A Comprehensive Reference for Electrochemical Engineering Theory and Application
From chemical and electronics manufacturing, to hybrid vehicles, energy storage, and beyond, electrochemical engineering touches many industries--any many lives--every day. As energy conservation becomes of central importance, so too does the science that helps us reduce consumption, reduce waste, and lessen our impact on the planet. Electrochemical Engineering provides a reference for scientists and engineers working with electrochemical processes, and a rigorous, thorough text for graduate students and upper-division undergraduates.
Merging theoretical concepts with widespread application, this book is designed to provide critical knowledge in a real-world context. Beginning with the fundamental principles underpinning the field, the discussion moves into industrial and manufacturing processes that blend central ideas to provide an advanced understanding while explaining observable results. Fully-worked illustrations simplify complex processes, and end-of chapter questions help reinforce essential knowledge.
With in-depth coverage of both the practical and theoretical, this book is both a thorough introduction to and a useful reference for the field. Rigorous in depth, yet grounded in relevance, Electrochemical Engineering:
* Introduces basic principles from the standpoint of practical application
* Explores the kinetics of electrochemical reactions with discussion on thermodynamics, reaction fundamentals, and transport
* Covers battery and fuel cell characteristics, mechanisms, and system design
* Delves into the design and mechanics of hybrid and electric vehicles, including regenerative braking, start-stop hybrids, and fuel cell systems
* Examines electrodeposition, redox-flow batteries, electrolysis, regenerative fuel cells, semiconductors, and other applications of electrochemical engineering principles
Overlapping chemical engineering, chemistry, material science, mechanical engineering, and electrical engineering, electrochemical engineering covers a diverse array of phenomena explained by some of the important scientific discoveries of our time. Electrochemical Engineering provides the critical understanding required to work effectively with these processes as they become increasingly central to global sustainability.
Auflage
Sprache
Dateigröße
ISBN-13
978-1-119-44658-3 (9781119446583)
Schweitzer Klassifikation
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Contents [Seite 7]
5 - Preface [Seite 11]
6 - List of Symbols [Seite 13]
7 - About the Companion Website [Seite 17]
8 - Chapter 1: Introduction and Basic Principles [Seite 20]
8.1 - 1.1 Electrochemical Cells [Seite 20]
8.2 - 1.2 Characteristics of Electrochemical Reactions [Seite 21]
8.3 - 1.3 Importance of ElectrochemicalSystems [Seite 23]
8.4 - 1.4 Scientific Units, Constants, Conventions [Seite 24]
8.5 - 1.5 Faraday's Law [Seite 25]
8.6 - 1.6 Faradaic Efficiency [Seite 27]
8.7 - 1.7 Current Density [Seite 28]
8.8 - 1.8 Potential and Ohm's Law [Seite 28]
8.9 - 1.9 Electrochemical Systems: Example [Seite 29]
8.10 - Closure [Seite 32]
8.11 - Further Reading [Seite 32]
8.12 - Problems [Seite 32]
9 - Chapter 2: Cell Potential and Thermodynamics [Seite 34]
9.1 - 2.1 Electrochemical Reactions [Seite 34]
9.2 - 2.2 Cell Potential [Seite 34]
9.3 - 2.3 Expression for Cell Potential [Seite 36]
9.4 - 2.4 Standard Potentials [Seite 37]
9.5 - 2.5 Effect of Temperature on StandardPotential [Seite 40]
9.6 - 2.6 Simplified Activity Correction [Seite 41]
9.7 - 2.7 Use of the Cell Potential [Seite 43]
9.8 - 2.8 Equilibrium Constants [Seite 44]
9.9 - 2.9 Pourbaix Diagrams [Seite 44]
9.10 - 2.10 Cells with a Liquid Junction [Seite 46]
9.11 - 2.11 Reference Electrodes [Seite 46]
9.12 - 2.12 Equilibrium at Electrode Interface [Seite 49]
9.13 - 2.13 Potential in Solution Due to Charge: Debye-Hückel Theory [Seite 50]
9.14 - 2.14 Activities and Activity Coefficients [Seite 52]
9.15 - 2.15 Estimation of Activity Coefficients [Seite 54]
9.16 - Closure [Seite 55]
9.17 - Further Reading [Seite 55]
9.18 - Problems [Seite 55]
10 - Chapter 3: Electrochemical Kinetics [Seite 60]
10.1 - 3.1 Double Layer [Seite 60]
10.2 - 3.2 Impact of Potential on Reaction Rate [Seite 61]
10.3 - 3.3 Use of the Butler-Volmer Kinetic Expression [Seite 65]
10.4 - 3.4 Reaction Fundamentals [Seite 68]
10.5 - 3.5 Simplified Forms of the Butler-VolmerEquation [Seite 69]
10.6 - 3.6 Direct Fitting of the Butler-VolmerEquation [Seite 71]
10.7 - 3.7 The Influence of Mass Transfer on the Reaction Rate [Seite 73]
10.8 - 3.8 Use of Kinetic Expressions in Full Cells [Seite 74]
10.9 - 3.9 Current Efficiency [Seite 77]
10.10 - Closure [Seite 77]
10.11 - Further Reading [Seite 78]
10.12 - Problems [Seite 78]
11 - Chapter 4: Transport [Seite 82]
11.1 - 4.1 Fick's Law [Seite 82]
11.2 - 4.2 Nernst-Planck Equation [Seite 82]
11.3 - 4.3 Conservation of Material [Seite 84]
11.4 - 4.4 Transference Numbers, Mobilities, and Migration [Seite 90]
11.5 - 4.5 Convective Mass Transfer [Seite 94]
11.6 - 4.6 Concentration Overpotential [Seite 98]
11.7 - 4.7 Current Distribution [Seite 101]
11.8 - 4.8 Membrane Transport [Seite 105]
11.9 - Closure [Seite 107]
11.10 - Further Reading [Seite 107]
11.11 - Problems [Seite 107]
12 - Chapter 5: Electrode Structures and Configurations [Seite 112]
12.1 - 5.1 Mathematical Description of Porous Electrodes [Seite 113]
12.2 - 5.2 Characterization of Porous Electrodes [Seite 115]
12.3 - 5.3 Impact of Porous Electrode onTransport [Seite 116]
12.4 - 5.4 Current Distributions in Porous Electrodes [Seite 117]
12.5 - 5.5 The Gas-Liquid Interface in Porous Electrodes [Seite 121]
12.6 - 5.6 Three-Phase Electrodes [Seite 122]
12.7 - 5.7 Electrodes with Flow [Seite 124]
12.8 - Closure [Seite 127]
12.9 - Further Reading [Seite 127]
12.10 - Problems [Seite 127]
13 - Chapter 6: Electroanalytical Techniques and Analysis of Electrochemical Systems [Seite 132]
13.1 - 6.1 Electrochemical Cells, Instrumentation, and Some Practical Issues [Seite 132]
13.2 - 6.2 Overview [Seite 134]
13.3 - 6.3 Step Change in Potential or Current for a Semi-Infinite Planar Electrode in a Stagnant Electrolyte [Seite 135]
13.4 - 6.4 Electrode Kinetics and Double-Layer Charging [Seite 137]
13.5 - 6.5 Cyclic Voltammetry [Seite 141]
13.6 - 6.6 Stripping Analyses [Seite 146]
13.7 - 6.7 Electrochemical Impedance [Seite 148]
13.8 - 6.8 Rotating Disk Electrodes [Seite 155]
13.9 - 6.9 iR Compensation [Seite 158]
13.10 - 6.10 Microelectrodes [Seite 160]
13.11 - Closure [Seite 164]
13.12 - Further Reading [Seite 164]
13.13 - Problems [Seite 164]
14 - Chapter 7: Battery Fundamentals [Seite 170]
14.1 - 7.1 Components of a Cell [Seite 170]
14.2 - 7.2 Classification of Batteries and Cell Chemistries [Seite 171]
14.3 - 7.3 Theoretical Capacity and State of Charge [Seite 175]
14.4 - 7.4 Cell Characteristics and Electrochemical Performance [Seite 177]
14.5 - 7.5 Ragone Plots [Seite 182]
14.6 - 7.6 Heat Generation [Seite 183]
14.7 - 7.7 Efficiency of Secondary Cells [Seite 185]
14.8 - 7.8 Charge Retention and Self-Discharge [Seite 186]
14.9 - 7.9 Capacity Fade in Secondary Cells [Seite 187]
14.10 - Closure [Seite 188]
14.11 - Further Reading [Seite 188]
14.12 - Problems [Seite 188]
15 - Chapter 8: Battery Applications: Cell and Battery Pack Design [Seite 194]
15.1 - 8.1 Introduction to Battery Design [Seite 194]
15.2 - 8.2 Battery Layout Using a Specific Cell Design [Seite 195]
15.3 - 8.3 Scaling of Cells to Adjust Capacity [Seite 197]
15.4 - 8.4 Electrode and Cell Design to Achieve Rate Capability [Seite 200]
15.5 - 8.5 Cell Construction [Seite 202]
15.6 - 8.6 Charging of Batteries [Seite 203]
15.7 - 8.7 Use of Resistance to Characterize Battery Peformance [Seite 204]
15.8 - 8.8 Battery Management [Seite 205]
15.9 - 8.9 Thermal Management Systems [Seite 207]
15.10 - 8.10 Mechanical Considerations [Seite 209]
15.11 - Closure [Seite 210]
15.12 - Further Reading [Seite 210]
15.13 - Problems [Seite 210]
16 - Chapter 9: Fuel-Cell Fundamentals [Seite 214]
16.1 - 9.1 Introduction [Seite 214]
16.2 - 9.2 Types of Fuel Cells [Seite 216]
16.3 - 9.3 Current-Voltage Characteristics and Polarizations [Seite 217]
16.4 - 9.4 Effect of Operating Conditions andMaximum Power [Seite 221]
16.5 - 9.5 Electrode Structure [Seite 224]
16.6 - 9.6 Proton-Exchange Membrane (PEM) Fuel Cells [Seite 225]
16.7 - 9.7 Solid Oxide Fuel Cells [Seite 230]
16.8 - Closure [Seite 234]
16.9 - Further Reading [Seite 234]
16.10 - Problems [Seite 235]
17 - Chapter 10: Fuel-Cell Stack and System Design [Seite 242]
17.1 - 10.1 Introduction and Overview of Systems Analysis [Seite 242]
17.2 - 10.2 Basic Stack Design Concepts [Seite 245]
17.3 - 10.3 Cell Stack Configurations [Seite 247]
17.4 - 10.4 Basic Construction and Components [Seite 248]
17.5 - 10.5 Utilization of Oxidant and Fuel [Seite 250]
17.6 - 10.6 Flow-Field Design [Seite 254]
17.7 - 10.7 Water and Thermal Management [Seite 257]
17.8 - 10.8 Structural-MechanicalConsiderations [Seite 260]
17.9 - 10.9 Case Study [Seite 264]
17.10 - Closure [Seite 266]
17.11 - Further Reading [Seite 266]
17.12 - Problems [Seite 266]
18 - Chapter 11: Electrochemical Double-Layer Capacitors [Seite 270]
18.1 - 11.1 Capacitor Introduction [Seite 270]
18.2 - 11.2 Electrical Double-Layer Capacitance [Seite 272]
18.3 - 11.3 Current-Voltage Relationship for Capacitors [Seite 278]
18.4 - 11.4 Porous EDLC Electrodes [Seite 280]
18.5 - 11.5 Impedance Analysis of EDLCs [Seite 282]
18.6 - 11.6 Full Cell EDLC Analysis [Seite 285]
18.7 - 11.7 Power and Energy Capabilities [Seite 286]
18.8 - 11.8 Cell Design, Practical Operation, andElectrochemical Capacitor Performance [Seite 288]
18.9 - 11.9 Pseudo-Capacitance [Seite 290]
18.10 - Closure [Seite 292]
18.11 - Further Reading [Seite 292]
18.12 - Problems [Seite 292]
19 - Chapter 12: Energy Storage and Conversion for Hybrid and Electrical Vehicles [Seite 296]
19.1 - 12.1 Why Electric and Hybrid-ElectricSystems? [Seite 296]
19.2 - 12.2 Driving Schedules and Power Demand in Vehicles [Seite 298]
19.3 - 12.3 Regenerative Braking [Seite 300]
19.4 - 12.4 Battery Electrical Vehicle [Seite 301]
19.5 - 12.5 Hybrid Vehicle Architectures [Seite 303]
19.6 - 12.6 Start-Stop Hybrid [Seite 304]
19.7 - 12.7 Batteries for Full-Hybrid Electric Vehicles [Seite 306]
19.8 - 12.8 Fuel-Cell Hybrid Systems for Vehicles [Seite 310]
19.9 - Closure [Seite 312]
19.10 - Further Reading [Seite 313]
19.11 - Problems [Seite 313]
19.12 - Appendix: Primer on Vehicle Dynamics [Seite 314]
20 - Chapter 13: Electrodeposition [Seite 318]
20.1 - 13.1 Overview [Seite 318]
20.2 - 13.2 Faraday's Law and Deposit Thickness [Seite 319]
20.3 - 13.3 Electrodeposition Fundamentals [Seite 319]
20.4 - 13.4 Formation of Stable Nuclei [Seite 322]
20.5 - 13.5 Nucleation Rates [Seite 324]
20.6 - 13.6 Growth of Nuclei [Seite 327]
20.7 - 13.7 Deposit Morphology [Seite 329]
20.8 - 13.8 Additives [Seite 330]
20.9 - 13.9 Impact of Current Distribution [Seite 331]
20.10 - 13.10 Impact of Side Reactions [Seite 333]
20.11 - 13.11 Resistive Substrates [Seite 335]
20.12 - Closure [Seite 338]
20.13 - Further Reading [Seite 338]
20.14 - Problems [Seite 338]
21 - Chapter 14: Industrial Electrolysis, Electrochemical Reactors, and Redox-Flow Batteries [Seite 342]
21.1 - 14.1 Overview of Industrial Electrolysis [Seite 342]
21.2 - 14.2 Performance Measures [Seite 343]
21.3 - 14.3 Voltage Losses and the Polarization Curve [Seite 347]
21.4 - 14.4 Design of Electrochemical Reactors for Industrial Applications [Seite 350]
21.5 - 14.5 Examples of Industrial Electrolytic Processes [Seite 356]
21.6 - 14.6 Thermal Management and Cell Operation [Seite 360]
21.7 - 14.7 Electrolytic Processes for a Sustainable Future [Seite 362]
21.8 - 14.8 Redox-Flow Batteries [Seite 367]
21.9 - Closure [Seite 369]
21.10 - Further Reading [Seite 369]
21.11 - Problems [Seite 369]
22 - Chapter 15: Semiconductor Electrodes and Photoelectrochemical Cells [Seite 374]
22.1 - 15.1 Semiconductor Basics [Seite 374]
22.2 - 15.2 Energy Scales [Seite 377]
22.3 - 15.3 Semiconductor-Electrolyte Interface [Seite 379]
22.4 - 15.4 Current Flow in the Dark [Seite 382]
22.5 - 15.5 Light Absorption [Seite 385]
22.6 - 15.6 Photoelectrochemical Effects [Seite 387]
22.7 - 15.7 Open-Circuit Voltage for Illuminated Electrodes [Seite 388]
22.8 - 15.8 Photo-Electrochemical Cells [Seite 389]
22.9 - Closure [Seite 394]
22.10 - Further Reading [Seite 394]
22.11 - Problems [Seite 394]
23 - Chapter 16: Corrosion [Seite 398]
23.1 - 16.1 Corrosion Fundamentals [Seite 398]
23.2 - 16.2 Thermodynamics of Corrosion Systems [Seite 399]
23.3 - 16.3 Corrosion Rate for Uniform Corrosion [Seite 402]
23.4 - 16.4 Localized Corrosion [Seite 409]
23.5 - 16.5 Corrosion Protection [Seite 413]
23.6 - Closure [Seite 418]
23.7 - Further Reading [Seite 418]
23.8 - Problems [Seite 418]
24 - Appendix A: Electrochemical Reactions and Standard Potentials [Seite 422]
25 - Appendix B: Fundamental Constants [Seite 423]
26 - Appendix C: Thermodynamic Data [Seite 424]
27 - Appendix D: Mechanics of Materials [Seite 427]
28 - Index [Seite 432]
29 - End User License Agreement [Seite 437]