1 - Science of Synthesis: Knowledge Updates 2012/4 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 16]
1.6 - Table of Contents [Seite 18]
1.7 - Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10-8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) [Seite 30]
1.7.1 - 1.2 Product Class 2: Organometallic Complexes of Palladium [Seite 30]
1.7.1.1 - 1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes [Seite 30]
1.7.1.1.1 - 1.2.5.1 Synthesis of Palladium(III)-Containing Complexes [Seite 30]
1.7.1.1.1.1 - 1.2.5.1.1 Mononuclear Palladium(III) Complexes [Seite 30]
1.7.1.1.1.1.1 - 1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes [Seite 31]
1.7.1.1.1.1.2 - 1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid [Seite 31]
1.7.1.1.1.1.3 - 1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes [Seite 32]
1.7.1.1.1.1.4 - 1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants [Seite 33]
1.7.1.1.1.1.5 - 1.2.5.1.1.5 Method 5: Oxidation of Palladium(II) Complexes with Oxygen [Seite 33]
1.7.1.1.1.2 - 1.2.5.1.2 Binuclear Palladium(III) Complexes without a Pd--Pd Bond [Seite 34]
1.7.1.1.1.2.1 - 1.2.5.1.2.1 Method 1: Electrochemical Oxidation [Seite 34]
1.7.1.1.1.2.2 - 1.2.5.1.2.2 Method 2: Comproportionation of Palladium(II) and Palladium(IV) Complexes [Seite 35]
1.7.1.1.1.3 - 1.2.5.1.3 Binuclear Palladium(2.5) Complexes with a Pd--Pd Bond Order of 0.5 [Seite 36]
1.7.1.1.1.3.1 - 1.2.5.1.3.1 Method 1: Binuclear Palladium(2.5) Complexes by Electrochemical Oxidation [Seite 36]
1.7.1.1.1.3.2 - 1.2.5.1.3.2 Method 2: Binuclear Palladium(2.5) Complexes Using Single-Electron Oxidants [Seite 37]
1.7.1.1.1.4 - 1.2.5.1.4 Tetrabridged Binuclear Palladium(III) Complexes with a Pd--Pd Bond [Seite 38]
1.7.1.1.1.4.1 - 1.2.5.1.4.1 Method 1: Binuclear Palladium(III) Complexes by Oxidation with Hypervalent Iodine [Seite 38]
1.7.1.1.1.4.2 - 1.2.5.1.4.2 Method 2: Inorganic Binuclear Palladium(III) Complexes via Ligand Metathesis [Seite 39]
1.7.1.1.1.4.3 - 1.2.5.1.4.3 Method 3: Organometallic Tetrabridged Binuclear Palladium(III) Complexes [Seite 39]
1.7.1.1.1.5 - 1.2.5.1.5 Binuclear Palladium(III) Complexes Supported by Two Bridging Ligands [Seite 41]
1.7.1.1.1.5.1 - 1.2.5.1.5.1 Method 1: Oxidation with Hypervalent Iodine Reagents [Seite 41]
1.7.1.1.1.5.2 - 1.2.5.1.5.2 Method 2: Oxidation with Peroxides [Seite 42]
1.7.1.1.1.5.3 - 1.2.5.1.5.3 Method 3: Oxidation with Halogens [Seite 42]
1.7.1.1.1.6 - 1.2.5.1.6 Unbridged Pd(III)--Pd(III) Bonds [Seite 43]
1.7.1.1.1.6.1 - 1.2.5.1.6.1 Method 1: Oxidation of Acetate-Bridged Binuclear Palladium(III) Complexes with Xenon Difluoride [Seite 43]
1.7.1.1.2 - 1.2.5.2 Stoichiometric Organometallic Chemistry of Isolated Palladium(III) Complexes [Seite 45]
1.7.1.1.2.1 - 1.2.5.2.1 Organometallic Chemistry of Mononuclear Palladium(III) Complexes [Seite 45]
1.7.1.1.2.1.1 - 1.2.5.2.1.1 Method 1: C--C Bond-Forming Reactions of Mononuclear Palladium(III) Complexes [Seite 45]
1.7.1.1.2.1.2 - 1.2.5.2.1.2 Method 2: C--C Bond-Forming Reactions Initiated by Ligation of Anionic Donors [Seite 47]
1.7.1.1.2.2 - 1.2.5.2.2 Organometallic Chemistry of Binuclear Palladium(III) Complexes [Seite 48]
1.7.1.1.2.2.1 - 1.2.5.2.2.1 Method 1: C--X Bimetallic Reductive Elimination from Binuclear Palladium(III) Complexes [Seite 48]
1.7.1.1.3 - 1.2.5.3 Organometallic Reactions Proposed To Proceed via Unobserved Mononuclear Palladium(III) Intermediates [Seite 48]
1.7.1.1.3.1 - 1.2.5.3.1 Method 1: C--C Bond-Forming Reactions Initiated by One-Electron Oxidation of Mononuclear Palladium(II) Complexes [Seite 48]
1.7.1.1.3.2 - 1.2.5.3.2 Method 2: Oxygen-Insertion Reactions [Seite 49]
1.7.1.1.4 - 1.2.5.4 Binuclear Palladium(III) in the Synthesis of Mononuclear Palladium(IV) Complexes [Seite 51]
1.7.1.1.4.1 - 1.2.5.4.1 Method 1: Pd--Pd Heterolysis in Trifluoromethylation [Seite 51]
1.7.1.1.4.2 - 1.2.5.4.2 Method 2: Heterolysis of Unbridged Pd(III)--Pd(III) Bonds [Seite 52]
1.7.1.1.5 - 1.2.5.5 Proposed Catalysis via Mononuclear Palladium(III) Intermediates [Seite 53]
1.7.1.1.5.1 - 1.2.5.5.1 Method 1: Kharasch Reaction [Seite 53]
1.7.1.1.6 - 1.2.5.6 Catalysis via Proposed Binuclear Palladium(III) Intermediates [Seite 54]
1.7.1.1.6.1 - 1.2.5.6.1 Method 1: Binuclear Palladium(III) Intermediates in C--H Arylation [Seite 54]
1.7.1.1.6.2 - 1.2.5.6.2 Method 2: Binuclear Palladium(III) Intermediates in C--H Chlorination [Seite 54]
1.7.1.1.6.3 - 1.2.5.6.3 Method 3: Binuclear Palladium(III) Complexes in C--H Acetoxylation [Seite 55]
1.7.1.1.6.4 - 1.2.5.6.4 Method 4: C--N Bond-Forming Reactions Initiated by One-Electron Oxidants [Seite 56]
1.7.1.1.6.5 - 1.2.5.6.5 Method 5: Binuclear Catalysts for C--H Hydroxylation Chemistry [Seite 57]
1.7.1.1.7 - 1.2.5.7 Binuclear Palladium(III) Precatalysts [Seite 58]
1.7.1.1.7.1 - 1.2.5.7.1 Method 1: Alkene Diboration [Seite 58]
1.8 - Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) [Seite 62]
1.8.1 - 2.10 Product Class 10: Organometallic Complexes of Titanium [Seite 62]
1.8.1.1 - 2.10.20 Organometallic Complexes of Titanium (Update 2) [Seite 62]
1.8.1.1.1 - 2.10.20.1 Titanium-Mediated Reductive Cross-Coupling Reactions (Intermolecular Metallacycle-Mediated C--C Bond Formation) [Seite 62]
1.8.1.1.1.1 - 2.10.20.1.1 Method 1: Synthesis of Allylic Alcohols by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Aldehydes (Class I) [Seite 65]
1.8.1.1.1.2 - 2.10.20.1.2 Method 2: Synthesis of Trisubstituted E-1,3-Dienes by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Terminal Alkynes (Class I) [Seite 71]
1.8.1.1.1.3 - 2.10.20.1.3 Method 3: Synthesis of Tetrasubstituted 1,3-Dienes by Alkoxide-Directed Regioselective Cross-Coupling Reactions of Internal Alkynes (Class II) [Seite 75]
1.8.1.1.1.4 - 2.10.20.1.4 Method 4: Titanium Alkoxide Mediated Alkene-Alkyne Cross Coupling (Class II) [Seite 78]
1.8.1.1.1.5 - 2.10.20.1.5 Method 5: Titanium Alkoxide Mediated Allylic Alcohol-Alkyne Cross Coupling (Class II) [Seite 82]
1.8.1.1.1.6 - 2.10.20.1.6 Method 6: Alkoxide-Directed Coupling of Allylic Alcohols with Vinylsilanes (Class II) [Seite 91]
1.8.1.1.1.7 - 2.10.20.1.7 Method 7: Alkoxide-Directed Coupling of Imines with Internal Alkynes (Class II) [Seite 93]
1.8.1.1.1.8 - 2.10.20.1.8 Method 8: Alkoxide-Directed Coupling of Imines with Alkenes (Class II) [Seite 97]
1.8.1.1.1.9 - 2.10.20.1.9 Method 9: Alkoxide-Directed Coupling of Imines with Allylic Alcohols (Class II) [Seite 108]
1.8.1.1.1.10 - 2.10.20.1.10 Method 10: Allenes in Alkoxide-Directed Titanium-Mediated Reductive Cross Coupling (Class II) [Seite 116]
1.8.1.1.1.11 - 2.10.20.1.11 Method 11: Alkoxide-Directed Coupling of Vinylcyclopropanes with Silyl-Substituted Ethene and Alkynes (Class II) [Seite 121]
1.8.1.1.1.12 - 2.10.20.1.12 Method 12: Titanium-Mediated Cyclopropanation of Vinylogous Esters (Class I Alkoxide-Directed Reductive Cross Coupling) [Seite 122]
1.8.2 - 2.13 Product Class 13: Organometallic Complexes of the Actinides [Seite 128]
1.8.2.1 - 2.13.1 Product Subclass 1: Actinide-Cyclooctatetraene Complexes [Seite 129]
1.8.2.1.1 - Synthesis of Product Subclass 1 [Seite 129]
1.8.2.1.1.1 - 2.13.1.1 Method 1: Metathesis with Alkali Metal Salts [Seite 129]
1.8.2.1.1.2 - 2.13.1.2 Method 2: Transmetalation with Magnesium Salts [Seite 131]
1.8.2.1.1.3 - 2.13.1.3 Method 3: Electrolytic Amalgamation [Seite 131]
1.8.2.1.1.4 - 2.13.1.4 Method 4: Reduction with Lithium Naphthalenide [Seite 132]
1.8.2.1.1.5 - 2.13.1.5 Method 5: Redistribution [Seite 132]
1.8.2.1.1.6 - 2.13.1.6 Method 6: Cyclooctatetraene-Bridged Actinide Complexes [Seite 133]
1.8.2.1.2 - Applications of Product Subclass 1 in Organic Synthesis [Seite 134]
1.8.2.1.2.1 - 2.13.1.7 Method 7: Binding of Carbon Monoxide [Seite 134]
1.8.2.2 - 2.13.2 Product Subclass 2: Actinide-Arene Complexes [Seite 136]
1.8.2.2.1 - Synthesis of Product Subclass 2 [Seite 136]
1.8.2.2.1.1 - 2.13.2.1 Method 1: Friedel-Crafts Route [Seite 136]
1.8.2.2.1.2 - 2.13.2.2 Method 2: Synthesis of Bimetallic Species [Seite 137]
1.8.2.2.1.3 - 2.13.2.3 Method 3: Thermolysis of Uranium(IV) Borohydride [Seite 137]
1.8.2.2.1.4 - 2.13.2.4 Method 4: Synthesis of Bridged Uranium-Arene Complexes by Salt Metathesis [Seite 138]
1.8.2.3 - 2.13.3 Product Subclass 3: Actinide-Cyclopentadienyl Complexes [Seite 139]
1.8.2.3.1 - Synthesis of Product Subclass 3 [Seite 142]
1.8.2.3.1.1 - 2.13.3.1 Method 1: Metathesis with Alkali Metal Salts [Seite 142]
1.8.2.3.1.2 - 2.13.3.2 Method 2: Transmetalation [Seite 143]
1.8.2.3.1.3 - 2.13.3.3 Method 3: Reduction of Tetravalent Actinide Precursors [Seite 144]
1.8.2.3.1.3.1 - 2.13.3.3.1 Variation 1: Reduction with Sodium Hydride [Seite 144]
1.8.2.3.1.3.2 - 2.13.3.3.2 Variation 2: Reduction with Alkali Metals [Seite 145]
1.8.2.3.1.4 - 2.13.3.4 Method 4: Reaction with Tetramethylfulvene [Seite 146]
1.8.2.3.2 - Applications of Product Subclass 3 in Organic Synthesis [Seite 147]
1.8.2.3.2.1 - 2.13.3.5 Method 5: Catalytic Reduction of Azides and Hydrazines [Seite 147]
1.8.2.3.2.2 - 2.13.3.6 Method 6: Intermolecular Hydroamination of Terminal Alkynes [Seite 148]
1.8.2.3.2.3 - 2.13.3.7 Method 7: Hydrosilylation of Terminal Alkynes [Seite 150]
1.8.2.3.2.4 - 2.13.3.8 Method 8: Polymerization of a-Alkenes [Seite 152]
1.8.2.3.2.5 - 2.13.3.9 Method 9: C--H Bond Activation [Seite 153]
1.8.2.4 - 2.13.4 Product Subclass 4: Allyl- and Pentadienylactinide Complexes [Seite 154]
1.8.2.4.1 - Synthesis of Product Subclass 4 [Seite 155]
1.8.2.4.1.1 - 2.13.4.1 Method 1: Transmetalation with Grignard Reagents [Seite 155]
1.8.2.4.1.2 - 2.13.4.2 Method 2: Metathesis with Alkali Metal Salts [Seite 156]
1.8.2.5 - 2.13.5 Product Subclass 5: Alkylactinide Complexes [Seite 156]
1.8.2.5.1 - Synthesis of Product Subclass 5 [Seite 157]
1.8.2.5.1.1 - 2.13.5.1 Method 1: Metathesis with Alkali Metal Salts [Seite 157]
1.8.2.5.1.2 - 2.13.5.2 Method 2: Application of Stabilizing Phosphine Ancillary Ligands [Seite 157]
1.8.2.6 - 2.13.6 Product Subclass 6: Actinide-Carbene Complexes [Seite 158]
1.8.2.6.1 - Synthesis of Product Subclass 6 [Seite 159]
1.8.2.6.1.1 - 2.13.6.1 Method 1: Metathesis with Alkali Metal Salts [Seite 159]
1.8.2.6.1.2 - 2.13.6.2 Method 2: Ligand Redistribution [Seite 160]
1.8.2.7 - 2.13.7 Product Subclass 7: Oxygen-Ligand Complexes of Actinide Systems [Seite 161]
1.8.2.7.1 - Synthesis of Product Subclass 7 [Seite 161]
1.8.2.7.1.1 - 2.13.7.1 Method 1: Ligand Substitution [Seite 161]
1.8.2.7.1.1.1 - 2.13.7.1.1 Variation 1: Nucleophilic Displacement of Halides [Seite 161]
1.8.2.7.1.1.2 - 2.13.7.1.2 Variation 2: By Ligand Redistribution [Seite 162]
1.8.2.7.2 - Applications of Product Subclass 7 in Organic Synthesis [Seite 164]
1.8.2.7.2.1 - 2.13.7.2 Method 2: Molecular Nitrogen Reduction [Seite 164]
1.8.2.8 - 2.13.8 Product Subclass 8: Nitrogen-Ligand Complexes of Actinide Systems [Seite 165]
1.8.2.8.1 - Synthesis of Product Subclass 8 [Seite 165]
1.8.2.8.1.1 - 2.13.8.1 Method 1: Formation of Actinide Amide Complexes [Seite 165]
1.8.2.8.1.1.1 - 2.13.8.1.1 Variation 1: Homoleptic Actinide Amide Formation by Nucleophilic Halide Displacement [Seite 165]
1.8.2.8.1.1.2 - 2.13.8.1.2 Variation 2: Heteroleptic Actinide Amide Synthesis by Nucleophilic Halide Displacement [Seite 167]
1.8.2.8.1.1.3 - 2.13.8.1.3 Variation 3: Reaction of Organoactinide Species with Nitriles and Thiocyanates [Seite 170]
1.8.2.8.1.2 - 2.13.8.2 Method 2: Formation of Actinide Imides [Seite 173]
1.8.2.8.1.2.1 - 2.13.8.2.1 Variation 1: By Oxidation of the Actinide Center [Seite 173]
1.8.2.8.1.2.2 - 2.13.8.2.2 Variation 2: By Reductive Cleavage with Amines and Hydrazines [Seite 175]
1.8.2.8.1.2.3 - 2.13.8.2.3 Variation 3: By Reductive Cleavage with Azides and Diazenes [Seite 176]
1.8.2.8.1.3 - 2.13.8.3 Method 3: Synthesis of Actinide Amidinate Complexes [Seite 178]
1.8.2.8.1.3.1 - 2.13.8.3.1 Variation 1: By Reaction of Actinide Halides with Lithium Amidinates [Seite 178]
1.8.2.8.1.3.2 - 2.13.8.3.2 Variation 2: By Carbodiimide Insertion [Seite 180]
1.8.2.8.1.4 - 2.13.8.4 Method 4: Synthesis of Actinide Complexes Bearing N-Heterocyclic Ligands [Seite 182]
1.8.2.8.1.4.1 - 2.13.8.4.1 Variation 1: Actinide Complexes Bearing Pyrrolyl Ligands and Polypyrrole Macrocycles [Seite 182]
1.8.2.8.1.4.2 - 2.13.8.4.2 Variation 2: Organoactinide Complexes Bearing Pyrazole and Imidazole Functionality [Seite 184]
1.8.2.8.1.4.3 - 2.13.8.4.3 Variation 3: Pyridine-Stabilized Organoactinide Systems [Seite 185]
1.8.2.8.1.5 - 2.13.8.5 Method 5: Actinide Complexes Bearing Ketimide Ligands [Seite 187]
1.8.2.8.2 - Applications of Product Subclass 8 in Organic Synthesis [Seite 188]
1.8.2.8.2.1 - 2.13.8.6 Method 6: Binding of Carbon Dioxide [Seite 188]
1.8.2.8.2.2 - 2.13.8.7 Method 7: Oligomerization of e-Caprolactone [Seite 189]
1.8.2.8.2.3 - 2.13.8.8 Method 8: Dehydrogenative Coupling of Amines with Silanes [Seite 190]
1.8.2.8.2.4 - 2.13.8.9 Method 9: Catalytic Hydrosilylation of Alkynes [Seite 191]
1.8.2.8.2.5 - 2.13.8.10 Method 10: Binding of Molecular Nitrogen [Seite 192]
1.8.2.8.2.6 - 2.13.8.11 Method 11: Alkene Polymerization [Seite 193]
1.8.2.9 - 2.13.9 Product Subclass 9: Sulfur- and Phosphorus-Ligand Complexes of Actinide Systems [Seite 194]
1.8.2.9.1 - Synthesis of Product Subclass 9 [Seite 194]
1.8.2.9.1.1 - 2.13.9.1 Method 1: Synthesis of Organoactinide Complexes Bearing Sulfur Ligands [Seite 194]
1.8.2.9.1.1.1 - 2.13.9.1.1 Variation 1: Formation of Actinide Thiolate Complexes by Coordinative Insertion [Seite 194]
1.8.2.9.1.1.2 - 2.13.9.1.2 Variation 2: Formation of Actinide Thiolate Complexes by Nucleophilic Halide Displacement [Seite 195]
1.8.2.9.1.2 - 2.13.9.2 Method 2: Synthesis of Organoactinide Complexes Bearing Phosphorus Ligands [Seite 196]
1.8.2.9.1.2.1 - 2.13.9.2.1 Variation 1: Formation of Actinide-Phospholyl Complexes [Seite 196]
1.8.2.9.1.2.2 - 2.13.9.2.2 Variation 2: Reactions Forming Actinide-Phosphine Complexes [Seite 197]
1.8.2.9.1.2.3 - 2.13.9.2.3 Variation 3: Reactions Forming Actinide-Phosphine Oxide Complexes [Seite 198]
1.8.2.9.1.2.4 - 2.13.9.2.4 Variation 4: Reactions Forming Actinide-Phosphoranimide Complexes [Seite 199]
1.8.2.10 - 2.13.10 Product Subclass 10: Organoactinide Complexes Bearing Bridged Ligands [Seite 200]
1.8.2.10.1 - Synthesis of Product Subclass 10 [Seite 201]
1.8.2.10.1.1 - 2.13.10.1 Method 1: Organoactinide Complexes Bearing Bridged Ligands [Seite 201]
1.8.2.10.1.1.1 - 2.13.10.1.1 Variation 1: Carbon-Bridged Ancillary Ligand Complexes of the Actinides [Seite 201]
1.8.2.10.1.1.2 - 2.13.10.1.2 Variation 2: Nitrogen-Bridged Ancillary Ligand Complexes of the Actinides [Seite 203]
1.8.2.10.1.1.3 - 2.13.10.1.3 Variation 3: Oxygen-Bridged Ancillary Ligand Complexes of the Actinides [Seite 206]
1.8.2.10.1.1.4 - 2.13.10.1.4 Variation 4: Silicon-Bridged Ancillary Ligand Complexes of the Actinides [Seite 207]
1.8.2.10.2 - Applications of Product Subclass 10 in Organic Synthesis [Seite 209]
1.8.2.10.2.1 - 2.13.10.2 Method 2: Catalytic Intramolecular Hydroamination/Cyclization Mediated by Constrained-Geometry Actinide Complexes [Seite 209]
1.8.2.10.2.2 - 2.13.10.3 Method 3: Intermolecular Hydrosilylation with Phenylsilane Mediated by Constrained-Geometry Thorium Complexes [Seite 211]
1.8.2.10.2.3 - 2.13.10.4 Method 4: Intermolecular Hydrothiolation [Seite 214]
1.8.2.11 - 2.13.11 Product Subclass 11: Multimetallic Actinide Complexes [Seite 215]
1.8.2.11.1 - Synthesis of Product Subclass 11 [Seite 215]
1.8.2.11.1.1 - 2.13.11.1 Method 1: Homobimetallic Actinide Complexes [Seite 215]
1.8.2.11.1.1.1 - 2.13.11.1.1 Variation 1: Nitrogen-Bridged Homobimetallic Actinide Complexes [Seite 215]
1.8.2.11.1.1.2 - 2.13.11.1.2 Variation 2: Halogen-Bridged Homobimetallic Actinide Complexes [Seite 217]
1.8.2.11.1.1.3 - 2.13.11.1.3 Variation 3: Oxygen-Bridged Homobimetallic Complexes [Seite 218]
1.8.2.11.1.1.4 - 2.13.11.1.4 Variation 4: Carbide-Bridged Homobimetallic Actinide Complexes [Seite 220]
1.8.2.11.1.2 - 2.13.11.2 Method 2: Heterobimetallic Complexes [Seite 220]
1.8.2.11.1.2.1 - 2.13.11.2.1 Variation 1: Hydride-Bridged Heterobimetallic Complexes [Seite 221]
1.8.2.11.1.2.2 - 2.13.11.2.2 Variation 2: Phosphorus-Bridged Heterobimetallic Actinide Complexes [Seite 222]
1.8.2.11.1.2.3 - 2.13.11.2.3 Variation 3: Heterobimetallic Actinide-Ferrocenyl Complexes [Seite 222]
1.8.2.11.1.2.4 - 2.13.11.2.4 Variation 4: Heterobimetallic Actinide Complexes with Unsupported Metal--Metal Bonds [Seite 223]
1.8.2.11.1.2.5 - 2.13.11.2.5 Variation 5: Heterobimetallic Nitrogen-Bridged Actinide Complexes [Seite 224]
1.8.2.11.2 - Applications of Product Subclass 11 in Organic Synthesis [Seite 225]
1.8.2.11.2.1 - 2.13.11.3 Method 3: Reversible Carbon--Carbon Coupling [Seite 225]
1.8.2.11.2.2 - 2.13.11.4 Method 4: Inter- and Intramolecular Hydroamination [Seite 227]
1.8.2.11.2.3 - 2.13.11.5 Method 5: s-Bond Metathesis of Silylalkynes [Seite 229]
1.9 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 242]
1.9.1 - 4.4 Product Class 4: Silicon Compounds [Seite 242]
1.9.1.1 - 4.4.3 Product Subclass 3: Silylenes [Seite 242]
1.9.1.1.1 - Synthesis of Product Subclass 3 [Seite 244]
1.9.1.1.1.1 - 4.4.3.1 Method 1: Reduction of Dihalosilanes [Seite 244]
1.9.1.1.1.2 - 4.4.3.2 Method 2: Reduction of Trichlorosilanes or Silicon Tetrachloride [Seite 256]
1.9.1.1.1.3 - 4.4.3.3 Method 3: Reaction of a Silyliumylidene Cation [Seite 258]
1.9.1.1.1.4 - 4.4.3.4 Method 4: Dehydrochlorination of Hydrochlorosilanes [Seite 260]
1.9.1.1.2 - Applications of Product Subclass 3 in Organic Synthesis [Seite 263]
1.9.1.1.2.1 - 4.4.3.5 Method 5: Insertion Reactions [Seite 263]
1.9.1.1.2.2 - 4.4.3.6 Method 6: Addition Reactions to 1,3-Dienes [Seite 284]
1.9.1.1.2.3 - 4.4.3.7 Method 7: Addition Reactions to Aldehydes, Ketones, and Imines [Seite 289]
1.9.1.1.2.4 - 4.4.3.8 Method 8: Addition Reactions to Alkynes and Cyanides [Seite 293]
1.9.1.1.2.5 - 4.4.3.9 Method 9: Addition Reactions to Isocyanides and Azides [Seite 295]
1.9.1.1.2.6 - 4.4.3.10 Method 10: Addition Reactions to Alkenes and Silenes [Seite 301]
1.9.1.1.2.7 - 4.4.3.11 Method 11: Reactions with Carbenes and 4-(Dimethylamino)pyridine [Seite 302]
1.9.1.1.2.8 - 4.4.3.12 Method 12: Reactions with Elemental Chalcogens or Phosphorus [Seite 303]
1.9.1.1.2.9 - 4.4.3.13 Method 13: Reactions with Transition Metals [Seite 310]
1.10 - Volume 6: Boron Compounds [Seite 326]
1.10.1 - 6.1 Product Class 1: Boron Compounds [Seite 326]
1.10.1.1 - 6.1.28.24 Vinylboranes [Seite 326]
1.10.1.1.1 - 6.1.28.24.1 Synthesis of Vinylboranes [Seite 326]
1.10.1.1.1.1 - 6.1.28.24.1.1 Method 1: Insertion of Borylenes into C--H Bonds [Seite 327]
1.10.1.1.1.2 - 6.1.28.24.1.2 Method 2: Dimetalation of Allenes and Alkynes [Seite 327]
1.10.1.1.1.2.1 - 6.1.28.24.1.2.1 Variation 1: Palladium-Catalyzed Enantioselective Diboration of Allenes [Seite 327]
1.10.1.1.1.2.2 - 6.1.28.24.1.2.2 Variation 2: Silaboration of Alkynes [Seite 329]
1.10.1.1.1.2.3 - 6.1.28.24.1.2.3 Variation 3: Silaboration of Allenes [Seite 331]
1.10.1.1.1.2.4 - 6.1.28.24.1.2.4 Variation 4: Silaborative C--C Cleavage Reactions of Methylenecyclopropanes [Seite 335]
1.10.1.1.1.2.5 - 6.1.28.24.1.2.5 Variation 5: Copper-Catalyzed Addition of Diboron Reagents to Alkynes [Seite 337]
1.10.1.1.1.3 - 6.1.28.24.1.3 Method 3: Transmetalation of Vinylic Metal Complexes with Boron Reagents [Seite 339]
1.10.1.1.1.3.1 - 6.1.28.24.1.3.1 Variation 1: Copper Hydride Catalyzed Addition of Pinacolborane to Acetylenic Esters [Seite 339]
1.10.1.1.1.3.2 - 6.1.28.24.1.3.2 Variation 2: Transmetalation of Vinylaluminums [Seite 340]
1.10.1.1.1.3.3 - 6.1.28.24.1.3.3 Variation 3: Transmetalation of Cyclic Vinyllithium Compounds [Seite 342]
1.10.1.1.1.3.4 - 6.1.28.24.1.3.4 Variation 4: Palladium-Catalyzed Borylation of Vinyl Halides [Seite 342]
1.10.1.1.1.4 - 6.1.28.24.1.4 Method 4: Carboboration of Alkynes [Seite 342]
1.10.1.1.1.5 - 6.1.28.24.1.5 Method 5: Miscellaneous Methods [Seite 345]
1.10.1.1.1.5.1 - 6.1.28.24.1.5.1 Variation 1: Protodeboronation of Alkenyl Geminal Diboron Species [Seite 345]
1.10.1.1.1.5.2 - 6.1.28.24.1.5.2 Variation 2: Stereoselective Synthesis of Tetrasubstituted Vinylboronates [Seite 346]
1.10.1.1.2 - 6.1.28.24.2 Applications of Vinylboranes in Organic Synthesis [Seite 347]
1.10.1.1.2.1 - 6.1.28.24.2.1 Method 1: Reduction of Double Bonds [Seite 347]
1.10.1.1.2.2 - 6.1.28.24.2.2 Method 2: Synthesis of Cyclopropylboronates and Oxiran-2-ylboronates [Seite 348]
1.10.1.1.2.3 - 6.1.28.24.2.3 Method 3: Cycloadditions [Seite 350]
1.10.1.1.2.4 - 6.1.28.24.2.4 Method 4: Heck Reactions [Seite 352]
1.10.1.1.2.5 - 6.1.28.24.2.5 Method 5: Substitution Reactions [Seite 353]
1.10.1.1.2.5.1 - 6.1.28.24.2.5.1 Variation 1: Vinylogous Intramolecular Alkyl-Transfer Reactions [Seite 353]
1.10.1.1.2.5.2 - 6.1.28.24.2.5.2 Variation 2: Reactions of Borylated Allylic Reagents [Seite 354]
1.10.1.1.2.6 - 6.1.28.24.2.6 Method 6: Formation of Carbon--Halogen Bonds [Seite 357]
1.10.1.1.2.6.1 - 6.1.28.24.2.6.1 Variation 1: Formation of a C--Cl Bond through Iodination of a Double Bond [Seite 357]
1.10.1.1.2.6.2 - 6.1.28.24.2.6.2 Variation 2: Fluorination through Tandem Transmetalation-Fluorination [Seite 358]
1.10.1.1.2.7 - 6.1.28.24.2.7 Method 7: Formation of C--N Bonds [Seite 359]
1.10.1.1.2.7.1 - 6.1.28.24.2.7.1 Variation 1: Chan-Lam-Evans Cross Coupling [Seite 359]
1.10.1.1.2.7.2 - 6.1.28.24.2.7.2 Variation 2: Formation of Imines [Seite 359]
1.10.1.1.2.8 - 6.1.28.24.2.8 Method 8: Formation of C--O Bonds [Seite 360]
1.10.1.1.2.9 - 6.1.28.24.2.9 Method 9: Formation of C--S and C--Se Bonds [Seite 361]
1.10.1.1.2.10 - 6.1.28.24.2.10 Method 10: Addition to Heteroatom--Carbon Double Bonds [Seite 362]
1.10.1.1.2.11 - 6.1.28.24.2.11 Method 11: Addition to Carbon--Carbon Multiple Bonds [Seite 364]
1.10.1.1.2.12 - 6.1.28.24.2.12 Method 12: Homocoupling of Vinylboranes [Seite 364]
1.10.1.1.2.13 - 6.1.28.24.2.13 Method 13: Cross Coupling of Vinylboranes [Seite 365]
1.11 - Volume 9: Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom [Seite 370]
1.11.1 - 9.14 Product Class 14: Phospholes [Seite 370]
1.11.1.1 - 9.14.4 Phospholes [Seite 370]
1.11.1.1.1 - 9.14.4.1 .3-1H-Phospholes [Seite 370]
1.11.1.1.1.1 - 9.14.4.1.1 Synthesis by Ring-Closure Reactions [Seite 370]
1.11.1.1.1.1.1 - 9.14.4.1.1.1 By Formation of Two P--C Bonds [Seite 370]
1.11.1.1.1.1.1.1 - 9.14.4.1.1.1.1 Method 1: Reaction of Primary Phosphines with Diynes [Seite 370]
1.11.1.1.1.1.2 - 9.14.4.1.1.2 By Formation of One C--C Bond [Seite 371]
1.11.1.1.1.1.2.1 - 9.14.4.1.1.2.1 Method 1: Ring Closure of Dialk-1-ynylphosphines [Seite 371]
1.11.1.1.1.2 - 9.14.4.1.2 Synthesis by Ring Transformation [Seite 372]
1.11.1.1.1.2.1 - 9.14.4.1.2.1 Method 1: Reaction of Dihalophosphines with Zirconacyclopentadienes [Seite 372]
1.11.1.1.1.2.1.1 - 9.14.4.1.2.1.1 Variation 1: Reaction of Zirconacyclopentadienes with Iodine, Butyllithium, and Dihalophosphines [Seite 373]
1.11.1.1.1.2.1.2 - 9.14.4.1.2.1.2 Variation 2: Reaction of Zirconacyclopentadienes with Copper(I) Chloride and Dihalophosphines [Seite 374]
1.11.1.1.1.2.1.3 - 9.14.4.1.2.1.3 Variation 3: Reaction of Dihalophosphines with Titanacyclopentadienes [Seite 374]
1.11.1.1.1.3 - 9.14.4.1.3 Aromatization [Seite 375]
1.11.1.1.1.3.1 - 9.14.4.1.3.1 Method 1: Dehydrohalogenation of 1-Halodihydrophospholium Ions [Seite 375]
1.11.1.1.1.4 - 9.14.4.1.4 Synthesis by Substituent Modification [Seite 376]
1.11.1.1.1.4.1 - 9.14.4.1.4.1 Method 1: Reaction of Electrophiles with Phospholide Ions [Seite 376]
1.11.1.1.1.4.2 - 9.14.4.1.4.2 Method 2: Reaction of Nucleophiles with Phospholes [Seite 378]
1.11.1.1.1.4.3 - 9.14.4.1.4.3 Method 3: Electrophilic Functionalization of Phospholes [Seite 380]
1.11.1.1.1.4.4 - 9.14.4.1.4.4 Method 4: Transformation of a-Substituents [Seite 380]
1.11.1.1.1.4.5 - 9.14.4.1.4.5 Method 5: Reduction of .5-Phospholes [Seite 382]
1.11.1.1.2 - 9.14.4.2 Phospholide Ions [Seite 383]
1.11.1.1.2.1 - 9.14.4.2.1 Method 1: Cleavage of the Exocyclic P--R Bond of 1H-Phospholes by Alkali Metals [Seite 383]
1.11.1.1.2.1.1 - 9.14.4.2.1.1 Variation 1: Cleavage of the Exocyclic P--C Bond of 1H-Phospholes by Bases [Seite 383]
1.11.1.1.2.1.2 - 9.14.4.2.1.2 Variation 2: Deprotonation of Transient 2H-Phospholes [Seite 384]
1.11.1.1.3 - 9.14.4.3 .5-Phospholyl Complexes [Seite 386]
1.11.1.1.3.1 - 9.14.4.3.1 Method 1: Synthesis from .3-1H-Phospholes [Seite 386]
1.11.1.1.3.2 - 9.14.4.3.2 Method 2: Synthesis from .3-2H-Phospholes [Seite 387]
1.11.1.1.3.3 - 9.14.4.3.3 Method 3: Synthesis from Phospholide Ions [Seite 387]
1.11.1.1.3.3.1 - 9.14.4.3.3.1 Variation 1: Via Intermediate 1-Stannylphospholes [Seite 388]
1.11.1.1.3.4 - 9.14.4.3.4 Method 4: Electrophilic Functionalization [Seite 388]
1.11.1.1.3.5 - 9.14.4.3.5 Method 5: Transformation of Substituents [Seite 388]
1.12 - Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines [Seite 394]
1.12.1 - 40.1 Product Class 1: Amino Compounds [Seite 394]
1.12.1.1 - 40.1.1.5.6 Transition-Metal-Catalyzed Functionalization of C(sp3)--H Bonds of Amines [Seite 394]
1.12.1.1.1 - 40.1.1.5.6.1 Transition-Metal-Catalyzed Oxidation of a-C(sp3)--H Bonds of Tertiary N-Methylamines and Amides [Seite 395]
1.12.1.1.1.1 - 40.1.1.5.6.1.1 Method 1: Ruthenium-Catalyzed Oxidation of Tertiary Amines [Seite 395]
1.12.1.1.1.2 - 40.1.1.5.6.1.2 Method 2: Palladium-Catalyzed Acetoxylation of tert-Butoxycarbonyl-Protected N-Methylamines [Seite 398]
1.12.1.1.2 - 40.1.1.5.6.2 Transition-Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of C(sp3)--H Bonds at the a-Position of Amines [Seite 400]
1.12.1.1.2.1 - 40.1.1.5.6.2.1 Method 1: Transition-Metal-Catalyzed Alkynylation of a-C(sp3)--H Bonds of Tertiary Amines [Seite 401]
1.12.1.1.2.1.1 - 40.1.1.5.6.2.1.1 Variation 1: Synthesis of Propargylamines by Copper(I)-Catalyzed Alkynylation of Tertiary Amines [Seite 401]
1.12.1.1.2.1.2 - 40.1.1.5.6.2.1.2 Variation 2: Alkynylation of Tertiary Amines Catalyzed by Iron(II) Chloride [Seite 404]
1.12.1.1.2.2 - 40.1.1.5.6.2.2 Method 2: Synthesis of ß-Amino Ketones (Mannich Products) by Transition-Metal-Catalyzed C(sp3)--H Bond Functionalization [Seite 406]
1.12.1.1.2.2.1 - 40.1.1.5.6.2.2.1 Variation 1: Synthesis of ß-Amino Ketones Catalyzed by Copper Salts [Seite 406]
1.12.1.1.2.2.2 - 40.1.1.5.6.2.2.2 Variation 2: Synthesis of ß-Amino Ketones (Mannich Products) Catalyzed by a Combination of a Transition-Metal Catalyst and an Organocatalyst [Seite 409]
1.12.1.1.2.2.3 - 40.1.1.5.6.2.2.3 Variation 3: Synthesis of ß-Amino Ketones (Mannich Products) by Aerobic Oxidative Coupling of Tertiary Amines with Silyl Enol Ethers and Ketene Acetals [Seite 412]
1.12.1.1.2.3 - 40.1.1.5.6.2.3 Method 3: Nitro-Mannich (Aza-Henry) Reaction via C(sp3)--H Functionalization [Seite 414]
1.12.1.1.2.3.1 - 40.1.1.5.6.2.3.1 Variation 1: Copper-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines and Nitroalkanes [Seite 414]
1.12.1.1.2.3.2 - 40.1.1.5.6.2.3.2 Variation 2: Aza-Henry and Mannich Reaction by Platinum-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines in the Absence of Oxidant [Seite 416]
1.12.1.1.2.3.3 - 40.1.1.5.6.2.3.3 Variation 3: Aza-Henry (Nitro-Mannich) Reactions in the Presence of Ruthenium Complexes via Visible Light Photoredox Catalyzed C(sp3)--H Functionalization [Seite 420]
1.12.1.1.2.4 - 40.1.1.5.6.2.4 Method 4: Transition-Metal-Catalyzed Oxidative a-Cyanation of Tertiary Amines [Seite 425]
1.12.1.1.2.4.1 - 40.1.1.5.6.2.4.1 Variation 1: Aerobic Oxidative a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid [Seite 425]
1.12.1.1.2.4.2 - 40.1.1.5.6.2.4.2 Variation 2: a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid in the Presence of Hydrogen Peroxide or tert-Butyl Hydroperoxide [Seite 428]
1.12.1.1.2.4.3 - 40.1.1.5.6.2.4.3 Variation 3: a-Cyanation of Tertiary Amines Catalyzed by Gold Complexes under Acid-Free Conditions [Seite 430]
1.12.1.1.2.5 - 40.1.1.5.6.2.5 Method 5: Iron(III)-Catalyzed Oxidative Allylation of a C--H Bond Adjacent to a Nitrogen Atom: Synthesis of Homoallyl Tertiary Amines [Seite 434]
1.12.1.1.2.6 - 40.1.1.5.6.2.6 Method 6: Copper-Catalyzed Aerobic Phosphonation of C(sp3)--H Bonds [Seite 437]
1.12.1.1.2.7 - 40.1.1.5.6.2.7 Method 7: Transition-Metal-Catalyzed (Het)Arylation of C(sp3)--H Bonds Adjacent to Nitrogen [Seite 438]
1.12.1.1.2.7.1 - 40.1.1.5.6.2.7.1 Variation 1: Iron-Catalyzed Oxidative Coupling of Hetarenes and Tertiary N-Methylamines [Seite 439]
1.12.1.1.2.7.2 - 40.1.1.5.6.2.7.2 Variation 2: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Tertiary Amines and Indoles Using tert-Butyl Hydroperoxide as Oxidant [Seite 441]
1.12.1.1.2.7.3 - 40.1.1.5.6.2.7.3 Variation 3: Ruthenium-Catalyzed Cross-Dehydrogenative Coupling Reactions of Tertiary Amines and Indoles [Seite 443]
1.12.1.1.2.7.4 - 40.1.1.5.6.2.7.4 Variation 4: Iron-Catalyzed Cross-Dehydrogenative Coupling Reactions of tert-Butoxycarbonyl-Protected 1,2,3,4-Tetrahydroisoquinoline and Indoles [Seite 446]
1.12.1.1.2.7.5 - 40.1.1.5.6.2.7.5 Variation 5: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Hetarenes Using Air/Oxygen as Oxidant [Seite 447]
1.12.1.1.2.7.6 - 40.1.1.5.6.2.7.6 Variation 6: Transition-Metal-Catalyzed Oxidative Coupling of Alkylamides with Electron-Rich (Het)Arenes [Seite 450]
1.12.1.1.2.7.7 - 40.1.1.5.6.2.7.7 Variation 7: Copper-Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans [Seite 454]
1.12.1.1.2.7.8 - 40.1.1.5.6.2.7.8 Variation 8: Dirhodium(II) Caprolactamate Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans [Seite 456]
1.12.1.1.2.8 - 40.1.1.5.6.2.8 Method 8: Copper-Catalyzed Oxidative C(sp³)--H Bond Arylation with Arylboronic Acids (Petasis-Mannich Reaction) [Seite 458]
1.12.1.1.2.9 - 40.1.1.5.6.2.9 Method 9: Synthesis of Nonnatural Amino Acids via Functionalization of a-C(sp3)--H Bonds of Tertiary Amines [Seite 460]
1.12.1.1.2.9.1 - 40.1.1.5.6.2.9.1 Variation 1: Functionalization of Glycine Derivatives by Direct C--C Bond Formation [Seite 460]
1.12.1.1.2.9.2 - 40.1.1.5.6.2.9.2 Variation 2: Cross-Dehydrogenative Coupling Reactions of Amino Acids and Ketones by Cooperative Transition-Metal and Amino Catalysis [Seite 465]
1.12.1.1.2.10 - 40.1.1.5.6.2.10 Method 10: a-Functionalization of Nonactivated Aliphatic Amines in the Absence of Oxidant: Ruthenium-Catalyzed Alkynylations [Seite 467]
1.12.1.1.3 - 40.1.1.5.6.3 Transition-Metal-Catalyzed Nonoxidative Functionalization of a-C(sp3)--H Bonds of Amines [Seite 469]
1.12.1.1.3.1 - 40.1.1.5.6.3.1 Transition-Metal-Catalyzed Hydroaminoalkylation [Seite 470]
1.12.1.1.3.1.1 - 40.1.1.5.6.3.1.1 Method 1: Transition-Metal-Catalyzed Intermolecular Hydroaminoalkylation of Unactivated Alkenes [Seite 470]
1.12.1.1.3.1.1.1 - 40.1.1.5.6.3.1.1.1 Variation 1: Hydroaminoalkylation of Unactivated Alkenes with N-Alkylarylamines [Seite 470]
1.12.1.1.3.1.1.2 - 40.1.1.5.6.3.1.1.2 Variation 2: Hydroaminoalkylation of Unactivated Alkenes with Dialkylamines [Seite 475]
1.12.1.1.3.1.1.3 - 40.1.1.5.6.3.1.1.3 Variation 3: Hydroaminoalkylation with Secondary Amines: Enantioselective Synthesis of Chiral Amines [Seite 477]
1.12.1.1.3.1.2 - 40.1.1.5.6.3.1.2 Method 2: Transition-Metal-Catalyzed Intramolecular C--H Activation of Primary and Secondary Amines [Seite 488]
1.12.1.1.4 - 40.1.1.5.6.4 a-C(sp3)--H Bond Functionalization of Amines via Transition-Metal-Catalyzed Hydride Transfer Cyclization [Seite 493]
1.12.1.1.4.1 - 40.1.1.5.6.4.1 Method 1: Coupling of Unactivated Alkynes and C(sp3)--H Bonds [Seite 493]
1.12.1.1.4.1.1 - 40.1.1.5.6.4.1.1 Variation 1: Direct Coupling of Unactivated Alkynes and C(sp3)--H Bonds Catalyzed by Platinum(IV) Iodide [Seite 493]
1.12.1.1.4.1.2 - 40.1.1.5.6.4.1.2 Variation 2: A Two-Step, One-Pot Gold-Catalyzed Cyclization of 1-(But-3-ynyl)piperidine Derivatives [Seite 495]
1.12.1.1.4.2 - 40.1.1.5.6.4.2 Method 2: Coupling of Electron-Deficient Alkenes and a-C(sp3)--H Bonds of Amines [Seite 496]
1.12.1.1.4.2.1 - 40.1.1.5.6.4.2.1 Variation 1: Enantioselective Synthesis of 1,2,3,4-Tetrahydroquinolines via Cobalt(II)-Catalyzed Tandem 1,5-Hydride Transfer/Cyclization [Seite 496]
1.12.1.1.4.2.2 - 40.1.1.5.6.4.2.2 Variation 2: Gold-Catalyzed Enantioselective Functionalization of C(sp3)--H Bonds by Redox-Neutral Domino Reactions [Seite 500]
1.12.1.1.5 - 40.1.1.5.6.5 Transition-Metal-Catalyzed a-Arylation of Saturated Amines [Seite 503]
1.12.1.1.5.1 - 40.1.1.5.6.5.1 Method 1: C(sp3)--H Bond Arylation Directed by an Amidine Protecting Group: a-Arylation of Pyrrolidines and Piperidines [Seite 503]
1.12.1.1.5.2 - 40.1.1.5.6.5.2 Method 2: Iron-Catalyzed Arylation at the a-Position of Aliphatic Amines [Seite 507]
1.12.1.1.6 - 40.1.1.5.6.6 Remote Functionalization of Unactivated C(sp3)--H Bonds of Amines and Amides [Seite 509]
1.12.1.1.6.1 - 40.1.1.5.6.6.1 Method 1: Palladium-Catalyzed Picolinamide-Directed Remote Arylation of Unactivated C(sp3)--H Bonds [Seite 509]
1.12.1.1.6.2 - 40.1.1.5.6.6.2 Method 2: Synthesis of Fused Indolines by Palladium-Catalyzed Asymmetric C--C Coupling Involving an Unactivated Methylene Group at the Position ß to Nitrogen [Seite 513]
1.12.1.1.6.3 - 40.1.1.5.6.6.3 Method 3: C(sp3)--H Bond Activation with Ruthenium(II) Catalysts and C3-Alkylation of Cyclic Amines [Seite 515]
1.13 - Author Index [Seite 524]
1.14 - Abbreviations [Seite 546]
1.15 - List of All Volumes [Seite 552]
1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes
D. C. Powers and T. Ritter
General Introduction
Compared with the chemistry of palladium in the 0, I, II, and IV oxidation states, organopalladium(III) chemistry is in its infancy, and complexes containing palladium in the III oxidation state are rare.[1–4] Recent studies have expanded the family of characterized palladium(III) complexes and have also begun to elucidate the potential roles of palladium(III) intermediates in catalysis. This section will review preparative methods for the synthesis of palladium(III) complexes and discuss reactions in which palladium(III) intermediates are proposed.
SAFETY:
The palladium complexes reported herein can be prepared using the standard precautions generally taken with other potentially hazardous substances found in a chemistry laboratory. Many of the reagents used to prepare palladium(III) complexes are strong oxidants, which can be particularly hazardous.
1.2.5.1 Synthesis of Palladium(III)-Containing Complexes
1.2.5.1.1 Mononuclear Palladium(III) Complexes
Mononuclear palladium(II) complexes are typically square planar whereas mononuclear palladium(IV) complexes are typically octahedral.[5] Based on the molecular orbital diagram in ▶ Figure 1, mononuclear palladium(III) complexes are anticipated to be paramagnetic, low-spin d7, tetragonally distorted octahedral complexes, in which the unpaired electron resides predominantly in the orbital.[6]
▶ Figure 1 Molecular Orbital Diagram for Mononuclear Palladium(II), Palladium(III), and Palladium(IV) Complexes[5,6]
Unlike complexes based on platinum(III),[7–15] compounds containing palladium(III) are rare. Several mononuclear coordination complexes, proposed to contain palladium(III), have been observed by electrochemical measurements as well as EPR spectroscopy.[16–25] The spin density in these complexes, either metal- or ligand-centered, is the source of continuing discussion.[26–29] The various methods that have been developed for the preparation of mononuclear palladium(III) complexes are presented in the following sections.
1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes
Facially coordinating 1,4,7-triazacyclononane and 1,4,7-trithiacyclononane ligands have been used to stabilize mononuclear palladium(III) complexes.[30–33] Complex 2, in which two facially coordinating tridentate ligands compose the octahedral coordination environment of the palladium(III) center, has been prepared by disproportionation of palladium(II) (▶ Scheme 1). X-ray crystallographic characterization has established the distorted octahedral geometry of the palladium centers, as expected for low-spin, d7 palladium(III). Electrochemical and spectroscopic investigations have indicated that the unpaired electron in complex 2 resides predominantly in the orbital, consistent with the molecular orbital diagram in ▶ Figure 1.[34–39]
▶ Scheme 1 Synthesis of Mononuclear Palladium(III) Werner Complexes by Disproportionation of Palladium(II)[34]
Bis(1,4,7-triazacyclononane-κ3N)palladium(III) Hexafluorophosphate (2):[34]
PdCl2 (0.50 g, 2.8 mmol, 1.0 equiv) was dissolved in deionized H2O (20 mL) and the soln was adjusted to pH 9 with NaOH. The soln was warmed to 50 °C. 1,4,7-Triazacyclononane (0.90 g, 7.0 mmol, 2.5 equiv) was added directly to the PdCl2 soln, in which it dissolved rapidly. Heating was continued for 1 h at this temperature, during which time the remaining solid PdCl2 dissolved, yielding a lemon-yellow soln with deposited Pd metal (0.13 g; 45% of total Pd); the metallic solid was removed by filtration. The yellow filtrate contained two species; the major constituent was the cation of complex 2 with a minor amount of the cation of complex 1. Addition of sat. NH4PF6 soln caused precipitation of 2 as a yellow powder.
1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid
Mononuclear palladium(III) complex 4 has been prepared by chemical oxidation of mononuclear palladium(II) complex 3 with perchloric acid (▶ Scheme 2).[30] Experimental details of the oxidation of 3 with perchloric acid are unavailable.
▶ Scheme 2 Preparation of a Mononuclear Palladium(III) Complex by Oxidation of a Mononuclear Palladium(II) Complex with Perchloric Acid[30]
1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes
In 2010, controlled potential electrolysis (CPE) was used to prepare the first mononuclear organometallic complexes of palladium(III) (complexes 6, ▶ Scheme 3).[40] One-electron oxidation of complexes 5 results in the formation of mononuclear palladium(III) complexes 6, in which the palladium(III) centers are stabilized by chelating tetradentate ligands.
▶ Scheme 3 Preparation of Mononuclear Palladium(III) Complexes by Controlled Potential Electrolysis of Mononuclear Palladium(II) Complexes[40]
R1 X− Conditions Yield (%) Ref Me BF4− Bu4NBF4, CH2Cl2 78 [
40] Me PF6− Bu4NPF6, THF 63 [
40] Me ClO4− Bu4NClO4, THF 86 [
40] Ph ClO4− Bu4NClO4, THF 52 [
40]
Chloro[3,7-di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-κ4N]methylpalladium(III) Tetrafluoroborate (6, R1 = Me; X = BF4); Typical Procedure:[40]
CPE of 5 (R1 = Me) was performed in a two-compartment bulk electrolysis cell in which the auxiliary electrode was separated from the working compartment by a medium-frit glass junction. The electrolysis was carried out in a 100-mL electrolysis cell using a reticulated vitreous carbon working electrode. A stirred soln of mononuclear Pd(II) complex 5 (R1 = Me; 90.0 mg, 177 μmol, 1.00 equiv) in deaerated 0.1 M Bu4NBF4 in CH2Cl2 (70 mL) was electrolyzed at a potential of 0.600 V at 20 °C. The electrolysis was stopped after the charge corresponding to one-electron oxidation had been transferred. The dark green soln resulting from electrolysis was stored at −20 °C overnight. The resulting green fine-crystalline precipitate of mononuclear Pd(III) complex 6 (R1 = Me; X = BF4) was collected by filtration from the cold soln and washed with both Et2O and pentane; yield: 78%. The product was recrystallized (layering a MeCN soln of the product with Et2O at −20 °C) to give 6 (R1 = Me; X = BF4)•MeCN as a dark blue-green solid; yield: 78.9 mg (70%); 1H NMR (CD3CN, δ): 12.3 (br s), 10.0, 8.6, −3.2; μeff = 1.80 μB (Evans method, CD3CN soln); UV-vis (MeCN) λ (ɛ): 723(1.1 × 103), 545 (sh, 4.9 × 102), 368 (3.3 × 103), 263 nm (1.2 × 104).
1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants
One-electron oxidation of mononuclear palladium(II) complex 7 with either ferrocenium hexafluorophosphate or thianthrenyl hexafluoroantimonate affords mononuclear palladium(III) complex 8 (▶ Scheme 4).[40] Electrochemical and chemical oxidations (▶ Sections 1.2.5.1.1.3 and 1.2.5.1.1.4, respectively) allow access to complementary substrate classes; electrochemical oxidation of 7 failed to provide access to mononuclear palladium(III) complex 8.
▶ Scheme 4 Preparation of a Mononuclear Palladium(III) Complex from a Mononuclear Palladium(II) Complex Using a One-Electron Oxidant[40]
[3,7-Di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-κN4]dimethylpalladium(III) Perchlorate (8):[40]
A soln of ferrocenium hexafluorophosphate (58.7 mg, 177 μmol, 1.00 equiv) in MeCN (3 mL) was added dropwise to a stirred suspension of 7 (86.8 mg, 177 μmol, 1.00 equiv) in MeCN (7 mL) at rt in a N2-filled drybox. The mixture was stirred for 20 min, and then the solvent was removed under reduced pressure. The solid residue was redissolved in MeCN (2 mL) and the soln was filtered through a cotton plug. A solid sample of LiClO4 (56.7 mg, 533 μmol, 3.01 equiv) was added to the filtrate causing precipitation of a dark green crystalline solid. The suspension was stored at −30 °C for 30 min. The resulting dark green...