1 - Science of Synthesis: Knowledge Updates 2013/1 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 14]
1.6 - Table of Contents [Seite 16]
1.7 - Volume 5: Compounds of Group 14 (Ge, Sn, Pb) [Seite 30]
1.7.1 - 5.2 Product Class 2: Tin Compounds [Seite 30]
1.7.1.1 - 5.2.1 Product Subclass 1: Tin Hydrides [Seite 30]
1.7.1.1.1 - Synthesis of Product Subclass 1 [Seite 32]
1.7.1.1.1.1 - 5.2.1.1 Method 1: Reduction of Tin Halides [Seite 32]
1.7.1.1.1.1.1 - 5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride [Seite 32]
1.7.1.1.1.1.2 - 5.2.1.1.2 Variation 2: Reduction of Tin Halides with Sodium Borohydride [Seite 34]
1.7.1.1.1.2 - 5.2.1.2 Method 2: Synthesis from Organotin Oxides, Alkoxides, or Amides by Reduction [Seite 35]
1.7.1.1.1.3 - 5.2.1.3 Method 3: Synthesis from Organotin Lithium, Sodium, Potassium, or Magnesium Compounds by Reactions with Electrophiles [Seite 36]
1.7.1.1.2 - Applications of Product Subclass 1 in Organic Synthesis [Seite 37]
1.7.1.1.2.1 - 5.2.1.4 Tin-Mediated Radical Chain Reactions Not Involving Rearrangement of Intermediate Radicals [Seite 37]
1.7.1.1.2.1.1 - 5.2.1.4.1 Method 1: Reduction of Carbon--Heteroatom Bonds [Seite 41]
1.7.1.1.2.1.1.1 - 5.2.1.4.1.1 Variation 1: Reduction of Carbon--Halogen Bonds [Seite 41]
1.7.1.1.2.1.1.2 - 5.2.1.4.1.2 Variation 2: Reduction of C--O Bonds [Seite 45]
1.7.1.1.2.1.1.3 - 5.2.1.4.1.3 Variation 3: Reduction of C--N Bonds [Seite 48]
1.7.1.1.2.1.2 - 5.2.1.4.2 Method 2: Formation of C--C Bonds by Radical Additions to Alkenes [Seite 50]
1.7.1.1.2.1.2.1 - 5.2.1.4.2.1 Variation 1: Formation of C--C Bonds by Intermolecular Reactions with Alkenes [Seite 51]
1.7.1.1.2.1.2.2 - 5.2.1.4.2.2 Variation 2: Formation of C--C Bonds by Intramolecular Addition of Carbon Radicals to Double Bonds [Seite 55]
1.7.1.1.2.1.3 - 5.2.1.4.3 Method 3: Formation of C--N Bonds by Reactions of Nitrogen-Centered Radicals [Seite 68]
1.7.1.1.2.2 - 5.2.1.5 Tin-Mediated Radical Reactions That Proceed with Rearrangement of Intermediate Radicals [Seite 72]
1.7.1.1.2.2.1 - 5.2.1.5.1 Method 1: Radical Reactions That Proceed with Opening of Small Rings [Seite 72]
1.7.1.1.2.2.2 - 5.2.1.5.2 Method 2: Radical Reactions That Proceed with 1,2- and 1,4-Group Transfer [Seite 75]
1.7.1.1.2.2.3 - 5.2.1.5.3 Method 3: Radical Translocation through Intramolecular Hydrogen Abstraction [Seite 80]
1.7.1.1.2.3 - 5.2.1.6 Hydrostannylation [Seite 84]
1.7.1.1.2.3.1 - 5.2.1.6.1 Method 1: Hydrostannylation of Alkynes [Seite 84]
1.7.1.1.2.3.1.1 - 5.2.1.6.1.1 Variation 1: Radical Hydrostannylation of Terminal Alkynes [Seite 84]
1.7.1.1.2.3.1.2 - 5.2.1.6.1.2 Variation 2: Transition-Metal-Catalyzed Hydrostannylation of Terminal Alkynes [Seite 86]
1.7.1.1.2.3.1.3 - 5.2.1.6.1.3 Variation 3: Palladium-Catalyzed Sequential Hydrostannylation and Stille Cross Coupling of Terminal Alkynes [Seite 89]
1.7.1.1.2.3.1.4 - 5.2.1.6.1.4 Variation 4: Radical Hydrostannylation of Internal Alkynes [Seite 90]
1.7.1.1.2.3.1.5 - 5.2.1.6.1.5 Variation 5: Transition-Metal-Catalyzed Hydrostannylation of Internal Alkynes [Seite 92]
1.7.1.1.2.3.2 - 5.2.1.6.2 Method 2: Hydrostannylation of C==C, C==O, and C==N Bonds [Seite 96]
1.7.1.1.2.3.2.1 - 5.2.1.6.2.1 Variation 1: Hydrostannylation of Alkenes [Seite 96]
1.7.1.1.2.3.2.2 - 5.2.1.6.2.2 Variation 2: Addition Reactions of Tin Hydrides to C==O Bonds [Seite 99]
1.7.1.1.2.3.2.3 - 5.2.1.6.2.3 Variation 3: Additions of Tin Hydrides to C==N Bonds [Seite 101]
1.8 - Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be···Ba) [Seite 108]
1.8.1 - 7.6 Product Class 6: Magnesium Compounds [Seite 108]
1.8.1.1 - 7.6.11.21 Grignard Reagents with Transition Metals [Seite 108]
1.8.1.1.1 - 7.6.11.21.1 Method 1: Mercury-Catalyzed Addition of Grignard Reagents to Aldehydes [Seite 109]
1.8.1.1.2 - 7.6.11.21.2 Method 2: Nickel-Catalyzed Cross Coupling of Grignard Reagents [Seite 110]
1.8.1.1.2.1 - 7.6.11.21.2.1 Variation 1: Reaction with Alkyl Halides [Seite 110]
1.8.1.1.2.2 - 7.6.11.21.2.2 Variation 2: Reaction with Organosulfur Compounds [Seite 111]
1.8.1.1.2.3 - 7.6.11.21.2.3 Variation 3: Reaction with Aryl Fluorides under Microwave Irradiation [Seite 113]
1.8.1.1.3 - 7.6.11.21.3 Method 3: Palladium-Catalyzed Cross Coupling of Grignard Reagents [Seite 114]
1.8.1.1.3.1 - 7.6.11.21.3.1 Variation 1: Reaction with Aryl Halides [Seite 114]
1.8.1.1.3.2 - 7.6.11.21.3.2 Variation 2: Reaction with Aryl Fluorides under Microwave Irradiation [Seite 115]
1.8.1.1.3.3 - 7.6.11.21.3.3 Variation 3: Reaction with Aryl Halides Promoted by Zinc(II) Bromide [Seite 116]
1.8.1.1.3.4 - 7.6.11.21.3.4 Variation 4: Reaction with Hetaryl Sulfonates [Seite 118]
1.8.1.1.4 - 7.6.11.21.4 Method 4: Copper-Catalyzed Reactions of Grignard Reagents [Seite 119]
1.8.1.1.4.1 - 7.6.11.21.4.1 Variation 1: Cross Coupling with Hetaryl Halides [Seite 119]
1.8.1.1.4.2 - 7.6.11.21.4.2 Variation 2: Carbometalation of Propargylic Alcohols [Seite 120]
1.8.1.1.4.3 - 7.6.11.21.4.3 Variation 3: Reaction with a,ß-Unsaturated Carbonyl Compounds [Seite 122]
1.8.1.1.4.4 - 7.6.11.21.4.4 Variation 4: Allylic Substitution Reactions [Seite 123]
1.8.1.1.4.5 - 7.6.11.21.4.5 Variation 5: Ring Opening of Chiral Epoxides [Seite 125]
1.8.1.1.4.6 - 7.6.11.21.4.6 Variation 6: Cross Coupling with Allylic Chlorides [Seite 127]
1.8.1.1.5 - 7.6.11.21.5 Method 5: Iron-Catalyzed Cross Coupling of Grignard Reagents [Seite 128]
1.8.1.1.5.1 - 7.6.11.21.5.1 Variation 1: Reaction with Aryl Halides [Seite 128]
1.8.1.1.5.2 - 7.6.11.21.5.2 Variation 2: Reaction with Alkynyloxiranes [Seite 130]
1.8.1.1.5.3 - 7.6.11.21.5.3 Variation 3: Reaction with Primary and Secondary Alkyl Halides [Seite 131]
1.8.1.1.6 - 7.6.11.21.6 Method 6: Iron-Catalyzed Reduction of Organic Halides [Seite 134]
1.8.1.1.7 - 7.6.11.21.7 Method 7: Iridium-Catalyzed Allylic Substitution Reactions [Seite 135]
1.8.1.1.8 - 7.6.11.21.8 Method 8: Titanium-Catalyzed Cross Coupling of Grignard Reagents [Seite 136]
1.8.1.1.8.1 - 7.6.11.21.8.1 Variation 1: Reaction with Aryl Fluorides [Seite 136]
1.8.1.1.8.2 - 7.6.11.21.8.2 Variation 2: Reaction with O,N-Acetals [Seite 137]
1.8.1.1.9 - 7.6.11.21.9 Method 9: Zirconium-Catalyzed Reaction with Alkynes [Seite 138]
1.8.2 - 7.7 Product Class 7: Calcium Compounds [Seite 142]
1.8.2.1 - 7.7.1 Product Subclass 1: Organocalcium Hydrides [Seite 142]
1.8.2.1.1 - Synthesis of Product Subclass 1 [Seite 142]
1.8.2.1.1.1 - 7.7.1.1 Method 1: Synthesis of Phenylcalcium Hydride from Calcium Metal [Seite 142]
1.8.2.1.2 - Applications of Product Subclass 1 in Organic Synthesis [Seite 143]
1.8.2.1.2.1 - 7.7.1.2 Method 2: Reaction of Phenylcalcium Hydride with Electrophiles [Seite 143]
1.8.2.2 - 7.7.2 Product Subclass 2: Heterobimetallic Calcium Compounds [Seite 144]
1.8.2.2.1 - Synthesis of Product Subclass 2 [Seite 144]
1.8.2.2.1.1 - 7.7.2.1 Method 1: Synthesis of Heterobimetallic Calcium Compounds with Alkaline Earth and Transition Metals [Seite 144]
1.8.2.2.1.2 - 7.7.2.2 Method 2: Synthesis of Calcium Borates [Seite 145]
1.8.2.2.2 - Applications of Product Subclass 2 in Organic Synthesis [Seite 146]
1.8.2.2.2.1 - 7.7.2.3 Method 3: Intramolecular Hydroamination of Amino-Substituted Alkenes [Seite 146]
1.8.2.2.2.2 - 7.7.2.4 Method 4: Baeyer-Villiger Oxidation of Ketones [Seite 147]
1.8.2.3 - 7.7.3 Product Subclass 3: Organocalcium Halides [Seite 150]
1.8.2.3.1 - Synthesis of Product Subclass 3 [Seite 150]
1.8.2.3.1.1 - 7.7.3.1 Method 1: Synthesis of Methylcalcium Iodide from Calcium Metal [Seite 150]
1.8.2.3.2 - Applications of Product Subclass 3 in Organic Synthesis [Seite 151]
1.8.2.3.2.1 - 7.7.3.2 Method 2: Reaction of Organocalcium Halides with Electrophiles [Seite 151]
1.8.2.4 - 7.7.4 Product Subclass 4: Calcium Alkoxides [Seite 152]
1.8.2.4.1 - Synthesis of Product Subclass 4 [Seite 152]
1.8.2.4.1.1 - 7.7.4.1 Method 1: Synthesis of Calcium Alkoxides from Calcium Metal [Seite 152]
1.8.2.4.1.2 - 7.7.4.2 Method 2: Synthesis of Calcium Alkoxides from Calcium(II) Compounds [Seite 153]
1.8.2.4.2 - Applications of Product Subclass 4 in Organic Synthesis [Seite 154]
1.8.2.4.2.1 - 7.7.4.3 Method 3: Asymmetric Baylis-Hillman Reactions [Seite 154]
1.8.2.4.2.2 - 7.7.4.4 Method 4: Asymmetric Aldol Reactions [Seite 154]
1.8.2.4.2.3 - 7.7.4.5 Method 5: Asymmetric 1,4-Addition Reactions [Seite 155]
1.8.2.4.2.4 - 7.7.4.6 Method 6: Asymmetric Epoxidation Reactions [Seite 156]
1.8.2.5 - 7.7.5 Product Subclass 5: Calcium Phosphates [Seite 157]
1.8.2.5.1 - Synthesis of Product Subclass 5 [Seite 157]
1.8.2.5.1.1 - 7.7.5.1 Method 1: Synthesis of Chiral Calcium Phosphates from Calcium(II) Compounds [Seite 157]
1.8.2.5.2 - Applications of Product Subclass 5 in Organic Synthesis [Seite 159]
1.8.2.5.2.1 - 7.7.5.2 Method 2: Asymmetric Mannich Reactions of Aldimines [Seite 159]
1.8.2.5.2.1.1 - 7.7.5.2.1 Variation 1: Reaction with Acyclic Nucleophiles [Seite 159]
1.8.2.5.2.1.2 - 7.7.5.2.2 Variation 2: Reaction with Cyclic Nucleophiles [Seite 161]
1.8.2.5.2.2 - 7.7.5.3 Method 3: Asymmetric Reactions of Indolin-2-ones [Seite 162]
1.8.2.5.2.2.1 - 7.7.5.3.1 Variation 1: Oxidation of 3-Arylindolin-2-ones [Seite 162]
1.8.2.5.2.2.2 - 7.7.5.3.2 Variation 2: Chlorination of 3-Arylindolin-2-ones [Seite 163]
1.8.2.5.2.3 - 7.7.5.4 Method 4: Asymmetric Amination of Enamines [Seite 164]
1.8.2.5.2.4 - 7.7.5.5 Method 5: Asymmetric Carbonyl-Ene Reactions [Seite 167]
1.8.2.5.2.5 - 7.7.5.6 Method 6: Asymmetric Friedel-Crafts Alkylation [Seite 168]
1.8.2.6 - 7.7.6 Product Subclass 6: Calcium Amides [Seite 169]
1.8.2.6.1 - Synthesis of Product Subclass 6 [Seite 169]
1.8.2.6.1.1 - 7.7.6.1 Method 1: Synthesis of Calcium-Bis(4,5-dihydrooxazole) Complexes from Calcium(II) Compounds [Seite 169]
1.8.2.6.2 - Applications of Product Subclass 6 in Organic Synthesis [Seite 170]
1.8.2.6.2.1 - 7.7.6.2 Method 2: Asymmetric 1,4-Addition Reactions with a,ß-Unsaturated Carbonyl Derivatives [Seite 170]
1.8.2.6.2.2 - 7.7.6.3 Method 3: Asymmetric [3 + 2]-Cycloaddition Reactions [Seite 172]
1.8.2.6.2.3 - 7.7.6.4 Method 4: Asymmetric 1,4-Addition/Protonation Reactions [Seite 173]
1.8.2.6.2.4 - 7.7.6.5 Method 5: Asymmetric 1,4-Addition Reactions of Oxazolones [Seite 175]
1.8.2.6.2.5 - 7.7.6.6 Method 6: Asymmetric 1,4-Addition Reactions to Nitroalkenes [Seite 175]
1.8.2.6.2.6 - 7.7.6.7 Method 7: Asymmetric Hydroamination Reactions [Seite 177]
1.8.2.6.2.7 - 7.7.6.8 Method 8: Friedel-Crafts Addition to Arenes [Seite 178]
1.8.2.7 - 7.7.7 Product Subclass 7: Diorganocalcium Compounds [Seite 179]
1.8.2.7.1 - Synthesis of Product Subclass 7 [Seite 179]
1.8.2.7.1.1 - 7.7.7.1 Method 1: Synthesis of Bis(phenylethynyl)calcium from Calcium Metal [Seite 179]
1.8.2.7.1.2 - 7.7.7.2 Method 2: Synthesis of Diallylcalcium from Calcium Iodide [Seite 180]
1.8.2.7.1.3 - 7.7.7.3 Method 3: Synthesis of Calcium Metallocenes [Seite 181]
1.8.2.7.1.4 - 7.7.7.4 Method 4: Synthesis of Dibenzylcalcium Complexes [Seite 181]
1.8.2.7.2 - Applications of Product Subclass 7 in Organic Synthesis [Seite 182]
1.8.2.7.2.1 - 7.7.7.5 Method 5: Hydrogenation of Alkenes [Seite 182]
1.8.2.7.2.2 - 7.7.7.6 Method 6: Hydrosilylation of Ketones [Seite 183]
1.9 - Volume 9: Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom [Seite 186]
1.9.1 - 9.13 Product Class 13: 1H-Pyrroles [Seite 186]
1.9.1.1 - 9.13.5 1H-Pyrroles [Seite 186]
1.9.1.1.1 - 9.13.5.1 Synthesis by Ring-Closure Reactions [Seite 187]
1.9.1.1.1.1 - 9.13.5.1.1 By Formation of Two N--C and Two C--C Bonds [Seite 187]
1.9.1.1.1.1.1 - 9.13.5.1.1.1 Fragments N, C--C, and Two C Fragments [Seite 187]
1.9.1.1.1.1.1.1 - 9.13.5.1.1.1.1 Method 1: Reaction of Nitroalkanes, Aldehydes, 1,3-Dicarbonyl Compounds, and Amines [Seite 187]
1.9.1.1.1.1.1.2 - 9.13.5.1.1.1.2 Method 2: Solid-Phase Synthesis of Pyrrole-3-carboxamides from Enaminones and Nitroalkenes [Seite 188]
1.9.1.1.1.1.1.3 - 9.13.5.1.1.1.3 Method 3: Combination of an Alkyl Propynoate, Aldehyde, and an Amine [Seite 189]
1.9.1.1.1.1.1.4 - 9.13.5.1.1.1.4 Method 4: Samarium-Catalyzed Three-Component Coupling Reaction [Seite 190]
1.9.1.1.1.1.1.5 - 9.13.5.1.1.1.5 Method 5: Titanium-Catalyzed Three-Component Coupling Reaction [Seite 191]
1.9.1.1.1.2 - 9.13.5.1.2 By Formation of Two N--C Bonds and One C--C Bond [Seite 191]
1.9.1.1.1.2.1 - 9.13.5.1.2.1 Fragment N and Two C--C Fragments [Seite 191]
1.9.1.1.1.2.1.1 - 9.13.5.1.2.1.1 Method 1: Reaction of Amines and Two Carbonyl Compounds [Seite 191]
1.9.1.1.1.2.1.2 - 9.13.5.1.2.1.2 Method 2: Reaction of Amines, 1,3-Dicarbonyl Compounds, and Alkenes or Alkynes [Seite 195]
1.9.1.1.1.2.1.3 - 9.13.5.1.2.1.3 Method 3: Reaction of Amines, Carbonyl Compounds, and Alkenes or Alkynes [Seite 197]
1.9.1.1.1.2.1.4 - 9.13.5.1.2.1.4 Method 4: Reaction of Amines and Combinations of Alkanes, Alkenes, and Alkynes [Seite 199]
1.9.1.1.1.2.2 - 9.13.5.1.2.2 Fragments N, C--C--C, and C [Seite 202]
1.9.1.1.1.2.2.1 - 9.13.5.1.2.2.1 Method 1: Reaction of Amines, a,ß-Unsaturated Carbonyl Compounds, and Carbon Nucleophiles [Seite 202]
1.9.1.1.1.2.2.1.1 - 9.13.5.1.2.2.1.1 Variation 1: Reactions with Aldehydes and Acylsilanes as Umpolung Nucleophiles under Stetter Conditions [Seite 202]
1.9.1.1.1.2.2.1.2 - 9.13.5.1.2.2.1.2 Variation 2: Reactions with Nitroalkanes as Nucleophiles for Conjugate Addition [Seite 204]
1.9.1.1.1.2.2.2 - 9.13.5.1.2.2.2 Method 2: Reaction of Amines, 1,3-Diketones, and Aldehydes [Seite 205]
1.9.1.1.1.3 - 9.13.5.1.3 By Formation of One N--C Bond and Two C--C Bonds [Seite 206]
1.9.1.1.1.3.1 - 9.13.5.1.3.1 Fragments N--C, C--C, and C [Seite 206]
1.9.1.1.1.3.1.1 - 9.13.5.1.3.1.1 Method 1: Reaction of Imines, Acid Chlorides, and Alkynes [Seite 206]
1.9.1.1.1.3.1.2 - 9.13.5.1.3.1.2 Method 2: Synthesis of Pyrrole-3,4-dicarboxylates by Multicomponent Reactions Involving Dimethyl Acetylenedicarboxylate [Seite 210]
1.9.1.1.1.3.1.2.1 - 9.13.5.1.3.1.2.1 Variation 1: Reaction of Dimethyl Acetylenedicarboxylate with Amino Acids and Acid Chlorides [Seite 211]
1.9.1.1.1.3.1.2.2 - 9.13.5.1.3.1.2.2 Variation 2: Reaction of Dimethyl Acetylenedicarboxylate with Imines and Diazoacetonitrile or an Isocyanide [Seite 211]
1.9.1.1.1.3.1.3 - 9.13.5.1.3.1.3 Method 3: Synthesis of N--C2 Benzo-Fused Pyrroles from Isoquinolines, Quinolines, or Pyridines [Seite 212]
1.9.1.1.1.3.1.4 - 9.13.5.1.3.1.4 Method 4: Reactions of Aryl and Alkyl Acetylenes in Stoichiometric Metal-Mediated Pyrrole Syntheses [Seite 213]
1.9.1.1.1.3.1.5 - 9.13.5.1.3.1.5 Method 5: Pyrrol-2-amine Synthesis from Nitriles, Aldehydes, and a-(Tosylamino)acetophenones [Seite 214]
1.9.1.1.1.4 - 9.13.5.1.4 By Formation of Three C--C Bonds [Seite 215]
1.9.1.1.1.4.1 - 9.13.5.1.4.1 Fragments C--N--C and Two C Fragments [Seite 215]
1.9.1.1.1.4.1.1 - 9.13.5.1.4.1.1 Method 1: By Transformation of Benzylic Alcohols, Nitroalkanes, and tert-Butyl Isocyanoacetate Using Solid-Supported Reagents [Seite 215]
1.9.1.1.1.4.1.2 - 9.13.5.1.4.1.2 Method 2: Reaction of Aldehydes, Ethyl (Diethoxyphosphoryl)acetate, and Tosylmethyl Isocyanide [Seite 216]
1.9.1.1.1.5 - 9.13.5.1.5 By Formation of Two N--C Bonds [Seite 217]
1.9.1.1.1.5.1 - 9.13.5.1.5.1 Fragments N and C--C--C--C [Seite 217]
1.9.1.1.1.5.1.1 - 9.13.5.1.5.1.1 Method 1: Paal-Knorr Reaction [Seite 217]
1.9.1.1.1.5.1.2 - 9.13.5.1.5.1.2 Method 2: Reaction of Amines with .-Modified Carbonyl Compounds as 1,4-Dicarbonyl Equivalents [Seite 225]
1.9.1.1.1.5.1.3 - 9.13.5.1.5.1.3 Method 3: Reaction of Alka-2,3-dienyl Carbonyl Compounds and Cyclopropyl Ketones with Amines [Seite 228]
1.9.1.1.1.5.1.4 - 9.13.5.1.5.1.4 Method 4: Reaction of Alk-3-ynyl Carbonyl Compounds with Amines [Seite 230]
1.9.1.1.1.5.1.5 - 9.13.5.1.5.1.5 Method 5: Reaction of Buta-1,3-dienes and Related Compounds with Amines [Seite 232]
1.9.1.1.1.5.1.6 - 9.13.5.1.5.1.6 Method 6: Reactions of 1,3-, 1,4-, and 1,5-Diynes with Amines [Seite 233]
1.9.1.1.1.5.1.7 - 9.13.5.1.5.1.7 Method 7: Reaction of 1-En-3-yne Analogues and Amines [Seite 235]
1.9.1.1.1.5.1.8 - 9.13.5.1.5.1.8 Method 8: Reaction of Enynol Analogues and Amine Derivatives [Seite 237]
1.9.1.1.1.5.1.9 - 9.13.5.1.5.1.9 Method 9: Reaction of (Z)-1,4-Dichlorobut-2-ene with Amines [Seite 239]
1.9.1.1.1.5.1.10 - 9.13.5.1.5.1.10 Method 10: Reaction of 2-Allylbuta-2,3-dienoates with Sodium Azide [Seite 240]
1.9.1.1.1.5.1.11 - 9.13.5.1.5.1.11 Method 11: Reactions of 1,6-Dicarbonyl-2,4-diene Equivalents with Amines [Seite 241]
1.9.1.1.1.6 - 9.13.5.1.6 By Formation of One N--C and One C--C Bond [Seite 242]
1.9.1.1.1.6.1 - 9.13.5.1.6.1 Fragments N--C--C--C and C [Seite 242]
1.9.1.1.1.6.1.1 - 9.13.5.1.6.1.1 Method 1: Phosphine-Mediated Reaction of a,ß-Unsaturated Imines with Acid Chlorides [Seite 242]
1.9.1.1.1.6.1.2 - 9.13.5.1.6.1.2 Method 2: Rhodium(I)-Catalyzed [4 + 1]-Cycloaddition Reactions of a,ß-Unsaturated Imines with Terminal Alkynes [Seite 242]
1.9.1.1.1.6.1.3 - 9.13.5.1.6.1.3 Method 3: Reaction of a,ß-Unsaturated Imines with Isocyanides or Carbenes [Seite 243]
1.9.1.1.1.6.1.4 - 9.13.5.1.6.1.4 Method 4: Reaction of Acid Chlorides with Propargylamines and Sodium Iodide [Seite 244]
1.9.1.1.1.6.2 - 9.13.5.1.6.2 Fragments N--C--C and C--C [Seite 245]
1.9.1.1.1.6.2.1 - 9.13.5.1.6.2.1 Method 1: Reactions of 2H-Azirines and 1,3-Dicarbonyl Compounds [Seite 245]
1.9.1.1.1.6.2.1.1 - 9.13.5.1.6.2.1.1 Variation 1: Reaction of Vinyl Azides with 1,3-Dicarbonyl Compounds [Seite 245]
1.9.1.1.1.6.2.1.2 - 9.13.5.1.6.2.1.2 Variation 2: Reaction of Isolated 2H-Azirines with 1,3-Dicarbonyl Compounds [Seite 247]
1.9.1.1.1.6.2.2 - 9.13.5.1.6.2.2 Method 2: Knorr-Type Reaction of Oximes and 1,3-Dicarbonyl Compounds [Seite 247]
1.9.1.1.1.6.2.3 - 9.13.5.1.6.2.3 Method 3: Reaction of Enamines and Alkynes [Seite 248]
1.9.1.1.1.6.2.4 - 9.13.5.1.6.2.4 Method 4: Reactions of 1,2-Diazabuta-1,3-dienes and Enol Derivatives [Seite 250]
1.9.1.1.1.6.2.5 - 9.13.5.1.6.2.5 Method 5: Reactions of Imines and Alkenes [Seite 251]
1.9.1.1.1.6.2.6 - 9.13.5.1.6.2.6 Method 6: Rearrangement Mechanisms [Seite 253]
1.9.1.1.1.6.3 - 9.13.5.1.6.3 Fragments N--C and C--C--C [Seite 254]
1.9.1.1.1.6.3.1 - 9.13.5.1.6.3.1 Method 1: Reaction of Amines with 1,3-Dicarbonyl Compounds and Equivalents [Seite 254]
1.9.1.1.1.6.3.2 - 9.13.5.1.6.3.2 Method 2: Reactions of Imine Derivatives with a-Functionalized Alkenes and Alkynes [Seite 258]
1.9.1.1.1.6.3.3 - 9.13.5.1.6.3.3 Method 3: Reactions of Substrates such as Cyclopropenes, Nitriles, Amino Chromium Carbenes, and a,ß-Unsaturated Carbonyl Compounds and Derivatives [Seite 261]
1.9.1.1.1.7 - 9.13.5.1.7 By Formation of Two C--C Bonds [Seite 263]
1.9.1.1.1.7.1 - 9.13.5.1.7.1 Fragments C--N--C--C and C [Seite 263]
1.9.1.1.1.7.1.1 - 9.13.5.1.7.1.1 Method 1: Reaction of a-Amido Ketones with Ynolates [Seite 263]
1.9.1.1.1.7.1.2 - 9.13.5.1.7.1.2 Method 2: Reaction of 4-(Trifluoroacetyl)munchnones with Wittig Reagents [Seite 263]
1.9.1.1.1.7.2 - 9.13.5.1.7.2 Fragments C--N--C and C--C [Seite 264]
1.9.1.1.1.7.2.1 - 9.13.5.1.7.2.1 Method 1: Reactions of a-Functionalized Isocyanides and Alkenes or Alkynes [Seite 265]
1.9.1.1.1.7.2.1.1 - 9.13.5.1.7.2.1.1 Variation 1: Tosylmethyl Isocyanide and Alkenes [Seite 265]
1.9.1.1.1.7.2.1.2 - 9.13.5.1.7.2.1.2 Variation 2: a-Substituted Tosylmethyl Isocyanides and Alkenes [Seite 265]
1.9.1.1.1.7.2.1.3 - 9.13.5.1.7.2.1.3 Variation 3: Active Methylene Isocyanides and Alkynes [Seite 267]
1.9.1.1.1.7.2.1.4 - 9.13.5.1.7.2.1.4 Variation 4: Active Methylene Isocyanides and Alkynes under Phosphine Catalysis with Reversal of Regioselectivity [Seite 268]
1.9.1.1.1.7.2.1.5 - 9.13.5.1.7.2.1.5 Variation 5: Reactions with Alkenes Possessing Leaving Group Substituents [Seite 269]
1.9.1.1.1.7.2.2 - 9.13.5.1.7.2.2 Method 2: Cycloaddition of Azomethine Ylides and Alkenes or Alkynes [Seite 271]
1.9.1.1.1.7.2.2.1 - 9.13.5.1.7.2.2.1 Variation 1: N-a-Functionalized Amides (Thioamides), or N-a-Active Methylene Imines as Azomethine Ylide Precursors [Seite 271]
1.9.1.1.1.7.2.2.2 - 9.13.5.1.7.2.2.2 Variation 2: N-Acylamino Acids as Azomethine Ylide Precursors in the Form of Munchnones [Seite 274]
1.9.1.1.1.8 - 9.13.5.1.8 By Formation of One N--C Bond [Seite 278]
1.9.1.1.1.8.1 - 9.13.5.1.8.1 Fragment N--C--C--C--C [Seite 278]
1.9.1.1.1.8.1.1 - 9.13.5.1.8.1.1 Method 1: Paal-Knorr-Type Cyclizative Condensation [Seite 278]
1.9.1.1.1.8.1.2 - 9.13.5.1.8.1.2 Method 2: 5-endo-Cyclization Reactions [Seite 283]
1.9.1.1.1.8.1.2.1 - 9.13.5.1.8.1.2.1 Variation 1: Cyclization of Alk-3-ynylamines and Homopropargyl Azides [Seite 283]
1.9.1.1.1.8.1.2.2 - 9.13.5.1.8.1.2.2 Variation 2: a-Alkynyl Imine Isomerization and Cyclization [Seite 286]
1.9.1.1.1.8.1.2.3 - 9.13.5.1.8.1.2.3 Variation 3: Cyclization of Dienyl Azides and Dienyl Amines [Seite 286]
1.9.1.1.1.8.1.3 - 9.13.5.1.8.1.3 Method 3: 5-exo-Cyclization Reactions [Seite 287]
1.9.1.1.1.8.1.3.1 - 9.13.5.1.8.1.3.1 Variation 1: Cyclization of (Z)-(Alk-2-en-4-ynyl)amines and Analogues [Seite 287]
1.9.1.1.1.8.1.3.2 - 9.13.5.1.8.1.3.2 Variation 2: Cyclization of (Z)-Alk-2-en-4-ynyl Imines [Seite 290]
1.9.1.1.1.8.1.3.3 - 9.13.5.1.8.1.3.3 Variation 3: Cyclization of Alk-4-ynyl and Alk-4-enyl Imines [Seite 292]
1.9.1.1.1.9 - 9.13.5.1.9 By Formation of One C--C Bond [Seite 295]
1.9.1.1.1.9.1 - 9.13.5.1.9.1 Fragment C--N--C--C--C [Seite 295]
1.9.1.1.1.9.1.1 - 9.13.5.1.9.1.1 Method 1: Reaction Involving Cyclization of Functionalized Ketene N,S-Acetals [Seite 295]
1.9.1.1.1.9.1.2 - 9.13.5.1.9.1.2 Method 2: Metalation of Allyl Isothiocyanate [Seite 295]
1.9.1.1.1.9.1.3 - 9.13.5.1.9.1.3 Method 3: Decarboxylative Cyclization of ß-Enaminones [Seite 295]
1.9.1.1.1.9.1.4 - 9.13.5.1.9.1.4 Method 4: Enamine Cyclization [Seite 296]
1.9.1.1.1.9.2 - 9.13.5.1.9.2 Fragment C--C--N--C--C [Seite 297]
1.9.1.1.1.9.2.1 - 9.13.5.1.9.2.1 Method 1: Lewis Acid Catalyzed Ring Closure [Seite 297]
1.9.1.1.1.9.2.2 - 9.13.5.1.9.2.2 Method 2: Palladium-Catalyzed Synthesis from Enamines [Seite 298]
1.9.1.1.1.9.2.3 - 9.13.5.1.9.2.3 Method 3: Synthesis from N-Propargyl ß-Enaminones [Seite 298]
1.9.1.1.1.9.2.4 - 9.13.5.1.9.2.4 Method 4: Synthesis Based on a Staudinger/Aza-Wittig Reaction [Seite 299]
1.9.1.1.1.9.2.5 - 9.13.5.1.9.2.5 Method 5: Ring Closure To Give 3,4-Bis(lithiomethyl)dihydropyrroles and Subsequent Functionalization [Seite 299]
1.9.1.1.1.9.2.6 - 9.13.5.1.9.2.6 Method 6: Metathesis-Based Approaches [Seite 300]
1.9.1.1.2 - 9.13.5.2 Synthesis by Ring Transformation [Seite 301]
1.9.1.1.2.1 - 9.13.5.2.1 By Ring Enlargement [Seite 301]
1.9.1.1.2.1.1 - 9.13.5.2.1.1 Method 1: Aziridine Ring Expansion [Seite 301]
1.9.1.1.2.1.2 - 9.13.5.2.1.2 Method 2: Azetidine, ß-Lactam, and Cyclopropane Ring Expansions [Seite 303]
1.9.1.1.2.2 - 9.13.5.2.2 By Ring Contraction [Seite 305]
1.9.1.1.2.2.1 - 9.13.5.2.2.1 Method 1: Nitrogen Extrusion from Pyridazines [Seite 305]
1.9.1.1.2.2.2 - 9.13.5.2.2.2 Method 2: Sulfur Extrusion from N,S-Heterocycles [Seite 306]
1.9.1.1.3 - 9.13.5.3 Synthesis by Aromatization [Seite 307]
1.9.1.1.3.1 - 9.13.5.3.1 By Elimination [Seite 307]
1.9.1.1.3.1.1 - 9.13.5.3.1.1 Method 1: Dihydropyrrolol Dehydration by Stoichiometric Copper(II) [Seite 307]
1.9.1.1.3.2 - 9.13.5.3.2 By Dehydrogenation [Seite 308]
1.9.1.1.3.2.1 - 9.13.5.3.2.1 Method 1: Dihydropyrrole Oxidation Using 2,3-Dichloro-5,6-dicyano-benzo-1,4-quinone [Seite 308]
1.9.1.1.3.2.2 - 9.13.5.3.2.2 Method 2: Photochemical Dihydropyrrole Dehydrogenation [Seite 308]
1.9.1.1.3.3 - 9.13.5.3.3 By Combinations of Elimination, Dehydrogenation, Isomerization, Ring Substitution, and Substituent Modification Reactions [Seite 309]
1.9.1.1.3.3.1 - 9.13.5.3.3.1 Method 1: Elimination in Conjunction with Dehydrogenation [Seite 309]
1.9.1.1.3.3.2 - 9.13.5.3.3.2 Method 2: Elimination in Conjunction with Isomerization [Seite 309]
1.9.1.1.3.3.3 - 9.13.5.3.3.3 Method 3: Dihydropyrrole Dehydrogenation in Conjunction with Cross Coupling [Seite 310]
1.9.1.1.3.3.4 - 9.13.5.3.3.4 Method 4: Elimination from Pyrrolidin-4-ones in Conjunction with Isomerization and 4-Amination [Seite 310]
1.9.1.1.3.3.5 - 9.13.5.3.3.5 Method 5: Decarboxylative Oxidation in Conjunction with Elimination/Isomerization and Ring Substitution [Seite 313]
1.9.1.1.3.3.5.1 - 9.13.5.3.3.5.1 Variation 1: 5-Halogenated and 2,4-Diformylated Pyrroles from 5-Oxopyrrolidine-2-carboxylates [Seite 313]
1.9.1.1.3.3.5.2 - 9.13.5.3.3.5.2 Variation 2: 1-(2-Oxo-1,3-dihydroindol-3-yl)pyrrole from 4-Hydroxypyrrolidine-2-carboxylate [Seite 313]
1.9.1.1.4 - 9.13.5.4 Synthesis by Substituent Modification [Seite 314]
1.9.1.1.4.1 - 9.13.5.4.1 Substitution of Existing Substituents [Seite 314]
1.9.1.1.4.1.1 - 9.13.5.4.1.1 Substitution of C-Hydrogen, Halogens, and Other Heteroatoms [Seite 314]
1.9.1.1.4.1.1.1 - 9.13.5.4.1.1.1 C-Acylation and C-Formylation [Seite 315]
1.9.1.1.4.1.1.1.1 - 9.13.5.4.1.1.1.1 Method 1: Formylation under Vilsmeier Conditions [Seite 315]
1.9.1.1.4.1.1.1.2 - 9.13.5.4.1.1.1.2 Method 2: Formylation via Metalated Pyrrole Intermediates [Seite 316]
1.9.1.1.4.1.1.1.3 - 9.13.5.4.1.1.1.3 Method 3: Electrophilic Pyrrole Acylation [Seite 317]
1.9.1.1.4.1.1.2 - 9.13.5.4.1.1.2 C-Alkylation [Seite 320]
1.9.1.1.4.1.1.2.1 - 9.13.5.4.1.1.2.1 Method 1: Pyrrole Alkylation with Electrophilic Alkanes [Seite 320]
1.9.1.1.4.1.1.2.2 - 9.13.5.4.1.1.2.2 Method 2: Pyrrole Alkylation with Alkenes [Seite 323]
1.9.1.1.4.1.1.2.2.1 - 9.13.5.4.1.1.2.2.1 Variation 1: Intermolecular Alkylation with Electrophilic Alkenes [Seite 323]
1.9.1.1.4.1.1.2.2.2 - 9.13.5.4.1.1.2.2.2 Variation 2: Intramolecular Alkylation with Nonactivated Alkenes [Seite 327]
1.9.1.1.4.1.1.2.3 - 9.13.5.4.1.1.2.3 Method 3: Pyrrole Alkylation with Imines [Seite 328]
1.9.1.1.4.1.1.2.4 - 9.13.5.4.1.1.2.4 Method 4: Pyrrole Alkylation with Aldehydes and Ketones [Seite 329]
1.9.1.1.4.1.1.3 - 9.13.5.4.1.1.3 C-Alkenylation [Seite 330]
1.9.1.1.4.1.1.3.1 - 9.13.5.4.1.1.3.1 Method 1: Reaction of Halopyrroles with Alkenes under Heck Conditions [Seite 330]
1.9.1.1.4.1.1.3.2 - 9.13.5.4.1.1.3.2 Method 2: Reaction of Pyrroles with Alkenes under Oxidative Heck Conditions [Seite 330]
1.9.1.1.4.1.1.3.3 - 9.13.5.4.1.1.3.3 Method 3: Reaction of Pyrroles with Alkynes and Equivalents [Seite 332]
1.9.1.1.4.1.1.4 - 9.13.5.4.1.1.4 C-Alkynylation [Seite 334]
1.9.1.1.4.1.1.4.1 - 9.13.5.4.1.1.4.1 Method 1: Sonogashira Reaction of Halopyrroles with Alkynes [Seite 334]
1.9.1.1.4.1.1.4.2 - 9.13.5.4.1.1.4.2 Method 2: Reaction of 1-Halogenated Alkynes with Pyrroles [Seite 335]
1.9.1.1.4.1.1.5 - 9.13.5.4.1.1.5 C-Arylation [Seite 335]
1.9.1.1.4.1.1.5.1 - 9.13.5.4.1.1.5.1 Method 1: Cross Coupling of Aryl Halides with Pyrrolylboronates, or Arylboronic Acids with Halopyrroles [Seite 336]
1.9.1.1.4.1.1.5.2 - 9.13.5.4.1.1.5.2 Method 2: Cross Coupling at Pyrrole CH with Aryl Halides and Arylboronic Acids [Seite 338]
1.9.1.1.4.1.1.5.3 - 9.13.5.4.1.1.5.3 Method 3: Decarboxylative Arylation of Pyrrole C-Carboxylates [Seite 344]
1.9.1.1.4.1.1.6 - 9.13.5.4.1.1.6 C-Cyanation [Seite 345]
1.9.1.1.4.1.1.6.1 - 9.13.5.4.1.1.6.1 Method 1: Oxidative a-Cyanation with Hypervalent Iodine(III) [Seite 345]
1.9.1.1.4.1.1.6.2 - 9.13.5.4.1.1.6.2 Method 2: Oxidative Vilsmeier Cyanation [Seite 346]
1.9.1.1.4.1.1.6.3 - 9.13.5.4.1.1.6.3 Method 3: Anodic Cyanation of 1-Aryl-1H-pyrroles [Seite 347]
1.9.1.1.4.1.1.7 - 9.13.5.4.1.1.7 C-Trifluoromethylation [Seite 347]
1.9.1.1.4.1.1.8 - 9.13.5.4.1.1.8 C-Halogenation [Seite 348]
1.9.1.1.4.1.1.8.1 - 9.13.5.4.1.1.8.1 Method 1: Direct Substitution of Pyrrole CH by Halogen [Seite 348]
1.9.1.1.4.1.1.8.1.1 - 9.13.5.4.1.1.8.1.1 Variation 1: Electrophilic Mono CH Substitution [Seite 348]
1.9.1.1.4.1.1.8.1.2 - 9.13.5.4.1.1.8.1.2 Variation 2: Multiple Electrophilic CH Substitutions [Seite 353]
1.9.1.1.4.1.1.8.2 - 9.13.5.4.1.1.8.2 Method 2: Halogenation via Metalated Pyrrole Intermediates [Seite 355]
1.9.1.1.4.1.1.8.3 - 9.13.5.4.1.1.8.3 Method 3: Electrophilic Substitution of Pyrrole C-Carboxylate by Halogen [Seite 357]
1.9.1.1.4.1.1.8.4 - 9.13.5.4.1.1.8.4 Method 4: Electrophilic Substitution of C-Trimethylsilyl Groups by Halogen [Seite 358]
1.9.1.1.4.1.1.9 - 9.13.5.4.1.1.9 Functionalization with Nitrogen-Based Groups [Seite 359]
1.9.1.1.4.1.1.9.1 - 9.13.5.4.1.1.9.1 Method 1: Electrophilic Nitration of Pyrroles [Seite 359]
1.9.1.1.4.1.1.9.2 - 9.13.5.4.1.1.9.2 Method 2: Electrophilic Nitrosation of Pyrroles [Seite 361]
1.9.1.1.4.1.1.9.3 - 9.13.5.4.1.1.9.3 Method 3: Reactions of Pyrroles with Arenediazonium Salts [Seite 362]
1.9.1.1.4.1.1.9.4 - 9.13.5.4.1.1.9.4 Method 4: Azidation of Halo- and Aminopyrroles [Seite 363]
1.9.1.1.4.1.1.9.5 - 9.13.5.4.1.1.9.5 Method 5: Amination and Amidation of Halopyrroles by Metal-Catalyzed Cross Coupling and Nucleophilic Aromatic Substitution [Seite 364]
1.9.1.1.4.1.1.9.6 - 9.13.5.4.1.1.9.6 Method 6: Aryl- and Fluoroalkylsulfonamidation of Pyrroles [Seite 365]
1.9.1.1.4.1.1.10 - 9.13.5.4.1.1.10 Functionalization with Silicon-Based Groups [Seite 366]
1.9.1.1.4.1.1.10.1 - 9.13.5.4.1.1.10.1 Method 1: Pyrrole C-Silylation [Seite 366]
1.9.1.1.4.1.1.11 - 9.13.5.4.1.1.11 Functionalization with Phosphorus-Based Groups [Seite 369]
1.9.1.1.4.1.1.11.1 - 9.13.5.4.1.1.11.1 Method 1: Pyrrole Phosphorylation and Phosphinylation with Electrophilic Halophosphorus Reagents [Seite 369]
1.9.1.1.4.1.1.11.2 - 9.13.5.4.1.1.11.2 Method 2: Pyrrole Phosphorylation and Phosphinylation via Lithiopyrrole Generation [Seite 371]
1.9.1.1.4.1.1.12 - 9.13.5.4.1.1.12 Functionalization with Sulfur- and Selenium-Based Groups [Seite 372]
1.9.1.1.4.1.1.12.1 - 9.13.5.4.1.1.12.1 Method 1: Electrophilic Pyrrolesulfonate Synthesis [Seite 372]
1.9.1.1.4.1.1.12.2 - 9.13.5.4.1.1.12.2 Method 2: Chlorosulfonylation of Pyrroles with Chlorosulfonic Acid [Seite 373]
1.9.1.1.4.1.1.12.3 - 9.13.5.4.1.1.12.3 Method 3: Pyrrolyl Sulfone Synthesis from Sulfonyl Chlorides [Seite 373]
1.9.1.1.4.1.1.12.4 - 9.13.5.4.1.1.12.4 Method 4: Pyrrolyl Sulfoxide Synthesis [Seite 374]
1.9.1.1.4.1.1.12.5 - 9.13.5.4.1.1.12.5 Method 5: Pyrrolylsulfonium Salt Synthesis [Seite 374]
1.9.1.1.4.1.1.12.6 - 9.13.5.4.1.1.12.6 Method 6: Sulfanylpyrrole Synthesis [Seite 375]
1.9.1.1.4.1.1.12.6.1 - 9.13.5.4.1.1.12.6.1 Variation 1: Synthesis of Sulfanylpyrroles Using Electrophilic Sulfenylation [Seite 375]
1.9.1.1.4.1.1.12.6.2 - 9.13.5.4.1.1.12.6.2 Variation 2: Sulfanylpyrroles from Reactions of Metalated Pyrroles with Sulfur Sources [Seite 379]
1.9.1.1.4.1.1.12.6.3 - 9.13.5.4.1.1.12.6.3 Variation 3: Sulfanylpyrroles from Nucleophilic Aromatic Substitution [Seite 380]
1.9.1.1.4.1.1.12.6.4 - 9.13.5.4.1.1.12.6.4 Variation 4: Thiocyanation of Pyrroles [Seite 380]
1.9.1.1.4.1.1.12.6.5 - 9.13.5.4.1.1.12.6.5 Variation 5: Dipyrrolyl Sulfide Synthesis [Seite 381]
1.9.1.1.4.1.1.12.6.6 - 9.13.5.4.1.1.12.6.6 Variation 6: Preparation of Pyrroles with Multiple Sulfur Substituents [Seite 382]
1.9.1.1.4.1.1.12.7 - 9.13.5.4.1.1.12.7 Method 7: Selanylpyrrole Synthesis [Seite 384]
1.9.1.1.4.1.2 - 9.13.5.4.1.2 Substitution of N-Hydrogen [Seite 385]
1.9.1.1.4.1.2.1 - 9.13.5.4.1.2.1 Method 1: N-Acylation [Seite 385]
1.9.1.1.4.1.2.2 - 9.13.5.4.1.2.2 Method 2: N-Alkylation and -Allylation [Seite 385]
1.9.1.1.4.1.2.3 - 9.13.5.4.1.2.3 Method 3: N-Alkenylation [Seite 387]
1.9.1.1.4.1.2.4 - 9.13.5.4.1.2.4 Method 4: N-Arylation [Seite 388]
1.9.1.1.4.1.2.5 - 9.13.5.4.1.2.5 Method 5: N-Amination and -Phosphinylation [Seite 389]
1.9.1.1.4.2 - 9.13.5.4.2 Modification of Substituents [Seite 390]
1.9.1.1.4.2.1 - 9.13.5.4.2.1 Modification of C-Acyl Substituents [Seite 391]
1.9.1.1.4.2.1.1 - 9.13.5.4.2.1.1 Method 1: Reduction of 2- or 3-Acylpyrroles to 2- or 3-Alkylpyrroles with Hydrides, Zinc, or Hydrazine as Reductant [Seite 391]
1.9.1.1.4.2.1.2 - 9.13.5.4.2.1.2 Method 2: Addition and Condensation Reactions of Acyl Groups [Seite 395]
1.9.1.1.4.2.1.3 - 9.13.5.4.2.1.3 Method 3: Rearrangement of Acyl Groups [Seite 398]
1.9.1.1.4.2.2 - 9.13.5.4.2.2 Modification of C-Alkyl Substituents [Seite 400]
1.9.1.1.4.2.2.1 - 9.13.5.4.2.2.1 Method 1: Substitution Reactions of Mannich Bases [Seite 400]
1.9.1.1.4.2.2.2 - 9.13.5.4.2.2.2 Method 2: Alkylation of a-Methylene Substituents [Seite 401]
1.9.1.1.4.2.2.3 - 9.13.5.4.2.2.3 Method 3: Oxidation of a-Methylene Substituents [Seite 405]
1.9.1.1.4.2.3 - 9.13.5.4.2.3 Modification of C-Vinyl Substituents [Seite 408]
1.9.1.1.4.2.3.1 - 9.13.5.4.2.3.1 Method 1: Arylation by Heck Reaction [Seite 408]
1.9.1.1.4.2.3.2 - 9.13.5.4.2.3.2 Method 2: Pyrrolecarbaldehyde Synthesis via Osmium(VIII) Oxide Oxidation [Seite 409]
1.9.1.1.4.2.4 - 9.13.5.4.2.4 Modification of C-Nitropyrroles by Reductive Acylation [Seite 410]
1.9.1.1.4.2.4.1 - 9.13.5.4.2.4.1 Method 1: Synthesis of 2- and 3-(Acylamino)-1H-pyrroles from 2- and 3-Nitro-1H-pyrroles and Acid Anhydrides [Seite 410]
1.9.1.1.4.2.5 - 9.13.5.4.2.5 Modification of N-Substituents [Seite 412]
1.9.1.1.4.2.5.1 - 9.13.5.4.2.5.1 Method 1: Synthesis of 1-(Hydroxymethyl)pyrrole Derivatives by Nucleophilic Addition to 1-Acylpyrroles [Seite 412]
1.9.1.1.4.2.5.2 - 9.13.5.4.2.5.2 Method 2: Conjugate Addition to a,ß-Unsaturated 1-Acylpyrroles [Seite 412]
1.9.1.1.4.2.5.2.1 - 9.13.5.4.2.5.2.1 Variation 1: Chiral Epoxide Synthesis [Seite 412]
1.9.1.1.4.2.5.2.2 - 9.13.5.4.2.5.2.2 Variation 2: Enantioselective Addition of Carbon Nucleophiles [Seite 414]
1.9.1.1.4.2.5.3 - 9.13.5.4.2.5.3 Method 3: Hydroformylation of 1-Allylpyrrole [Seite 417]
1.10 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 438]
1.10.1 - 16.9 Product Class 9: Cinnolines [Seite 438]
1.10.1.1 - 16.9.5 Cinnolines [Seite 438]
1.10.1.1.1 - 16.9.5.1 Synthesis by Ring-Closure Reactions [Seite 439]
1.10.1.1.1.1 - 16.9.5.1.1 By Annulation to an Arene [Seite 439]
1.10.1.1.1.1.1 - 16.9.5.1.1.1 By Formation of Two N--C Bonds [Seite 439]
1.10.1.1.1.1.1.1 - 16.9.5.1.1.1.1 Fragments Arene-C--C and N--N [Seite 439]
1.10.1.1.1.1.1.1.1 - 16.9.5.1.1.1.1.1 Method 1: Condensation of Quinones with Hydrazine [Seite 439]
1.10.1.1.1.1.1.1.2 - 16.9.5.1.1.1.1.2 Method 2: Condensation of 1-Acyl-8-nitronaphthalenes with Hydrazine [Seite 441]
1.10.1.1.1.1.1.1.3 - 16.9.5.1.1.1.1.3 Method 3: Cinnolin-3-amines via a Diels-Alder-Ene Sequence [Seite 441]
1.10.1.1.1.1.2 - 16.9.5.1.1.2 By Formation of One N--C and One C--C Bond [Seite 443]
1.10.1.1.1.1.2.1 - 16.9.5.1.1.2.1 Fragments Arene-N--N and C--C [Seite 443]
1.10.1.1.1.1.2.1.1 - 16.9.5.1.1.2.1.1 Method 1: Synthesis of Cinnoline-3-carboxylates [Seite 443]
1.10.1.1.1.1.2.1.2 - 16.9.5.1.1.2.1.2 Method 2: Synthesis of Pyridazinocinnolines [Seite 443]
1.10.1.1.1.1.3 - 16.9.5.1.1.3 By Formation of One N--N Bond [Seite 444]
1.10.1.1.1.1.3.1 - 16.9.5.1.1.3.1 Fragment N-Arene-Arene-N [Seite 444]
1.10.1.1.1.1.3.1.1 - 16.9.5.1.1.3.1.1 Method 1: Condensation of Substituted Biaryls [Seite 444]
1.10.1.1.1.1.3.1.1.1 - 16.9.5.1.1.3.1.1.1 Variation 1: Condensation of 2-Amino-2'-Nitrobiaryls [Seite 444]
1.10.1.1.1.1.3.1.1.2 - 16.9.5.1.1.3.1.1.2 Variation 2: Cyclization of 2-Amino-3-(2-nitroaryl)quinolines [Seite 446]
1.10.1.1.1.1.3.1.2 - 16.9.5.1.1.3.1.2 Method 2: Cyclization of 2,2'-Dinitrobiaryls [Seite 447]
1.10.1.1.1.1.3.1.2.1 - 16.9.5.1.1.3.1.2.1 Variation 1: Reductive Cyclization of 2,2'-Dinitrobiaryls [Seite 448]
1.10.1.1.1.1.3.1.2.2 - 16.9.5.1.1.3.1.2.2 Variation 2: Base-Catalyzed Cyclization of 2,2'-Dinitrobiphenyls [Seite 451]
1.10.1.1.1.1.3.1.3 - 16.9.5.1.1.3.1.3 Method 3: Photooxidation of 3-(2-Aminophenyl)quinolin-2-amines [Seite 452]
1.10.1.1.1.1.3.2 - 16.9.5.1.1.3.2 Fragment N-Arene-C--C--N [Seite 452]
1.10.1.1.1.1.3.2.1 - 16.9.5.1.1.3.2.1 Method 1: Synthesis of Cinnoline Betaines [Seite 452]
1.10.1.1.1.1.3.2.2 - 16.9.5.1.1.3.2.2 Method 2: Cyclization of 2-(Dinitrophenyl)alk-1-ene-1,1-diamines [Seite 453]
1.10.1.1.1.1.4 - 16.9.5.1.1.4 By Formation of One N--C Bond [Seite 454]
1.10.1.1.1.1.4.1 - 16.9.5.1.1.4.1 Fragment N--N-Arene-C--C [Seite 454]
1.10.1.1.1.1.4.1.1 - 16.9.5.1.1.4.1.1 Method 1: Cyclization of Diazotized Anilines [Seite 454]
1.10.1.1.1.1.4.1.1.1 - 16.9.5.1.1.4.1.1.1 Variation 1: Cyclization of Diazotized 2-Arylanilines [Seite 454]
1.10.1.1.1.1.4.1.1.2 - 16.9.5.1.1.4.1.1.2 Variation 2: Cyclization of 2-(2,2-Difluorovinyl)anilines [Seite 456]
1.10.1.1.1.1.4.1.2 - 16.9.5.1.1.4.1.2 Method 2: Cyclization of Diazotized 2-Acylanilines [Seite 457]
1.10.1.1.1.1.4.1.3 - 16.9.5.1.1.4.1.3 Method 3: Cyclization of Diazotized Aryldifurylmethanes [Seite 458]
1.10.1.1.1.1.4.1.4 - 16.9.5.1.1.4.1.4 Method 4: Cyclization of Alkynylanilines [Seite 459]
1.10.1.1.1.1.4.1.4.1 - 16.9.5.1.1.4.1.4.1 Variation 1: Cyclization of Diazotized 2-Alkynylanilines [Seite 459]
1.10.1.1.1.1.4.1.4.2 - 16.9.5.1.1.4.1.4.2 Variation 2: Cyclization of Diazotized 2-Diynylanilines [Seite 461]
1.10.1.1.1.1.4.1.5 - 16.9.5.1.1.4.1.5 Method 5: Cyclization of (2-Alkynylaryl)- or (2-Acylaryl)triazenes [Seite 463]
1.10.1.1.1.1.4.1.5.1 - 16.9.5.1.1.4.1.5.1 Variation 1: Cyclization of (2-Alkynylaryl)triazenes [Seite 463]
1.10.1.1.1.1.4.1.5.2 - 16.9.5.1.1.4.1.5.2 Variation 2: Cyclization of (2-Acylaryl)triazenes [Seite 468]
1.10.1.1.1.1.4.1.6 - 16.9.5.1.1.4.1.6 Method 6: Cyclization of (6-Oxocyclohexa-2,4-dienylidene)malononitrile Hydrazones [Seite 469]
1.10.1.1.1.1.4.2 - 16.9.5.1.1.4.2 Fragment N--N--C--C-Arene [Seite 470]
1.10.1.1.1.1.4.2.1 - 16.9.5.1.1.4.2.1 Method 1: Cyclization of Aryl-Substituted Heterocyclic Amines [Seite 470]
1.10.1.1.1.1.4.2.1.1 - 16.9.5.1.1.4.2.1.1 Variation 1: Cyclization of Diazotized 3-Aminothiophenes [Seite 470]
1.10.1.1.1.1.4.2.1.2 - 16.9.5.1.1.4.2.1.2 Variation 2: Cyclization of Diazotized 5-Amino-4-arylpyrazoles [Seite 472]
1.10.1.1.1.1.4.2.1.3 - 16.9.5.1.1.4.2.1.3 Variation 3: Cyclization of Diazotized 3-Amino-4-arylmaleimides [Seite 473]
1.10.1.1.1.1.4.2.2 - 16.9.5.1.1.4.2.2 Method 2: Cyclization of 2-Diazo-3-(haloaryl)-3-hydroxypropanoates [Seite 473]
1.10.1.1.1.1.5 - 16.9.5.1.1.5 By Formation of One C--C Bond [Seite 474]
1.10.1.1.1.1.5.1 - 16.9.5.1.1.5.1 Fragment Arene-N--N--C--C [Seite 474]
1.10.1.1.1.1.5.1.1 - 16.9.5.1.1.5.1.1 Method 1: Cyclization of Phenylhydrazones [Seite 474]
1.10.1.1.1.1.5.1.1.1 - 16.9.5.1.1.5.1.1.1 Variation 1: Cyclization of Oxomalonic Acid Derivatives [Seite 475]
1.10.1.1.1.1.5.1.1.2 - 16.9.5.1.1.5.1.1.2 Variation 2: Synthesis of 3-Aroyl- or 4-Arylcinnolines [Seite 476]
1.10.1.1.1.1.5.1.1.3 - 16.9.5.1.1.5.1.1.3 Variation 3: Synthesis of 3-Azolylcinnolines from Chloromethyl Ketones [Seite 479]
1.10.1.1.1.1.5.1.1.4 - 16.9.5.1.1.5.1.1.4 Variation 4: Synthesis of 4-Alkyl-Substituted Cinnolines [Seite 480]
1.10.1.1.2 - 16.9.5.2 Synthesis by Ring Transformation [Seite 481]
1.10.1.1.2.1 - 16.9.5.2.1 Method 1: From 2H-Indazole Ring Enlargement [Seite 481]
1.10.1.1.3 - 16.9.5.3 Synthesis by Aromatization [Seite 481]
1.10.1.1.3.1 - 16.9.5.3.1 Method 1: Aromatization of Dihydrocinnolines [Seite 481]
1.10.1.1.4 - 16.9.5.4 Synthesis by Substituent Modification [Seite 482]
1.10.1.1.4.1 - 16.9.5.4.1 Substitution of Existing Substituents [Seite 482]
1.10.1.1.4.1.1 - 16.9.5.4.1.1 Of Hydrogen [Seite 482]
1.10.1.1.4.1.1.1 - 16.9.5.4.1.1.1 Method 1: By Lithiation [Seite 482]
1.10.1.1.4.1.2 - 16.9.5.4.1.2 Of Heteroatoms [Seite 483]
1.10.1.1.4.1.2.1 - 16.9.5.4.1.2.1 Method 1: By Metal-Halogen Exchange [Seite 483]
1.10.1.1.4.1.2.2 - 16.9.5.4.1.2.2 Method 2: By Carbon Substituents via Cross-Coupling Reactions [Seite 484]
1.10.1.1.4.1.2.3 - 16.9.5.4.1.2.3 Method 3: By Heteroatom Nucleophiles via Nucleophilic Substitution [Seite 487]
1.10.1.1.4.1.2.3.1 - 16.9.5.4.1.2.3.1 Variation 1: Substitution of a Hydroxy Group by a Halogen [Seite 487]
1.10.1.1.4.1.2.3.2 - 16.9.5.4.1.2.3.2 Variation 2: Introduction of Chalcogen Substituents [Seite 487]
1.10.1.1.4.1.2.3.3 - 16.9.5.4.1.2.3.3 Variation 3: Introduction of Nitrogen Substituents [Seite 490]
1.10.1.1.4.2 - 16.9.5.4.2 Modification of Existing Substituents [Seite 492]
1.10.1.1.4.2.1 - 16.9.5.4.2.1 Of Carbon Substituents [Seite 492]
1.10.1.1.4.2.1.1 - 16.9.5.4.2.1.1 Method 1: Of Carboxylic Acids and Derivatives [Seite 492]
1.10.1.1.4.2.1.2 - 16.9.5.4.2.1.2 Method 2: Of Ketones, Aldehydes, and Derivatives [Seite 493]
1.10.1.1.4.2.2 - 16.9.5.4.2.2 Of Heteroatom Substituents [Seite 495]
1.10.1.1.4.2.2.1 - 16.9.5.4.2.2.1 Method 1: Of Sulfur-Containing Groups [Seite 495]
1.10.1.1.4.2.2.2 - 16.9.5.4.2.2.2 Method 2: Of Amines [Seite 496]
1.10.1.1.4.3 - 16.9.5.4.3 Addition Reactions [Seite 498]
1.10.1.1.4.3.1 - 16.9.5.4.3.1 Method 1: Addition of Organic Groups [Seite 498]
1.10.1.1.4.3.2 - 16.9.5.4.3.2 Method 2: Addition of Heteroatoms [Seite 499]
1.10.2 - 16.23 Product Class 23: Diphosphinines [Seite 504]
1.10.2.1 - 16.23.4 Diphosphinines [Seite 504]
1.10.2.1.1 - 16.23.4.1 1,2-Diphosphinines [Seite 504]
1.10.2.1.1.1 - 16.23.4.1.1 Method 1: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Derivative by Dimerization [Seite 504]
1.10.2.1.1.2 - 16.23.4.1.2 Method 2: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Chelate Complex with Palladium(II) Chloride [Seite 505]
1.10.2.1.2 - 16.23.4.2 1,3-Diphosphinines [Seite 507]
1.10.2.1.3 - 16.23.4.3 1,4-Diphosphinines [Seite 507]
1.11 - Author Index [Seite 510]
1.12 - Abbreviations [Seite 540]
1.13 - List of All Volumes [Seite 546]
5.2.1 Product Subclass 1: Tin Hydrides
K. Tchabanenko
General Introduction
Like silicon and carbon, tin is a group 14 element, but with a more metallic character. This is reflected in the nomenclature of organotin compounds, which can be regarded as derivatives of the metal and named by using “tin” as a suffix, so that, for example, Bu4Sn can be named “tetrabutyltin” and Bu3SnH can be named “tributyltin hydride”. In an alternative system recommended by the International Union of Pure and Applied Chemistry, organotin compounds are named as derivatives of stannane [tin(IV) hydride], so that, for example, Ph3SnH is named “triphenylstannane”. Both the tin- and stannane-type nomenclature are used throughout this section, in common with practice in the general literature.
The compounds discussed in this section contain up to three alkyl or aryl groups bonded to a tin atom, with the remainder of the four valences being occupied by hydrogen atoms.[1,2] Whereas stannane (SnH4), the parent compound, is highly unstable, even at room temperature, and undergoes rapid decomposition to tin and molecular hydrogen,[3] its alkyl or aryl derivatives are somewhat more stable. Monoorganostannanes (R1SnH3) can be stored for a few days at room temperature, whereas diorganostannanes (R12SnH2) are stable for several weeks, and triorganostannanes (R13SnH) can be stored almost indefinitely. Alkylstannanes are generally more stable than the corresponding arylstannanes, and an increase in the bulk of the alkyl substituents leads to greater thermal stability.
The usefulness of organotin hydrides is to some degree limited by the toxic hazards they present, which depend on their volatility and degree of substitution.[1,4] Tributylstannane (tributyltin hydride; Bu3SnH) is less toxic than the more volatile triethyl and trimethyl analogues, and it is therefore the most widely used organostannane. This compound is best prepared by the reduction of hexabutyldistannoxane [bis(tributylstannyl) ether] with poly(methylhydrosiloxane) (▶ Scheme 1).[5] Other alkyl- and arylstannanes are usually prepared by the reduction of the corresponding organotin halides with lithium aluminum hydride[6–15] or sodium borohydride.[16–18] Another useful approach to organostannanes involves the treatment of organostannylated metal derivatives (R13SnLi, R13SnNa, or R13SnMgBr) with water.[12,19–23] This method can be used to prepare tributylstannane-d1 (tributyltin deuteride).[24] Alternatively, triorganostannanes can be prepared by reduction of the corresponding hexaorganodistannanes with metal hydrides (▶ Scheme 1).[25]
▶ Scheme 1 Methods for the Preparation of Tin Hydrides[5–25]
The principal applications of organotin hydrides in organic synthesis include mediation of free-radical dehalogenation, deoxygenation, addition, cyclization, and rearrangement reactions, and hydrostannylation of unsaturated functional groups (▶ Scheme 2). The chemistry, preparation, and reactions of organostannanes have been reviewed many times;[1,2,26–29] in particular, organotin-mediated radical reactions[30–35] and transition-metal-catalyzed hydrostannylation reactions[36–39] have received a great deal of attention.
▶ Scheme 2 Some Applications of Tin Hydrides in Organic Chemistry[30–39]
In general, stannanes are clear, colorless liquids that are frequently purified by distillation at reduced pressures. All show intense, sharp Sn—H IR absorption bands (e.g., SnH4, 1898 cm−1; BuSnH3, 1862 cm−1; Bu2SnH2, 1835 cm−1; and BuSnH3, 1813 cm−1).[40] In the 1H NMR spectra of alkylstannanes, resonances of hydrogen atoms bound to tin occur in the region δ 3.85–4.80.[40–44] The addition of electronegative substituents to the tin atom shifts the signal to higher values of δ [e.g., δ 7.42 for Bu2SnHCl]. 119Sn NMR spectra and 119Sn–13C coupling constants are also useful in the characterization of organotin compounds. Because tin has 10 naturally occurring isotopes, tin-containing compounds can be easily recognized by mass spectrometry.
SAFETY:
Organotin compounds exhibit a range of toxicities,[1,4] with a general tendency for heavier and less volatile tributyl- and triphenylstannanes to be less toxic than the corresponding lighter and more volatile triethyl or trimethyl analogues, which should not be used in large-scale experiments. Tributylstannanes cause skin burns and can be absorbed through the skin. It is recommended that all organotin hydrides are handled with care in an adequate fume hood, and that protective clothing and gloves are worn at all times. Appropriate waste-disposal procedures should be followed for all tin-contaminated chemicals and solvents.
The boiling points of commonly used stannanes are collected in ▶ Table 1.
▶ Table 1 Boiling Points of Common Tin Hydrides[5–8,15,45,46]
Tin Hydride bp (°C) Pressure (Torr) Ref MeSnH3 0 760 [
6] Me2SnH2 35 760 [
6] Me3SnH 59 760 [
6] Et3SnH 142 760 [
7] Pr3SnH 59–54 4 [
5] BuSnH3 99–101 760 [
8] Bu2SnH2 75–76 12 [
45] Bu3SnH 68–74 0.3 [
15] 65–67 0.6 [
45] Bu3SnD 70–74 0.5 [
46] Ph3SnH 168–172 0.5 [
8]
Although many organotin hydrides are commercially available, better results are generally obtained with freshly prepared reagents. Some convenient and reliable methods for the synthesis of tin hydrides, including the most commonly used of these reagents, are discussed below.
Synthesis of Product Subclass 1
5.2.1.1 Method 1: Reduction of Tin Halides
Organotin hydrides are generally synthesized by reduction of the corresponding organotin halides with metal hydrides. Lithium aluminum hydride is by far the most commonly used reducing agent,[6–15] although other hydride sources such as dialkylaluminum hydrides,[47] aluminum amalgam,[48] sodium borohydride,[17–19] or potassium borohydride[49] can also be used.
5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride
The reduction of alkyl- and aryltin chlorides or bromides by lithium aluminum hydride in ethereal solvents can be used to prepare the corresponding mono-, di-, or triorganostannanes (▶ Table 2).[6,10,13–15] In general, the reactions proceed smoothly at room temperature to give products of high purity. Diethyl ether is normally the solvent of choice, but other ethereal solvents such as dibutyl ether, diglyme, or 1,4-dioxane can be used if separation of the products from diethyl ether is difficult or if high reaction temperatures are required. The preparation of volatile tin hydrides or the parent stannane requires the use of specialized vacuum lines.[14] Deuterated forms of tin hydrides can be readily prepared by reduction with lithium aluminum deuteride.[50]
▶ Table 2 Reduction of Tin Chlorides with Lithium Aluminum Hydride[6–8,12,15]
Entry Reactant Solvent Product Yield...