1 - Contents [Seite 6]
2 - Clinical Focus on Rehabilitation and Assistive WRs [Seite 14]
3 - 1 Clinical Evaluation of a Socket-Ready Naturally Controlled Multichannel Upper Limb Prosthetic System [Seite 15]
3.1 - Abstract [Seite 15]
3.2 - 1 Introduction [Seite 16]
3.3 - 2 Methods [Seite 16]
3.3.1 - 2.1 Subjects [Seite 16]
3.3.2 - 2.2 Hardware and Control Algorithm [Seite 16]
3.3.3 - 2.3 Clinical Testing [Seite 17]
3.3.4 - 2.4 Experiment Protocol [Seite 17]
3.4 - 3 Results [Seite 18]
3.5 - 4 Conclusions and Discussion [Seite 18]
3.6 - Acknowledgments [Seite 19]
3.7 - References [Seite 19]
4 - 2 Evaluation of a Robotic Exoskeleton for Gait Training in Acute Stroke: A Case Study [Seite 20]
4.1 - Abstract [Seite 20]
4.2 - 1 Introduction [Seite 21]
4.3 - 2 Materials and Methods [Seite 21]
4.3.1 - 2.1 Participants [Seite 21]
4.3.2 - 2.2 Robotic Exoskeleton (RE) Device [Seite 22]
4.3.3 - 2.3 Experimental Procedure and Data Analysis [Seite 22]
4.4 - 3 Results [Seite 23]
4.5 - 4 Discussion [Seite 24]
4.6 - References [Seite 24]
5 - 3 Wearable Exoskeleton Assisted Rehabilitation in Multiple Sclerosis: Feasibility and Experience [Seite 25]
5.1 - Abstract [Seite 25]
5.2 - 1 Introduction [Seite 26]
5.3 - 2 Materials and Methods [Seite 26]
5.3.1 - 2.1 Subjects [Seite 26]
5.3.2 - 2.2 Exoskeleton Assisted Training [Seite 26]
5.3.3 - 2.3 Outcome Measures [Seite 27]
5.3.4 - 2.4 Data Analysis [Seite 28]
5.4 - 3 Results [Seite 28]
5.5 - 4 Discussion [Seite 29]
5.6 - 5 Conclusion [Seite 29]
5.7 - Acknowledgment [Seite 29]
5.8 - References [Seite 29]
6 - 4 Exoskeletons for Rehabilitation and Personal Mobility: Creating Clinical Evidence [Seite 30]
6.1 - Abstract [Seite 30]
6.2 - 1 Introduction [Seite 30]
6.3 - 2 Material and Methods [Seite 31]
6.3.1 - 2.1 Patient Populations [Seite 31]
6.3.2 - 2.2 Exoskeletons [Seite 31]
6.3.3 - 2.3 Clinical Studies [Seite 32]
6.4 - 3 Results [Seite 32]
6.5 - 4 Discussion [Seite 32]
6.6 - 5 Conclusion [Seite 33]
6.7 - References [Seite 33]
7 - 5 Lower Limb Wearable Systems for Mobility and Rehabilitation Challenges: Clinical Focus [Seite 34]
7.1 - Abstract [Seite 34]
7.2 - 1 Introduction [Seite 34]
7.3 - 2 Gait Rehabilitation [Seite 35]
7.4 - 3 Gait Substitution [Seite 36]
7.5 - 4 Clinical Aspects for Gait Rehabilitation [Seite 36]
7.6 - 5 Conclusions [Seite 37]
7.7 - Acknowledgment [Seite 37]
7.8 - References [Seite 37]
8 - Emerging Technologies in WRs [Seite 39]
9 - Impedance Control of Series Elastic Actuators Using Acceleration Feedback [Seite 40]
9.1 - 1 Introduction [Seite 40]
9.2 - 2 Impedance Control of Series Elastic Actuators [Seite 42]
9.3 - 3 Impedance Control Using Acceleration Feedback [Seite 42]
9.4 - 4 Conclusions [Seite 43]
9.5 - References [Seite 43]
10 - 7 Kinetic Energy Recovery in Human Joints: The Flywheel-Infinitely Variable Transmission Actuator [Seite 45]
10.1 - Abstract [Seite 45]
10.2 - 1 Introduction [Seite 45]
10.3 - 2 The F-IVT Actuator: Working Principle and Performance Calculation [Seite 46]
10.3.1 - 2.1 Working Principle of F-IVT [Seite 46]
10.3.2 - 2.2 Performance Calculation [Seite 47]
10.4 - 3 Results and Discussion [Seite 48]
10.5 - 4 Conclusion [Seite 49]
10.6 - References [Seite 49]
11 - A Compliant Lightweight and Adaptable Active Ankle Foot Orthosis for Robotic Rehabilitation [Seite 50]
11.1 - 1 Introduction [Seite 50]
11.2 - 2 Mechanical Design of the AAFO [Seite 51]
11.2.1 - 2.1 Ankle Actuator [Seite 51]
11.2.2 - 2.2 Connections to the User [Seite 52]
11.3 - 3 Ankle Actuator Characterization [Seite 53]
11.4 - 4 Conclusion [Seite 54]
11.5 - References [Seite 54]
12 - A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons [Seite 55]
12.1 - 1 Introduction [Seite 55]
12.2 - 2 Conceptual Design of Novel Shoulder Mechanism for an Upper-Body Exoskeleton [Seite 56]
12.3 - 3 Kinematic Analysis of the Mechanism [Seite 57]
12.4 - 4 Application of the Novel Spherical Shoulder Mechanism [Seite 58]
12.5 - 5 Conclusion [Seite 59]
12.6 - References [Seite 59]
13 - A Soft Robotic Extra-Finger and Arm Support to Recover Grasp Capabilities in Chronic Stroke Patients [Seite 61]
13.1 - 1 Introduction [Seite 62]
13.2 - 2 The Soft-SixthFinger and Robotic Arm System [Seite 63]
13.3 - 3 Pilot Study [Seite 64]
13.4 - 4 Conclusion [Seite 64]
13.5 - References [Seite 65]
14 - 11 A Quasi-Passive Knee Exoskeleton to Assist During Descent [Seite 66]
14.1 - Abstract [Seite 66]
14.2 - 1 Introduction [Seite 66]
14.3 - 2 Materials and Methods [Seite 67]
14.4 - 3 Results and Discussion [Seite 68]
14.5 - 4 Conclusions [Seite 69]
14.6 - References [Seite 69]
15 - Wearable Sensory Apparatus for Multi-segment System Orientation Estimation with Long-Term Drift and Magnetic Disturbance Compensation [Seite 71]
15.1 - 1 Introduction [Seite 71]
15.2 - 2 Methods [Seite 72]
15.2.1 - 2.1 Wearable Sensors [Seite 72]
15.2.2 - 2.2 Kinematic Relations [Seite 73]
15.2.3 - 2.3 Magnetic Model [Seite 73]
15.2.4 - 2.4 Model-Based Extended Kalman Filter [Seite 73]
15.3 - 3 Results [Seite 74]
15.4 - 4 Discussion and Conclusion [Seite 75]
15.5 - References [Seite 75]
16 - 13 A Portable Active Pelvis Orthosis for Ambulatory Movement Assistance [Seite 76]
16.1 - Abstract [Seite 76]
16.2 - 1 Introduction [Seite 77]
16.3 - 2 Materials and Methods [Seite 77]
16.3.1 - 2.1 Mechanics [Seite 77]
16.3.2 - 2.2 Actuation Units [Seite 78]
16.3.3 - 2.3 Control [Seite 79]
16.4 - 3 System Validation and Results [Seite 79]
16.5 - 4 Discussion and Conclusion [Seite 80]
16.6 - References [Seite 80]
17 - Soft Wearable Robotics [Seite 82]
18 - 14 XoSoft - A Vision for a Soft Modular Lower Limb Exoskeleton [Seite 83]
18.1 - Abstract [Seite 83]
18.2 - 1 Introduction [Seite 84]
18.3 - 2 User Centered Design [Seite 85]
18.4 - 3 User Groups [Seite 86]
18.5 - 4 System Description [Seite 86]
18.6 - 5 Conclusions [Seite 87]
18.7 - Acknowledgment [Seite 87]
18.8 - References [Seite 87]
19 - 15 On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device [Seite 89]
19.1 - Abstract [Seite 89]
19.2 - 1 Introduction [Seite 90]
19.3 - 2 Materials and Methods [Seite 90]
19.3.1 - 2.1 Device Description [Seite 90]
19.3.2 - 2.2 Subject Description [Seite 91]
19.3.3 - 2.3 Exercise Description [Seite 91]
19.4 - 3 Results [Seite 92]
19.5 - 4 Conclusion [Seite 93]
19.6 - References [Seite 93]
20 - 16 Design Improvement of a Polymer-Based Tendon-Driven Wearable Robotic Hand (Exo-Glove Poly) [Seite 94]
20.1 - Abstract [Seite 94]
20.2 - 1 Introduction [Seite 94]
20.3 - 2 Design Improvement [Seite 96]
20.3.1 - 2.1 Magnet Embedment [Seite 96]
20.3.2 - 2.2 Tendon Length Adjustment Mechanism [Seite 97]
20.4 - 3 Conclusion [Seite 98]
20.5 - References [Seite 98]
21 - 17 Affective Touch and Low Power Artificial Muscles for Rehabilitative and Assistive Wearable Soft Robotics [Seite 99]
21.1 - Abstract [Seite 99]
21.2 - 1 Introduction [Seite 99]
21.3 - 2 Affective Touch [Seite 100]
21.3.1 - 2.1 Affective Tactile Stimulation [Seite 101]
21.4 - 3 Artificial Muscle Rehabilitation [Seite 101]
21.5 - 4 Conclusions [Seite 103]
21.6 - References [Seite 103]
22 - 18 Evaluation of Force Tracking Controller with Soft Exosuit for Hip Extension Assistance [Seite 105]
22.1 - Abstract [Seite 105]
22.2 - 1 Introduction [Seite 105]
22.3 - 2 Material and Methods [Seite 106]
22.3.1 - 2.1 Sensing and Actuation [Seite 106]
22.3.2 - 2.2 Force Tracking Controller Description [Seite 107]
22.4 - 3 Results [Seite 107]
22.5 - 4 Conclusion [Seite 108]
22.6 - Acknowledgments [Seite 108]
22.7 - References [Seite 108]
23 - Neural Interfacing of WRs [Seite 110]
24 - 19 Endogenous Control of Powered Lower-Limb Exoskeleton [Seite 111]
24.1 - Abstract [Seite 111]
24.2 - 1 Introduction [Seite 112]
24.3 - 2 Method [Seite 112]
24.3.1 - 2.1 Hardware Setup [Seite 112]
24.3.2 - 2.2 Protocol [Seite 112]
24.3.3 - 2.3 Experiment Scenario [Seite 113]
24.3.4 - 2.4 Signal Processing and Decoding [Seite 114]
24.4 - 3 Results [Seite 114]
24.5 - 4 Discussion [Seite 115]
24.6 - References [Seite 115]
25 - 20 Natural User-Controlled Ambulation of Lower Extremity Exoskeletons for Individuals with Spinal Cord Injury [Seite 116]
25.1 - Abstract [Seite 116]
25.2 - 1 Introduction [Seite 117]
25.3 - 2 Surrogate Articulation of Gait [Seite 117]
25.4 - 3 Methods [Seite 118]
25.4.1 - 3.1 Experimental Apparatus [Seite 118]
25.4.2 - 3.2 Admittance Control of Hand-Walking [Seite 118]
25.5 - 4 Results [Seite 119]
25.6 - References [Seite 120]
26 - Real-Time Modeling for Lower Limb Exoskeletons [Seite 121]
26.1 - 1 Introduction [Seite 121]
26.2 - 2 Method [Seite 122]
26.2.1 - 2.1 Real-Time EMG-Driven NMS Modeling [Seite 122]
26.2.2 - 2.2 Interface with the H2 Lower-Limb Exoskeleton [Seite 122]
26.2.3 - 2.3 Experimental Protocol and Tests [Seite 123]
26.3 - 3 Conclusion [Seite 124]
26.4 - References [Seite 124]
27 - 22 Towards Everyday Shared Control of Lower Limb Exoskeletons [Seite 126]
27.1 - Abstract [Seite 126]
27.2 - 1 Introduction [Seite 126]
27.3 - 2 Shared Control [Seite 127]
27.4 - 3 Lower Limb Exoskeletons [Seite 127]
27.5 - 4 Discussion and Future Work [Seite 128]
27.6 - Acknowledgments [Seite 128]
27.7 - References [Seite 128]
28 - Biomechanics and Neurophysiological Studies with WRs [Seite 129]
29 - 23 Joint-Level Responses to Counteract Perturbations Scale with Perturbation Magnitude and Direction [Seite 130]
29.1 - Abstract [Seite 130]
29.2 - 1 Introduction [Seite 130]
29.3 - 2 Materials and Methods [Seite 131]
29.3.1 - 2.1 Experimental Setup and Protocol [Seite 131]
29.3.2 - 2.2 Data Processing [Seite 131]
29.4 - 3 Results [Seite 132]
29.5 - 4 Discussion [Seite 133]
29.6 - 5 Conclusions [Seite 133]
29.7 - References [Seite 133]
30 - 24 Metabolic Energy Consumption in a Box-Lifting Task: A Parametric Study on the Assistive Torque [Seite 134]
30.1 - Abstract [Seite 134]
30.2 - 1 Introduction [Seite 134]
30.3 - 2 Methods [Seite 135]
30.3.1 - 2.1 Musculoskeletal Model (MSM) [Seite 135]
30.3.2 - 2.2 Box-Lifting Movement [Seite 136]
30.3.3 - 2.3 Metabolic Energy [Seite 136]
30.3.4 - 2.4 Assistive Torque [Seite 136]
30.3.5 - 2.5 Box Interaction with the MSM [Seite 137]
30.4 - 3 Results [Seite 137]
30.5 - 4 Discussion [Seite 138]
30.6 - 5 Conclusions and Future Work [Seite 138]
30.7 - References [Seite 139]
31 - 25 Analysis of the Movement Variability in Dance Activities Using Wearable Sensors [Seite 140]
31.1 - Abstract [Seite 140]
31.2 - 1 Introduction [Seite 140]
31.3 - 2 Methods [Seite 141]
31.3.1 - 2.1 Time-Delay Embedding [Seite 141]
31.3.2 - 2.2 Framework for the Experiment [Seite 141]
31.3.3 - 2.3 Participants [Seite 142]
31.3.4 - 2.4 Experiment Design [Seite 142]
31.3.5 - 2.5 Data Collection [Seite 142]
31.4 - 3 Results [Seite 143]
31.5 - 4 Conclusion and Future Work [Seite 144]
31.6 - References [Seite 144]
32 - New Developments in Wearable Rehabilitation Robotics [Seite 146]
33 - 26 Real Time Computation of Centroidal Momentum for the Use as a Stability Index Applicable to Human Walking with Exoskeleton [Seite 147]
33.1 - Abstract [Seite 147]
33.2 - 1 Introduction [Seite 147]
33.3 - 2 Centroidal Momentum [Seite 148]
33.4 - 3 Real Time Computation of CM [Seite 149]
33.4.1 - 3.1 Demonstration Platform [Seite 149]
33.4.2 - 3.2 Demonstration During Natural Overground Walking [Seite 149]
33.4.3 - 3.3 Demonstration During Walking with Tripping Events [Seite 149]
33.5 - 4 Conclusion [Seite 151]
33.6 - Acknowledgments [Seite 151]
33.7 - References [Seite 151]
34 - A Versatile Neuromuscular Exoskeleton Controller for Gait Assistance: A Preliminary Study on Spinal Cord Injury Patients [Seite 152]
34.1 - 1 Introduction [Seite 152]
34.2 - 2 Materials and Methods [Seite 153]
34.3 - 3 Results [Seite 153]
34.4 - 4 Discussion [Seite 155]
34.5 - 5 Conclusion [Seite 155]
34.6 - References [Seite 156]
35 - 28 Introducing a Modular, Personalized Exoskeleton for Ankle and Knee Support of Individuals with a Spinal Cord Injury [Seite 157]
35.1 - Abstract [Seite 157]
35.2 - 1 Introduction [Seite 157]
35.3 - 2 Mechanical Design [Seite 159]
35.4 - 3 Electronic Design [Seite 160]
35.5 - 4 Specifications [Seite 160]
35.6 - 5 Conclusion [Seite 160]
35.7 - Acknowledgments [Seite 160]
35.8 - References [Seite 161]
36 - 29 Towards Exoskeletons with Balance Capacities [Seite 162]
36.1 - Abstract [Seite 162]
36.2 - 1 Introduction [Seite 163]
36.3 - 2 Materials and Methods [Seite 163]
36.3.1 - 2.1 Experimental Setup and Protocol [Seite 163]
36.4 - 3 Results [Seite 164]
36.5 - 4 Discussion [Seite 165]
36.6 - 5 Conclusions [Seite 165]
36.7 - References [Seite 166]
37 - 30 EMG-Based Detection of User's Intentions for Human-Machine Shared Control of an Assistive Upper-Limb Exoskeleton [Seite 167]
37.1 - Abstract [Seite 167]
37.2 - 1 Introduction [Seite 167]
37.3 - 2 Materials and Methods [Seite 168]
37.3.1 - 2.1 Exoskeleton [Seite 168]
37.3.2 - 2.2 Setup of the Study [Seite 168]
37.3.3 - 2.3 Motion Intention Detection [Seite 169]
37.3.4 - 2.4 Classification of Movement Direction [Seite 169]
37.4 - 3 Results [Seite 170]
37.5 - 4 Discussion [Seite 171]
37.6 - 5 Conclusions [Seite 171]
37.7 - References [Seite 171]
38 - Legal Framework, Standardization and Ethical Issues in WRs [Seite 172]
39 - 31 Safety Standardization of Wearable Robots-The Need for Testing Methods [Seite 173]
39.1 - Abstract [Seite 173]
39.2 - 1 Introduction [Seite 173]
39.3 - 2 Regulation of Wearable Robots [Seite 174]
39.4 - 3 Need for Testing Procedures [Seite 176]
39.5 - 4 Conclusion [Seite 176]
39.6 - References [Seite 177]
40 - 32 The Potential and Acceptance of Exoskeletons in Industry [Seite 178]
40.1 - Abstract [Seite 178]
40.2 - 1 Introduction [Seite 178]
40.3 - 2 Methods [Seite 179]
40.3.1 - 2.1 Stakeholder Analysis [Seite 179]
40.3.2 - 2.2 Literature Review [Seite 179]
40.3.3 - 2.3 Acceptance [Seite 179]
40.4 - 3 Results [Seite 180]
40.4.1 - 3.1 Stakeholder-Analysis Results [Seite 180]
40.4.2 - 3.2 Literature Review Results [Seite 181]
40.5 - 4 Discussion and Conclusions [Seite 181]
40.6 - Acknowledgments [Seite 181]
40.7 - References [Seite 182]
41 - 33 Wearable Robots: A Legal Analysis [Seite 183]
41.1 - Abstract [Seite 183]
41.2 - 1 Introduction [Seite 183]
41.3 - 2 Legal Definitions [Seite 184]
41.4 - 3 Liability and Insurance [Seite 184]
41.5 - 4 Human Enhancement [Seite 185]
41.6 - 5 Final Considerations [Seite 186]
41.7 - References [Seite 186]
42 - 34 A Verification Method for Testing Abrasion in the Use of Restraint Type Personal Care Robots [Seite 187]
42.1 - Abstract [Seite 187]
42.2 - 1 Introduction [Seite 187]
42.3 - 2 Verification Test Method for Abrasion Risk [Seite 188]
42.4 - 3 Validation of the Verified Data [Seite 190]
42.5 - 4 Conclusion [Seite 191]
42.6 - Acknowledgments [Seite 191]
42.7 - References [Seite 191]
43 - Benchmarking in WRs and Related Communities [Seite 192]
44 - 35 Kinematic Comparison of Gait Rehabilitation with Exoskeleton and End-Effector Devices [Seite 193]
44.1 - Abstract [Seite 193]
44.2 - 1 Introduction [Seite 193]
44.3 - 2 Materials and Methods [Seite 194]
44.3.1 - 2.1 Robot Systems: Exoskeleton and End-Effector Devices [Seite 194]
44.3.2 - 2.2 Procedure and Instrumentation [Seite 195]
44.4 - 3 Results and Discussion [Seite 195]
44.4.1 - 3.1 Comparison of Gait Motion Trajectory [Seite 195]
44.4.2 - 3.2 Comparison of Stair Climbing and Descending Motion [Seite 196]
44.5 - 4 Conclusion [Seite 197]
44.6 - References [Seite 197]
45 - 36 Evaluating the Gait of Lower Limb Prosthesis Users [Seite 198]
45.1 - Abstract [Seite 198]
45.2 - 1 Introduction [Seite 199]
45.3 - 2 Methods [Seite 199]
45.3.1 - 2.1 The CAREN System [Seite 199]
45.3.2 - 2.2 Data Collection and Analysis [Seite 200]
45.4 - 3 Results [Seite 201]
45.5 - 4 Discussion [Seite 202]
45.6 - 5 Conclusion [Seite 202]
45.7 - References [Seite 202]
46 - 37 Some Considerations on Benchmarking of Wearable Robots for Mobility [Seite 204]
46.1 - Abstract [Seite 204]
46.2 - 1 Introduction [Seite 204]
46.3 - 2 Metabolic Cost of Walking [Seite 205]
46.4 - 3 Balance Performance [Seite 206]
46.5 - 4 Conclusion [Seite 207]
46.6 - References [Seite 207]
47 - Benchmarking Data for Human Walking in Different Scenarios [Seite 209]
47.1 - 1 Introduction [Seite 209]
47.2 - 2 The Koroibot Project and the Koroibot Motion Capture Database [Seite 210]
47.3 - 3 Human Walking Reference Data [Seite 211]
47.4 - 4 Conclusion & Outlook [Seite 211]
47.5 - References [Seite 212]
48 - 39 Clinical Gait Assessment in Relation to Benchmarking Robot Locomotion [Seite 213]
48.1 - Abstract [Seite 213]
48.2 - 1 Introduction [Seite 213]
48.2.1 - 1.1 Taxonomies Related to International Classification of Functioning [Seite 214]
48.2.2 - 1.2 Clinical Assessments for Bipedal Locomotion [Seite 215]
48.3 - 2 Method [Seite 216]
48.4 - 3 Results [Seite 216]
48.5 - 4 Discussion [Seite 216]
48.6 - 5 Conclusion [Seite 217]
48.7 - References [Seite 217]
49 - Symbiotic Control of WRs [Seite 218]
50 - Attention Level Measurement During Exoskeleton Rehabilitation Through a BMI System [Seite 219]
50.1 - 1 Introduction [Seite 219]
50.2 - 2 Materials and Methods [Seite 220]
50.2.1 - 2.1 Ankle Exoskeleton [Seite 220]
50.2.2 - 2.2 EEG Acquisition [Seite 220]
50.2.3 - 2.3 EEG Real Time Processing and Feature Extraction [Seite 221]
50.2.4 - 2.4 EEG Classification [Seite 221]
50.2.5 - 2.5 Experimental Protocol [Seite 221]
50.3 - 3 Results and Discussion [Seite 222]
50.4 - 4 Conclusions [Seite 222]
50.5 - References [Seite 223]
51 - 41 Detection of Subject's Intention to Trigger Transitions Between Sit, Stand and Walk with a Lower Limb Exoskeleton [Seite 224]
51.1 - Abstract [Seite 224]
51.2 - 1 Introduction [Seite 225]
51.3 - 2 Materials and Methods [Seite 225]
51.3.1 - 2.1 Material [Seite 225]
51.3.2 - 2.2 Protocol [Seite 226]
51.3.3 - 2.3 Classifier [Seite 226]
51.4 - 3 Results [Seite 227]
51.5 - 4 Discussion [Seite 227]
51.6 - 5 Conclusions [Seite 228]
51.7 - References [Seite 228]
52 - The New Generation of Compliant Actuators for Use in Controllable Bio-Inspired Wearable Robots [Seite 229]
52.1 - 1 Introduction [Seite 229]
52.2 - 2 Compliant Actuation in WRs for Gait [Seite 230]
52.3 - 3 Control Strategy [Seite 232]
52.4 - 4 Conclusion [Seite 233]
52.5 - References [Seite 233]
53 - An EMG-informed Model to Evaluate Assistance of the Biomot Compliant Ankle Actuator [Seite 234]
53.1 - 1 Introduction [Seite 234]
53.2 - 2 Materials and Methods [Seite 235]
53.3 - 3 Results [Seite 236]
53.4 - 4 Discussion [Seite 237]
53.5 - 5 Conclusions [Seite 237]
53.6 - References [Seite 238]
54 - Tacit Adaptability of a Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator, a Preliminary Study [Seite 239]
54.1 - 1 Introduction [Seite 239]
54.2 - 2 Materials and Methods [Seite 240]
54.3 - 3 Results [Seite 241]
54.4 - 4 Conclusion [Seite 242]
54.5 - 5 Futute Work [Seite 242]
54.6 - References [Seite 243]
55 - Emerging Applications Domains of WRs, Emerging Technologies in WRs [Seite 244]
56 - Design and Kinematic Analysis of the Hanyang Exoskeleton Assistive Robot (HEXAR) for Human Synchronized Motion [Seite 245]
56.1 - 1 Introduction [Seite 245]
56.2 - 2 System Requirements [Seite 246]
56.3 - 3 Mechanical Design of HEXAR-CR50 [Seite 246]
56.4 - 4 Kinematic Simulation with Walking Motions [Seite 247]
56.5 - 5 Conclusion [Seite 248]
56.6 - References [Seite 249]
57 - 46 Design and Experimental Evaluation of a Low-Cost Robotic Orthosis for Gait Assistance in Subjects with Spinal Cord Injury [Seite 250]
57.1 - Abstract [Seite 250]
57.2 - 1 Introduction [Seite 250]
57.3 - 2 Robotic Orthosis Design [Seite 251]
57.3.1 - 2.1 Knee Actuation System [Seite 252]
57.3.2 - 2.2 Sensors and Control [Seite 252]
57.4 - 3 Experimental Evaluation [Seite 253]
57.5 - 4 Conclusion [Seite 254]
57.6 - References [Seite 254]
58 - A Powered Low-Back Exoskeleton for Industrial Handling: Considerations on Controls [Seite 255]
58.1 - 1 Introduction [Seite 255]
58.2 - 2 Low-Back Exoskeleton [Seite 256]
58.3 - 3 Low-Level: Actuator Control [Seite 257]
58.4 - 4 High-Level: Assistive Strategy [Seite 257]
58.5 - 5 Conclusions [Seite 258]
58.6 - References [Seite 258]
59 - 48 Efficient Lower Limb Exoskeleton for Human Motion Assistance [Seite 260]
59.1 - Abstract [Seite 260]
59.2 - 1 Introduction [Seite 260]
59.3 - 2 Mechanical Design and Components [Seite 261]
59.4 - 3 Exoskeleton Operation [Seite 262]
59.5 - 4 Conclusion [Seite 263]
59.6 - References [Seite 263]
60 - Active Safety Functions for Industrial Lower Body Exoskeletons: Concept and Assessment [Seite 265]
60.1 - 1 Introduction [Seite 265]
60.2 - 2 Active Safety Functional Concepts [Seite 266]
60.3 - 3 Hazard Analysis and Risk Assessment [Seite 268]
60.4 - 4 Conclusions [Seite 269]
60.5 - References [Seite 269]
61 - 50 SOLEUS: Ankle Foot Orthosis for Space Countermeasure with Immersive Virtual Reality [Seite 270]
61.1 - Abstract [Seite 270]
61.2 - 1 Introduction [Seite 270]
61.3 - 2 SOLEUS Project Expected Benefits [Seite 271]
61.4 - 3 SOLEUS System Architecture [Seite 272]
61.4.1 - 3.1 Exoskeletons Subsystem [Seite 272]
61.4.2 - 3.2 Virtual Reality Subsystem [Seite 272]
61.5 - 4 Musculo-Skeletal Simulations [Seite 273]
61.6 - 5 Scientific Evaluation [Seite 273]
61.7 - 6 Conclusion [Seite 274]
61.8 - Acknowledgments [Seite 274]
61.9 - References [Seite 274]
62 - SPEXOR: Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration [Seite 275]
62.1 - 1 Context [Seite 276]
62.2 - 2 Objectives [Seite 276]
62.3 - 3 Going Beyond the State of the Art [Seite 277]
62.4 - References [Seite 279]
63 - Posters [Seite 280]
64 - 52 HeSA, Hip Exoskeleton for Superior Assistance [Seite 281]
64.1 - Abstract [Seite 281]
64.2 - 1 Introduction [Seite 281]
64.3 - 2 Design [Seite 282]
64.4 - 3 Control [Seite 282]
64.5 - 4 Testing [Seite 283]
64.6 - 5 Conclusion [Seite 284]
64.7 - Acknowledgments [Seite 285]
64.8 - References [Seite 285]
65 - SPEXOR: Towards a Passive Spinal Exoskeleton [Seite 286]
65.1 - 1 Introduction [Seite 287]
65.2 - 2 SOTA of Passive Exoskeletons [Seite 288]
65.3 - 3 Going Beyond [Seite 288]
65.4 - 4 Conclusion [Seite 289]
65.5 - References [Seite 289]
66 - 54 Autonomous Soft Exosuit for Hip Extension Assistance [Seite 291]
66.1 - Abstract [Seite 291]
66.2 - 1 Introduction [Seite 291]
66.3 - 2 System Description [Seite 292]
66.3.1 - 2.1 Actuation and Suit [Seite 292]
66.3.2 - 2.2 IMU-Based Iterative Controller [Seite 293]
66.4 - 3 Results [Seite 294]
66.5 - 4 Conclusion [Seite 294]
66.6 - References [Seite 295]
67 - 55 Comparison of Ankle Moment Inspired and Ankle Positive Power Inspired Controllers for a Multi-Articular Soft Exosuit for Walking Assistance [Seite 296]
67.1 - Abstract [Seite 296]
67.2 - 1 Introduction [Seite 297]
67.3 - 2 Methods [Seite 297]
67.4 - 3 Results [Seite 298]
67.5 - 4 Discussion & Conclusion [Seite 299]
67.6 - Acknowledgments [Seite 299]
67.7 - References [Seite 300]
68 - 56 Biomechanical Analysis and Inertial Sensing of Ankle Joint While Stepping on an Unanticipated Bump [Seite 301]
68.1 - Abstract [Seite 301]
68.2 - 1 Introduction [Seite 301]
68.3 - 2 Methods [Seite 302]
68.4 - 3 Results [Seite 303]
68.5 - 4 Discussion and Conclusion [Seite 304]
68.6 - Acknowledgments [Seite 305]
68.7 - References [Seite 305]
69 - 57 A Novel Approach to Increase Upper Extremity Active Range of Motion for Individuals with Duchenne Muscular Dystrophy Using Admittance Control: A Preliminary Study [Seite 306]
69.1 - Abstract [Seite 306]
69.2 - 1 Introduction [Seite 306]
69.3 - 2 Materials and Methods [Seite 307]
69.4 - 3 Results [Seite 309]
69.5 - 4 Discussion and Conclusion [Seite 310]
69.6 - Acknowledgments [Seite 310]
69.7 - References [Seite 310]
70 - 58 Modulation of Knee Range of Motion and Time to Rest in Cerebral Palsy Using Two Forms of Mechanical Stimulation [Seite 311]
70.1 - Abstract [Seite 311]
70.2 - 1 Introduction [Seite 312]
70.3 - 2 Materials and Methods [Seite 313]
70.3.1 - 2.1 Whole Body Vibration (WBV) [Seite 313]
70.3.2 - 2.2 Vestibular Stimulation (VS) [Seite 313]
70.3.3 - 2.3 Assessment Technique [Seite 313]
70.4 - 3 Results [Seite 314]
70.5 - 4 Discussion [Seite 314]
70.6 - 5 Conclusion [Seite 315]
70.7 - References [Seite 315]
71 - 59 Training Response to Longitudinal Powered Exoskeleton Training for SCI [Seite 316]
71.1 - Abstract [Seite 316]
71.2 - 1 Introduction [Seite 316]
71.3 - 2 Materials and Methods [Seite 317]
71.3.1 - 2.1 Experimental Test Conditions [Seite 317]
71.3.2 - 2.2 Data Collection and Analysis [Seite 318]
71.4 - 3 Results [Seite 318]
71.4.1 - 3.1 Demographics [Seite 318]
71.4.2 - 3.2 Spatial Temporal Parameters [Seite 318]
71.4.3 - 3.3 Correlation of Temporal-Spatial Measures to Velocity [Seite 318]
71.4.4 - 3.4 CoM [Seite 319]
71.4.5 - 3.5 Able Bodied with EksoGTT [Seite 319]
71.5 - 4 Discussion [Seite 320]
71.6 - 5 Conclusion [Seite 320]
71.7 - Acknowledgments [Seite 320]
71.8 - References [Seite 321]
72 - 60 Adaptive Classification of Arbitrary Activities Through Hidden Markov Modeling with Automated Optimal Initialization [Seite 322]
72.1 - Abstract [Seite 322]
72.2 - 1 Introduction [Seite 322]
72.3 - 2 Methods [Seite 323]
72.4 - 3 Results [Seite 324]
72.5 - 4 Discussion and Conclusion [Seite 325]
72.6 - References [Seite 326]
73 - Design and Motion Analysis of a Wearable and Portable Hand Exoskeleton [Seite 327]
73.1 - 1 Introduction [Seite 327]
73.2 - 2 Design Phase [Seite 328]
73.3 - 3 Results [Seite 329]
73.4 - 4 Conclusion [Seite 330]
73.5 - References [Seite 330]
74 - Nitiglove: Nitinol-Driven Robotic Glove Used to Assist Therapy for Hand Mobility Recovery [Seite 332]
74.1 - 1 Introduction [Seite 332]
74.2 - 2 Engineering Design Process [Seite 333]
74.2.1 - 2.1 Muscle Wires [Seite 333]
74.2.2 - 2.2 Flex Sensors [Seite 334]
74.2.3 - 2.3 Results [Seite 335]
74.3 - 3 Conclusion [Seite 336]
74.4 - References [Seite 336]
75 - 63 3D Printed Arm Exoskeleton for Teleoperation and Manipulation Applications [Seite 337]
75.1 - Abstract [Seite 337]
75.2 - 1 Introduction [Seite 337]
75.3 - 2 Exoskeleton Design [Seite 338]
75.3.1 - 2.1 Mechanical Design [Seite 338]
75.3.2 - 2.2 Mechatronics [Seite 339]
75.4 - 3 Application 1: ICARUS [Seite 339]
75.5 - 4 Application 2: DEXROV [Seite 340]
75.6 - Acknowledgments [Seite 341]
75.7 - References [Seite 341]
76 - 64 Musculoskeletal Simulation of SOLEUS Ankle Exoskeleton for Countermeasure Exercise in Space [Seite 342]
76.1 - Abstract [Seite 342]
76.2 - 1 Introduction [Seite 343]
76.3 - 2 Methods [Seite 343]
76.3.1 - 2.1 Musculoskeletal Human Model [Seite 343]
76.3.2 - 2.2 Definition of Pedal-Pulling Motion [Seite 344]
76.3.3 - 2.3 Conditions of the Linear Actuators [Seite 344]
76.3.4 - 2.4 Interactions Between Human and SOLEUS System [Seite 344]
76.3.5 - 2.5 Inverse Dynamics of Musculoskeletal System [Seite 345]
76.4 - 3 Results [Seite 345]
76.5 - 4 Conclusion [Seite 346]
76.6 - Acknowledgments [Seite 347]
76.7 - References [Seite 347]
77 - 65 Human Gait Feature Detection Using Inertial Sensors Wavelets [Seite 348]
77.1 - Abstract [Seite 348]
77.2 - 1 Introduction [Seite 348]
77.3 - 2 Wireless Sensing System [Seite 349]
77.4 - 3 Wavelet Analysis [Seite 350]
77.5 - 4 Conclusion [Seite 351]
77.6 - References [Seite 352]
78 - On the Importance of a Motor Model for the Optimization of SEA-driven Prosthetic Ankles [Seite 353]
78.1 - 1 Introduction [Seite 353]
78.2 - 2 Materials and Methods [Seite 354]
78.3 - 3 Results and Discussion [Seite 355]
78.4 - 4 Conclusion [Seite 356]
78.5 - References [Seite 357]
79 - 67 Assessment of a 7-DOF Hand Exoskeleton for Neurorehabilitation [Seite 358]
79.1 - Abstract [Seite 358]
79.2 - 1 Introduction [Seite 358]
79.3 - 2 Design Components [Seite 359]
79.3.1 - 2.1 Admittance Control Paradigm [Seite 359]
79.3.2 - 2.2 Wrist End Effector [Seite 360]
79.3.3 - 2.3 Modular Gripper [Seite 360]
79.3.4 - 2.4 Virtual Environment [Seite 361]
79.4 - 3 Methods [Seite 361]
79.5 - 4 Conclusion [Seite 362]
79.6 - References [Seite 362]
80 - Improving the Standing Balance of People with Spinal Cord Injury Through the Use of a Powered Ankle-Foot Orthosis [Seite 363]
80.1 - 1 Introduction [Seite 363]
80.2 - 2 Materials and Methods [Seite 364]
80.3 - 3 Results [Seite 365]
80.4 - 4 Discussion [Seite 365]
80.5 - 5 Conclusions [Seite 367]
80.6 - References [Seite 367]
81 - Transparent Mode for Lower Limb Exoskeleton [Seite 368]
81.1 - 1 Introduction [Seite 368]
81.2 - 2 Experimental Set-Up [Seite 369]
81.3 - 3 Gravity Compensation [Seite 369]
81.4 - 4 Friction Compensation [Seite 370]
81.5 - 5 Interaction Force [Seite 370]
81.6 - 6 Control System [Seite 371]
81.7 - 7 Conclusion [Seite 371]
81.8 - References [Seite 372]
82 - 70 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching by Learning and Coordination of Interactive Impedance [Seite 373]
82.1 - Abstract [Seite 373]
82.2 - 1 Introduction [Seite 373]
82.3 - 2 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching [Seite 374]
82.4 - 3 Co-Adaptive Optimal Control Framework [Seite 376]
82.5 - References [Seite 377]
83 - Upper Limb Exoskeleton Control for Isotropic Sensitivity of Human Arm [Seite 379]
83.1 - 1 Introduction [Seite 379]
83.2 - 2 Materials and Methods [Seite 380]
83.2.1 - 2.1 Manipulability [Seite 380]
83.2.2 - 2.2 Mobility [Seite 380]
83.2.3 - 2.3 Control Method [Seite 381]
83.3 - 3 Experiments and Results [Seite 381]
83.4 - 4 Conclusions [Seite 383]
83.5 - References [Seite 383]
84 - 72 AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases [Seite 384]
84.1 - Abstract [Seite 384]
84.2 - 1 Introduction [Seite 384]
84.3 - 2 Walking Impairments [Seite 385]
84.4 - 3 Trends of Existing Medical Devices [Seite 386]
84.4.1 - 3.1 Human-Robot Interaction [Seite 386]
84.4.2 - 3.2 Design Architecture [Seite 386]
84.5 - 4 Challenges Toward Assistive Devices [Seite 387]
84.5.1 - 4.1 Human-Robot Interaction [Seite 387]
84.5.2 - 4.2 Design Architecture [Seite 387]
84.6 - 5 Conclusion [Seite 388]
84.7 - References [Seite 388]
85 - Passive Lower Back Moment Support in a Wearable Lifting Aid: Counterweight Versus Springs [Seite 389]
85.1 - 1 Introduction [Seite 389]
85.2 - 2 Materials and Methods [Seite 390]
85.3 - 3 Results [Seite 392]
85.4 - 4 Discussion [Seite 392]
85.5 - References [Seite 393]