-Containing Peptidomimetics Elaborated through 'Click Chemistry' 102
5.2.1 Macrocycles 102
5.2.2 Oligomers and Foldamers 107
5.3 Relevant Applications in Drug Discovery 110
5.3.1 AChE Inhibitors 110
5.3.2 HIV Protease Inhibitors 111
5.3.3 MMP Inhibitors 114
5.3.4 Integrin Ligands 115
5.4 Conclusions 118
Acknowledgements 119
References 119
6. Peptoids 123
6.1 Introduction and Basics of Peptoids 123
6.2 Synthetic Methods 126
6.3 Macrocyclic Peptoids 129
6.4 Conformational Analysis of Folded Peptoids 130
6.5 Application of Peptoids as Antimicrobial Peptidomimetics 132
6.6 Conclusions 134
References 134
7. Sugar Amino Acids 137
7.1 Introduction 137
7.2 a-SAAs 138
7.2.1 Furanoid a-SAAs 138
7.2.2 Pyranoid a-SAAs 142
7.3 ß-SAAs 144
7.3.1 Furanoid ß-SAAs 144
7.3.2 Pyranoid ß-SAAs 147
7.4 ¿-SAAs 148
7.5 d-SAAs 150
7.5.1 Furanoid d-SAAs 150
7.5.2 Pyranoid d-SAAs 154
7.6 Representative Applications in Medicinal Chemistry 159
7.7 Conclusions 162
References 162
8. Cyclic a-Amino Acids as Proline Mimetics 165
8.1 Introduction 165
8.2 Cyclic a-Amino Acids 166
8.2.1 3-Substituted Proline Derivatives 167
8.2.2 4-Substituted Proline Derivatives 168
8.2.3 5-Substituted Proline Derivatives 169
8.2.4 Other Heterocyclic Proline Analogues 171
8.3 Bicyclic a-Amino Acids 174
8.3.1 ß/¿-Ring Junction 175
8.3.2 a/¿-Ring Junction 178
8.3.3 ¿/d-Ring Junction 179
8.3.4 a/d-Ring Junction 180
8.3.5 ß/d-Ring Junction 182
8.3.6 N/ß-Ring Junction 183
8.3.7 Pipecolic-Based Bicyclic a-Amino Acids 183
8.3.8 Morpholine-Based Bicyclic a-Amino Acids 187
8.4 Conclusions 189
References 189
9. ß-Turn Peptidomimetics 191
9.1 Introduction 191
9.2 Definition and Classification of ß-Turns 192
9.3 Conformational Analysis 194
9.4 ß-Turn Peptidomimetics 196
9.4.1 Proline Analogues in ß-Turn Peptidomimetics 197
9.4.2 d-Amino Acids as Reverse-Turn Inducers 200
9.4.3 Molecular Scaffolds as ß-Turn Peptidomimetics 209
9.5 Conclusions 214
References 215
10. Peptidomimetic Foldamers 219
10.1 Introduction 219
10.2 Classification 220
10.3 Peptoids 221
10.4 ß-Peptides: First Systematic Conformational Studies 221
10.5 Hybrid Foldamers 226
10.6 From Structural to Functional Foldamers 227
10.6.1 Peptoids as Foldameric Antimicrobial Peptidomimetics 227
10.6.2 Foldamers Targeting Bcl-x L Antiapoptotic Proteins 227
10.7 Conclusions 228
References 228
Part III Applications in Medicinal Chemistry 231
11. Case Study 1: Peptidomimetic HIV Protease Inhibitors 233
11.1 Introduction 233
11.2 The HIV-1 Virus 233
11.2.1 HIV-1 Protease 234
11.3 Antiretroviral Therapy 238
11.4 Drug Resistance 239
11.4.1 Mechanisms of Resistance to Protease Inhibitors 239
11.5 HIV-1 Protease Inhibitors 240
11.5.1 Transition-State Analogues 240
11.5.2 Peptidomimetic Drugs 241
11.5.3 Next-Generation Cyclic Peptidomimetic Inhibitors 245
11.6 Conclusions 255
Acknowledgements 255
References 256
12. Case Study 2: Peptidomimetic Ligands for aVß3 Integrin 259
12.1 Introduction 259
12.2 Peptide-Based Peptidomimetic Integrin Ligands 262
12.3 Scaffold-Based Peptidomimetic Integrin Ligands 270
12.4 Conclusions 280
References 280
Index 283
During the last three decades an important number of biologically active peptides has been discovered and characterized, including hormones, vasoactive peptides and neuropeptides. As a consequence of interaction with their membrane-bound receptors, these bioactive peptides influence cell–cell communication and control a series of vital functions. Thus, they are of great interest in the biomedical field, and the number of native and modified peptides used as therapeutics is ever increasing. Many bioactive peptides have been prepared on a large scale and tested both in pharmacology and the clinic, thus allowing for the development of new therapies for various pathologies.
However, the use of peptides as therapeutics is limited due to several factors, including low metabolic stability towards proteolysis in the gastrointestinal tract, poor absorption after oral ingestion, low diffusion in particular tissue organs (i.e. the central nervous system, CNS), rapid excretion through liver and kidneys and undesired effects due to interaction of flexible peptides with several receptors (Figure 1.1) [1]. In particular, the flexibility of medium-sized polypeptides (<30 amino acids) is due to the multiple conformations that are energetically accessible for each residue constituting the peptide. The flexibility of each residue constituting a peptide is due to two degrees of conformational freedom addressed by N-Cα and Cα-CO rotational bonds and described by ϕ and ψ dihedral angles, respectively, which result in a population of local conformations, all contributing to the overall flexibility of the peptide in dynamically interconverting equilibria in aqueous solution.
Figure 1.1 Conformational flexibility of peptides and their affinity with proteases cause off-target interactions and degradation, respectively, resulting in undesired biological effects, and inactive fragments from proteolytic events. (Reproduced with permission from Reference [1]. Copyright 1993 Wiley-VCH Verlag GmbH & Co. KGaA.)
Besides all these drawbacks, biomedical research is constantly oriented towards the development of new therapeutics based on peptides and proteins, by introducing both structural and functional specific modifications and maintaining the features responsible for biological activity.
These requirements are all matched in the development of peptidomimetics [2, 3]. In this approach, peptides and proteins are considered as tools for the discovery of other classes of compounds.
A peptidomimetic compound may be defined as a substance having a secondary structure, besides other structural features, similar to native peptide, such that it binds to enzymes or receptors with higher affinity than the starting peptide. As an overall result, the native peptide effects are inhibited (antagonist or inhibitor) or increased (agonist). Since their introduction as a new concept for developing drug candidates, peptidomimetics have shown great promise both in organic and medicinal chemistry. Apart from being much more selective and efficient than native peptides, thus resulting in fewer side effects, peptidomimetics show greater oral bioavailability and the biological activity is prolonged due to lowered enzymatic degradation [4, 5]. The generation of peptidomimetics is basically focussed on knowledge of the electronic and conformational features of the native peptide and its receptor or active site of an enzyme. Thus, the development of peptidomimetics as compounds with potential biological activity must take account of some basic principles [6], including:
Peptidomimetics may be divided into three classes depending on their structural and functional characteristics [8]:
An elegant example of a peptidomimetic scaffold is given by a thyrotropin-releasing hormone (TRH) mimetic based on a cyclohexane scaffold (1, Figure 1.2), which replaces the peptide backbone, and the three functional groups that constitute the pharmacophore are placed on the scaffold with the same spatial orientation of amino acid side-chains found in TRH hormone [5]. Other examples include replacement of peptidic fragment in somatostatin receptor binding cyclopeptide with a d-glucose scaffold (2) [9], and steroidal scaffold 3 to mimic the type II′ β-turn structure of RGDfV cyclopeptide (Figure 1.2) [10].
Figure 1.2 Peptidomimetic compounds consisting of cyclohexane (1), glucose (2) or steroid (3) scaffolds. (Reproduced with permission from Reference [2]. Copyright 1994 Wiley-VCH Verlag GmbH & Co. KGaA.)
The workflow towards the development of peptidomimetics has been proposed within the drug discovery process in the case of peptide molecules as hit compounds towards an identified target [11].
Accordingly, the first step in a drug discovery process is hit identification; this is generally carried out by scanning peptide libraries for binding affinity (i.e. by phage display or combinatorial chemistry of synthetic peptide libraries). Molecular biology techniques, such as sequencing, cloning and site-directed mutagenesis experiments, are essential to achieve structural information regarding receptor residues responsible for peptide recognition in combination with molecular modelling calculations. Such information is very important in selecting a bioactive peptide to be successively processed in a hierarchical way, also taking advantage of structural data. The hierarchical approach takes advantage of several steps, which are important in giving insight into structure–activity relationships with respect to the starting bioactive peptide hit compound to be converted into a peptidomimetic lead:
The so-obtained first-generation peptidomimetics are then subjected to further conformational studies aimed at defining the rationale for ligand–receptor (or enzyme–inhibitor) key interactions. The results are then applied for the optimization of hit peptidomimetics towards improved compounds possessing a non-peptide framework.
Chapter 2 presents a detailed overview of the design principles and applications to peptidomimetics.
A major effort in peptidomimetic chemistry is connected to the development of compounds capable of replacing one or more amino acids in a peptide sequence without altering the biological activity of the native peptide. The overall result of this structural intervention is to stabilize the molecule with respect to metabolic processes that occur in vivo, thus giving access to orally available drugs and compounds with improved pharmacokinetics/pharmacodynamics (PK/PD) properties.
The development of peptidomimetics has generally been approached by synthesizing novel amino acids possessing several features, including synthetic accessibility from commercially available enantiopure reagents, such as amino acid and sugar derivatives, or straightforward synthetic methods for asymmetric synthesis, to access a wide array of novel compounds. Moreover, the need to achieve partially rigid compounds has been pursued to probe a limited number of conformations with the aim of understanding the...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!