1. Elements of Potential Scattering Theory.- 1.1 The Möller Wave Operator.- 1.2 The Cross Section.- 1.3 Resolvent Operators and Green's Functions.- 1.4 Asymptotic Behaviour of the Scattering Wave Function.- 1.5 The S-, T-, and K-Matrices.- 1.6 S-Matrix Pole Trajectories.- 1.7 Criteria for Divergence or Convergence of the Neumann Series.- 2. Scattering Theory for the Two-Nucleon System.- 2.1 Density Matrices for the Initial and Final State.- 2.2 The General Spin Observable.- 2.3 The Wolfenstein Parametrisation of the Scattering Amplitude.- 2.4 Examples for Spin Observables.- 2.5 Partial-Wave Decomposition.- 2.6 Standard S-Matrix Representations.- 2.7 Numerical Methods.- 3. Three Interacting Particles.- 3.1 Channels.- 3.2 The Fundamental Set of Lippmann-Schwinger Equations.- 3.3 Faddeev Equations and Other Coupling Schemes.- 3.4 Transition Operators.- 3.5 Examples of Numerical Studies in Few-Nucleon Scattering.- 3.6 The Three-Nucleon Bound State.- 4. Four Interacting Particles.- 4.1 The Fundamental Set of Lippmann-Schwinger Equations.- 4.2 Coupled Equations in Dummy Variables.- 4.3 Yakubovsky Equations.- 4.4 AGS-Equations for Transition Operators.- 4.5 Remarks on Equations of Higher Connectivity.- References.- Reviews, Monographies, and Conferences.