1 - Science of Synthesis: Knowledge Updates 2010/1 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 24]
1.6 - Table of Contents [Seite 26]
1.7 - Volume 5: Compounds of Group 14 (Ge, Sn, Pb) [Seite 48]
1.7.1 - 5.1 Product Class 1: Germanium Compounds [Seite 48]
1.7.1.1 - 5.1.1.8 Germanium Hydrides [Seite 48]
1.7.1.1.1 - 5.1.1.8.1 Method 1: Synthesis by Reduction of Germanium Halides [Seite 49]
1.7.1.1.2 - 5.1.1.8.2 Method 2: Applications in Reduction of Organic Halides [Seite 49]
1.7.1.1.3 - 5.1.1.8.3 Method 3: Applications in Hydrogermylation of C--C Multiple Bonds [Seite 50]
1.7.1.1.4 - 5.1.1.8.4 Method 4: Applications with Acids and Bases [Seite 51]
1.7.1.1.5 - 5.1.1.8.5 Method 5: Applications in Palladium(0)-Catalyzed Coupling Reactions [Seite 52]
1.7.1.1.6 - 5.1.1.8.6 Method 6: Application as an Alternative to Tributyltin Hydride in Radical Chain Reactions [Seite 54]
1.7.1.1.7 - 5.1.1.8.7 Method 7: Application as Precursors for Germyl Cation Generation [Seite 55]
1.7.1.2 - 5.1.15.2 Germanium Cyanides [Seite 58]
1.7.1.2.1 - 5.1.15.2.1 Method 1: Synthesis from Halogermanes by Substitution with Trialkylsilyl Cyanides [Seite 58]
1.7.1.3 - 5.1.16.6 Acylgermanes [Seite 62]
1.7.1.3.1 - 5.1.16.6.1 Method 1: Synthesis from Germyl Enol Ethers by Hydrolysis [Seite 62]
1.7.1.3.2 - 5.1.16.6.2 Method 2: Synthesis from a,a-Diheterosubstituted Germanes by Hydrolysis [Seite 63]
1.7.1.3.3 - 5.1.16.6.3 Method 3: Synthesis from Terminal Alkynes by Carbonylation [Seite 64]
1.7.1.3.4 - 5.1.16.6.4 Method 4: Application of Acylgermanes as Radical Acceptors [Seite 65]
1.7.1.3.5 - 5.1.16.6.5 Method 5: Application of Acylgermanes as Amide Precursors [Seite 66]
1.7.1.4 - 5.1.18.4 a-Halo-and a-Alkoxyvinylgermanes [Seite 68]
1.7.1.4.1 - 5.1.18.4.1 Method 1: Synthesis of a-Alkoxyvinylgermanes from a-Metallovinyl Ethers by Substitution [Seite 68]
1.7.1.4.2 - 5.1.18.4.2 Method 2: Synthesis of a-Halovinylgermanes from Alk-1-ynylgermanes by Hydro/Carbometalation-Halogenation [Seite 69]
1.7.1.4.3 - 5.1.18.4.3 Method 3: Synthesis of a-Halovinylgermanes from a-Halovinyl Sulfones by Radical-Mediated Desulfonylation [Seite 71]
1.7.1.4.4 - 5.1.18.4.4 Method 4: Application of a-Halovinylgermanes in Palladium-Catalyzed Cross Coupling with Organic Halides [Seite 72]
1.7.1.5 - 5.1.19.7 a-Halo-, a-Hydroxy,- a-Alkoxy-, and a-Aminoalkylgermanes [Seite 74]
1.7.1.5.1 - 5.1.19.7.1 Method 1: Synthesis of a-Hetero- and a-Haloalkylgermanes from Halogermanes by Substitution [Seite 75]
1.7.1.5.2 - 5.1.19.7.2 Method 2: Synthesis by Interconversion of a-Hetero- and a-Haloalkylgermanes by Substitution [Seite 76]
1.7.1.5.3 - 5.1.19.7.3 Method 3: Synthesis of a-Hydroxyalkylgermanes from Hydroboration of Vinylgermanes [Seite 76]
1.7.1.5.4 - 5.1.19.7.4 Method 4: Synthesis of a-Aminoalkylgermanes by [3 + 2] Cycloaddition of Germenes to Imino Esters [Seite 77]
1.7.1.5.5 - 5.1.19.7.5 Method 5: Application of Lithiated a-Haloalkylgermanes in gem-Silylation/Borylation Reactions To Give Polymetalated Methanes [Seite 78]
1.7.1.6 - 5.1.20.4 Alkynylgermanes [Seite 82]
1.7.1.6.1 - 5.1.20.4.1 Method 1: Synthesis from Halogermanes by Substitution [Seite 83]
1.7.1.6.2 - 5.1.20.4.2 Method 2: Synthesis from Group 14 Metalloalkynyls by Metathesis with Alkenylgermanes [Seite 83]
1.7.1.6.3 - 5.1.20.4.3 Method 3: Synthesis by Substitution with Aminogermanes [Seite 84]
1.7.1.6.4 - 5.1.20.4.4 Method 4: Synthesis by Elimination of a-Alkoxyalkenylgermanes [Seite 84]
1.7.1.6.5 - 5.1.20.4.5 Method 5: Applications of Alkynylgermanes as Protecting Groups [Seite 85]
1.7.1.6.6 - 5.1.20.4.6 Method 6: Applications of Alkynylgermanes in Palladium(0)-Catalyzed Cross-Coupling Reactions [Seite 86]
1.7.1.7 - 5.1.22.6 Aryl- and Heteroarylgermanes [Seite 88]
1.7.1.7.1 - 5.1.22.6.1 Method 1: Synthesis from Halogermanes by Substitution with Arylmetals [Seite 88]
1.7.1.7.1.1 - 5.1.22.6.1.1 Variation 1: Using Preformed Arylmetals [Seite 88]
1.7.1.7.1.2 - 5.1.22.6.1.2 Variation 2: Using Barbier-Type Reactions [Seite 88]
1.7.1.7.2 - 5.1.22.6.2 Method 2: Synthesis from Aryl Halides by Palladium(0)-Mediated Coupling with Germanium Hydrides [Seite 89]
1.7.1.7.3 - 5.1.22.6.3 Method 3: Synthesis from Arylstannanes by Transmetalation with Germanium(IV) Chloride [Seite 89]
1.7.1.7.4 - 5.1.22.6.4 Method 4: Synthesis of Aryl- and Heteroarylgermanes by Cycloaddition [Seite 90]
1.7.1.7.5 - 5.1.22.6.5 Method 5: Applications of Arylgermanes as Linkers for Solid-Phase Synthesis [Seite 91]
1.7.1.7.6 - 5.1.22.6.6 Method 6: Applications of Arylgermanes in Palladium(0)-Catalyzed Cross-Coupling Reactions [Seite 91]
1.7.1.8 - 5.1.23.6 Vinylgermanes [Seite 96]
1.7.1.8.1 - 5.1.23.6.1 Method 1: Synthesis from Vinyllithium and Vinyl Grignard Reagents by Transmetalation with Halogermanes [Seite 96]
1.7.1.8.2 - 5.1.23.6.2 Method 2: Synthesis from Alkynes by Hydro-, Hetero-, and Metallogermylation [Seite 97]
1.7.1.8.2.1 - 5.1.23.6.2.1 Variation 1: By Hydrogermylation [Seite 97]
1.7.1.8.2.2 - 5.1.23.6.2.2 Variation 2: By Palladium(0)-Mediated Germylation [Seite 98]
1.7.1.8.2.3 - 5.1.23.6.2.3 Variation 3: By Metallogermylation [Seite 99]
1.7.1.8.3 - 5.1.23.6.3 Method 3: Synthesis from Vinylgermanes by Ruthenium-Catalyzed Metathesis [Seite 100]
1.7.1.8.4 - 5.1.23.6.4 Method 4: Applications in Palladium(0)-Catalyzed Cross Coupling of Organic Halides [Seite 101]
1.7.1.9 - 5.1.24.4 Propargyl- and Allenylgermanes [Seite 106]
1.7.1.9.1 - 5.1.24.4.1 Method 1: Synthesis of Propargyl- and Allenylgermanes by Substitution [Seite 106]
1.7.1.9.2 - 5.1.24.4.2 Method 2: Application of Allenylgermanes in [2 + 2]-Cycloaddition Reactions with Imino Esters [Seite 107]
1.7.1.10 - 5.1.25.3 Benzylgermanes [Seite 110]
1.7.1.10.1 - 5.1.25.3.1 Method 1: Synthesis from Halogermanes by Substitution with Benzylmetals [Seite 111]
1.7.1.10.2 - 5.1.25.3.2 Method 2: Application in Palladium(0)-Catalyzed Cross Coupling [Seite 112]
1.7.1.11 - 5.1.26.6 Allylgermanes [Seite 116]
1.7.1.11.1 - 5.1.26.6.1 Method 1: Synthesis from Halogermanes by Substitution with Allylmetals [Seite 117]
1.7.1.11.2 - 5.1.26.6.2 Method 2: Synthesis from Allyl Halides or Dienes by Germylene Insertion [Seite 118]
1.7.1.11.3 - 5.1.26.6.3 Method 3: Synthesis from Allyl Halides by Palladium(0)-Mediated Coupling with Metallogermanes [Seite 118]
1.7.1.11.4 - 5.1.26.6.4 Method 4: Synthesis from 3,4-Epoxypent-1-enes by Germyl Radical Addition [Seite 120]
1.7.1.12 - 5.1.27.4 Alkylgermanes [Seite 124]
1.7.1.12.1 - 5.1.27.4.1 Method 1: Synthesis from Halogermanes by Substitution with Alkylmetals [Seite 125]
1.7.1.12.2 - 5.1.27.4.2 Method 2: Synthesis from Alkenes by Hydrogermylation [Seite 125]
1.8 - Volume 9:Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom [Seite 128]
1.8.1 - 9.11 Product Class 11: Selenophenes [Seite 128]
1.8.1.1 - 9.11.4 Selenophenes [Seite 128]
1.8.1.1.1 - 9.11.4.1 Synthesis by Ring-Closure Reactions [Seite 128]
1.8.1.1.1.1 - 9.11.4.1.1 By Formation of Two Se--C Bonds and One C--C Bond [Seite 128]
1.8.1.1.1.1.1 - 9.11.4.1.1.1 Fragments C--C--C, C, and Se [Seite 128]
1.8.1.1.1.1.1.1 - 9.11.4.1.1.1.1 Method 1: From Ketene Dithioacetals and Sodium Selenide [Seite 128]
1.8.1.1.1.1.1.2 - 9.11.4.1.1.1.2 Method 2: From ß-Chloroacrylonitriles and Sodium Selenide [Seite 130]
1.8.1.1.1.1.2 - 9.11.4.1.1.2 Fragments C--C, C--C, and Se [Seite 131]
1.8.1.1.1.1.2.1 - 9.11.4.1.1.2.1 Method 1: From Diphosphorylacetylene and Sodium Hydroselenide [Seite 131]
1.8.1.1.1.2 - 9.11.4.1.2 By Formation of Two Se--C Bonds [Seite 132]
1.8.1.1.1.2.1 - 9.11.4.1.2.1 Fragments C--C--C--C and Se [Seite 132]
1.8.1.1.1.2.1.1 - 9.11.4.1.2.1.1 Method 1: Reaction of C4 Building Blocks with Sources of Selenium [Seite 132]
1.8.1.1.1.2.1.1.1 - 9.11.4.1.2.1.1.1 Variation 1: Reaction of Conjugated 1,3-Dienes with Selenium Dioxide [Seite 132]
1.8.1.1.1.3 - 9.11.4.1.3 By Formation of One Se--C Bond [Seite 133]
1.8.1.1.1.3.1 - 9.11.4.1.3.1 Fragment Se--C--C--C--C [Seite 133]
1.8.1.1.1.3.1.1 - 9.11.4.1.3.1.1 Method 1: Electrophilic Cyclization of Z-Selanylenynes [Seite 133]
1.8.1.1.1.3.1.1.1 - 9.11.4.1.3.1.1.1 Variation 1: Reaction with Butyltellurium Tribromide [Seite 133]
1.8.1.1.1.3.1.1.2 - 9.11.4.1.3.1.1.2 Variation 2: Reaction with Other Electrophiles [Seite 133]
1.8.1.1.1.3.1.1.3 - 9.11.4.1.3.1.1.3 Variation 3: Copper(I) Iodide Catalyzed Cyclization [Seite 135]
1.8.1.1.1.4 - 9.11.4.1.4 By Formation of One C--C Bond [Seite 135]
1.8.1.1.1.4.1 - 9.11.4.1.4.1 Fragment C--C--C--Se--C [Seite 135]
1.8.1.1.1.4.1.1 - 9.11.4.1.4.1.1 Method 1: Cyclization of a Dipropargyl Selenide [Seite 135]
1.8.1.1.2 - 9.11.4.2 Synthesis by Ring Transformation [Seite 136]
1.8.1.1.2.1 - 9.11.4.2.1 Method 1: Thermal Decomposition of Selenadiazoles in the Presence of Arylacetylenes [Seite 136]
1.8.1.1.2.2 - 9.11.4.2.2 Method 2: Formal Exchange of Magnesium with Selenium [Seite 137]
1.8.1.1.3 - 9.11.4.3 Synthesis by Substituent Modification [Seite 138]
1.8.1.1.3.1 - 9.11.4.3.1 Substitution of Metals [Seite 138]
1.8.1.1.3.1.1 - 9.11.4.3.1.1 Method 1: Substitution Reactions Involving Organoboron Derivatives [Seite 138]
1.8.1.1.3.2 - 9.11.4.3.2 Substitution of Heteroatoms [Seite 138]
1.8.1.1.3.2.1 - 9.11.4.3.2.1 Method 1: Substitution of Halogens by Lithium [Seite 138]
1.8.1.1.3.2.2 - 9.11.4.3.2.2 Method 2: Metal-Assisted Cross Coupling of Haloselenophenes [Seite 140]
1.8.1.1.3.2.2.1 - 9.11.4.3.2.2.1 Variation 1: Coupling with Alkynes [Seite 140]
1.8.1.1.3.2.2.2 - 9.11.4.3.2.2.2 Variation 2: Coupling with Alcohols [Seite 141]
1.8.1.1.3.2.2.3 - 9.11.4.3.2.2.3 Variation 3: Coupling with Thiols [Seite 142]
1.8.2 - 9.12 Product Class 12: Tellurophenes [Seite 146]
1.8.2.1 - 9.12.3 Tellurophenes [Seite 146]
1.8.2.1.1 - 9.12.3.1 Synthesis by Ring-Closure Reactions [Seite 147]
1.8.2.1.1.1 - 9.12.3.1.1 By Formation of Two Te--C Bonds [Seite 147]
1.8.2.1.1.1.1 - 9.12.3.1.1.1 Fragments C--C--C--C and Te [Seite 147]
1.8.2.1.1.1.1.1 - 9.12.3.1.1.1.1 Method 1: Reaction of C4 Building Blocks with Sources of Tellurium [Seite 147]
1.8.2.1.1.1.1.1.1 - 9.12.3.1.1.1.1.1 Variation 1: Reaction of 2,3-Dimethoxybuta-1,3-diene with Tellurium Dichloride [Seite 147]
1.8.2.1.1.1.1.1.2 - 9.12.3.1.1.1.1.2 Variation 2: Reaction of In Situ Generated Sodium Telluride and Buta-1,3-diyne [Seite 147]
1.8.2.1.1.1.1.1.3 - 9.12.3.1.1.1.1.3 Variation 3: Reaction of 1,4-Diphenylbuta-1,3-diyne with Diethyl Ditelluride [Seite 148]
1.8.2.1.1.2 - 9.12.3.1.2 By Formation of One Te--C Bond [Seite 149]
1.8.2.1.1.2.1 - 9.12.3.1.2.1 Fragment Te--C--C--C--C [Seite 149]
1.8.2.1.1.2.1.1 - 9.12.3.1.2.1.1 Method 1: Cyclization of 1-(Alkyltellanyl)but-1-en-3-ynes [Seite 149]
1.8.2.1.1.2.1.1.1 - 9.12.3.1.2.1.1.1 Variation 1: Reaction with Butyltellurium Tribromide [Seite 149]
1.8.2.1.1.2.1.1.2 - 9.12.3.1.2.1.1.2 Variation 2: Reaction with a Copper(I) Iodide Catalyst [Seite 150]
1.8.2.1.2 - 9.12.3.2 Synthesis by Substituent Modification [Seite 150]
1.8.2.1.2.1 - 9.12.3.2.1 Substitution of Metals [Seite 150]
1.8.2.1.2.1.1 - 9.12.3.2.1.1 Method 1: Substitution Reactions Involving Organostannanes [Seite 150]
1.8.2.1.2.1.2 - 9.12.3.2.1.2 Method 2: Substitution Reactions Involving Organoboron Derivatives [Seite 152]
1.8.2.1.2.2 - 9.12.3.2.2 Substitution of Heteroatoms [Seite 152]
1.8.2.1.2.2.1 - 9.12.3.2.2.1 Method 1: Metal-Assisted Cross Coupling of Halotellurophenes with Alkynes [Seite 152]
1.9 - Volume 11: Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom [Seite 156]
1.9.1 - 11.9 Product Class 9: Isoxazoles [Seite 156]
1.9.1.1 - 11.9.5 Isoxazoles [Seite 156]
1.9.1.1.1 - 11.9.5.1 Synthesis by Ring-Closure Reactions [Seite 156]
1.9.1.1.1.1 - 11.9.5.1.1 By Formation of Two Heteroatom--Carbon Bonds and One C--C Bond [Seite 156]
1.9.1.1.1.1.1 - 11.9.5.1.1.1 Fragments C--C, N--O, and C [Seite 156]
1.9.1.1.1.1.1.1 - 11.9.5.1.1.1.1 Method 1: One-Pot Four-Component Coupling [Seite 156]
1.9.1.1.1.2 - 11.9.5.1.2 By Formation of Two Heteroatom--Carbon Bonds [Seite 156]
1.9.1.1.1.2.1 - 11.9.5.1.2.1 Fragments C--C--C and N--O [Seite 156]
1.9.1.1.1.2.1.1 - 11.9.5.1.2.1.1 Method 1: Synthesis of Hydroxyisoxazoles and Isoxazolones by Reactions of Hydroxylamine with 3-Oxo Esters and 1,3-Diesters [Seite 157]
1.9.1.1.1.2.1.2 - 11.9.5.1.2.1.2 Method 2: By Reactions of Hydroxylamine with a,ß-Unsaturated Carbonyl Compounds [Seite 158]
1.9.1.1.1.3 - 11.9.5.1.3 By Formation of One Heteroatom--Carbon and One C--C Bond [Seite 159]
1.9.1.1.1.3.1 - 11.9.5.1.3.1 Fragments O--N--C and C--C [Seite 159]
1.9.1.1.1.3.1.1 - 11.9.5.1.3.1.1 Method 1: From Nitrile Oxides and Alkynes [Seite 159]
1.9.1.1.1.3.1.1.1 - 11.9.5.1.3.1.1.1 Variation 1: Using Terminal Alkynes [Seite 159]
1.9.1.1.1.3.1.1.2 - 11.9.5.1.3.1.1.2 Variation 2: Using Disubstituted Alkynes [Seite 164]
1.9.1.1.1.3.1.2 - 11.9.5.1.3.1.2 Method 2: By Cycloaddition of Nitrile Oxides to C=C Bonds, Accompanied by Elimination or Dehydration [Seite 167]
1.9.1.1.1.3.1.2.1 - 11.9.5.1.3.1.2.1 Variation 1: Reactions with Enols and Enolates [Seite 167]
1.9.1.1.1.3.1.2.2 - 11.9.5.1.3.1.2.2 Variation 2: Reactions with Other Dipolarophiles [Seite 168]
1.9.1.1.1.3.1.3 - 11.9.5.1.3.1.3 Method 3: Coupling of an Electron-Deficient Alkyne with a Nitroacetate [Seite 170]
1.9.1.1.1.3.2 - 11.9.5.1.3.2 Fragments O--N--C--C and C [Seite 171]
1.9.1.1.1.3.2.1 - 11.9.5.1.3.2.1 Method 1: From Dianions Derived from Oximes [Seite 171]
1.9.1.1.1.3.2.1.1 - 11.9.5.1.3.2.1.1 Variation 1: Reactions of Oxime-Derived Dianions with Esters [Seite 171]
1.9.1.1.1.4 - 11.9.5.1.4 By Formation of One Heteroatom--Heteroatom Bond [Seite 172]
1.9.1.1.1.4.1 - 11.9.5.1.4.1 Fragment O--C--C--C--N [Seite 172]
1.9.1.1.1.4.1.1 - 11.9.5.1.4.1.1 Method 1: Light-Induced Cycloaddition of 2-Cyanocycloalk-2-enones to Alkenes [Seite 172]
1.9.1.1.1.5 - 11.9.5.1.5 By Formation of One Heteroatom--Carbon Bond [Seite 172]
1.9.1.1.1.5.1 - 11.9.5.1.5.1 Fragment O--N--C--C--C [Seite 172]
1.9.1.1.1.5.1.1 - 11.9.5.1.5.1.1 Method 1: Oxidative Cyclization of a,ß-Unsaturated Oximes [Seite 172]
1.9.1.1.1.5.1.2 - 11.9.5.1.5.1.2 Method 2: Electrophilic Cyclization of Alkynyl O-Methyloximes [Seite 173]
1.9.1.1.1.5.1.3 - 11.9.5.1.5.1.3 Method 3: Cyclization of 3-Oximinocarbonitriles [Seite 174]
1.9.1.1.1.6 - 11.9.5.1.6 By Formation of One C--C Bond [Seite 175]
1.9.1.1.1.6.1 - 11.9.5.1.6.1 Fragment C--O--N--C--C [Seite 175]
1.9.1.1.1.6.1.1 - 11.9.5.1.6.1.1 Method 1: Cyclization of O-(ß-Oxoalkyl)-Substituted a-(Hydroxyimino)nitriles [Seite 175]
1.9.1.1.2 - 11.9.5.2 Synthesis by Substituent Modification [Seite 176]
1.9.1.1.2.1 - 11.9.5.2.1 Substitution of Existing Substituents [Seite 176]
1.9.1.1.2.1.1 - 11.9.5.2.1.1 Of Halogens [Seite 176]
1.9.1.1.2.1.1.1 - 11.9.5.2.1.1.1 By Carbofunctional Groups [Seite 176]
1.9.1.1.2.1.1.1.1 - 11.9.5.2.1.1.1.1 Method 1: By Palladium-Catalyzed Cross Coupling [Seite 176]
1.9.2 - 11.10 Product Class 10: 1,2-Benzisoxazoles and Related Compounds [Seite 180]
1.9.2.1 - 11.10.5 1,2-Benzisoxazoles and Related Compounds [Seite 180]
1.9.2.1.1 - 11.10.5.1 Synthesis by Ring-Closure Reactions [Seite 180]
1.9.2.1.1.1 - 11.10.5.1.1 By Annulation to an Arene [Seite 180]
1.9.2.1.1.1.1 - 11.10.5.1.1.1 By Formation of One O--C and One C--C Bond [Seite 180]
1.9.2.1.1.1.1.1 - 11.10.5.1.1.1.1 Method 1: By 1,3-Dipolar Cycloaddition to Naphthoquinones [Seite 180]
1.9.2.1.1.1.2 - 11.10.5.1.1.2 By Formation of One O--N Bond [Seite 181]
1.9.2.1.1.1.2.1 - 11.10.5.1.1.2.1 Method 1: By Cyclization of 2-Hydroxyaryl Ketoximes and Aldoximes [Seite 181]
1.9.2.1.1.1.2.2 - 11.10.5.1.1.2.2 Method 2: By Cyclization of N,2-Dihydroxybenzamides [Seite 182]
1.9.2.1.1.1.3 - 11.10.5.1.1.3 By Formation of One O--C Bond [Seite 183]
1.9.2.1.1.1.3.1 - 11.10.5.1.1.3.1 Method 1: By Cyclization of 2-Haloaryl Ketoximes [Seite 183]
1.9.2.1.1.2 - 11.10.5.1.2 By Annulation to the Isoxazole Ring [Seite 184]
1.9.2.1.1.2.1 - 11.10.5.1.2.1 Method 1: Cycloaddition to Isoxazoles [Seite 184]
1.9.2.1.1.2.2 - 11.10.5.1.2.2 Method 2: Epoxide Ring Opening and Cyclization [Seite 185]
1.9.2.1.1.2.3 - 11.10.5.1.2.3 Method 3: Annulation of a Hetarene [Seite 186]
1.9.2.1.1.2.4 - 11.10.5.1.2.4 Method 4: Coupling of Diarylisoxazoles [Seite 188]
1.9.2.1.2 - 11.10.5.2 Synthesis by Ring Transformation [Seite 189]
1.9.2.1.2.1 - 11.10.5.2.1 Method 1: Rearrangement of Sultone Oximes [Seite 189]
1.9.2.1.3 - 11.10.5.3 Aromatization [Seite 190]
1.9.2.1.3.1 - 11.10.5.3.1 Method 1: Oxidative Aromatization of 4,5-Dihydro-1,2-benzisoxazoles [Seite 190]
1.9.2.1.3.2 - 11.10.5.3.2 Method 2: Aromatization by Dehydrohalogenation [Seite 191]
1.9.2.1.3.3 - 11.10.5.3.3 Method 3: Aromatization by Cleavage of N-Protected 2,3-Dihydro-1,2-benzisoxazoles [Seite 192]
1.9.2.1.3.4 - 11.10.5.3.4 Method 4: Aromatization of Rings Fused to Isoxazoles [Seite 193]
1.9.2.1.4 - 11.10.5.4 Synthesis by Substituent Modification [Seite 194]
1.9.2.1.4.1 - 11.10.5.4.1 Substitution of Existing Substituents [Seite 195]
1.9.2.1.4.1.1 - 11.10.5.4.1.1 Of Hydrogen [Seite 195]
1.9.2.1.4.1.1.1 - 11.10.5.4.1.1.1 Method 1: Halogenation [Seite 195]
1.9.2.1.4.1.2 - 11.10.5.4.1.2 Of Heteroatoms [Seite 196]
1.9.2.1.4.1.2.1 - 11.10.5.4.1.2.1 Method 1: Substitution with Formation of a C--C Bond [Seite 196]
1.9.3 - 11.13 Product Class 13: Benzoxazoles and Other Annulated Oxazoles [Seite 200]
1.9.3.1 - 11.13.1 Synthesis by Ring-Closure Reactions [Seite 201]
1.9.3.1.1 - 11.13.1.1 By Annulation to an Arene [Seite 201]
1.9.3.1.1.1 - 11.13.1.1.1 By Formation of One O--C and One N--C Bond [Seite 201]
1.9.3.1.1.1.1 - 11.13.1.1.1.1 Fragment O--C--C--C--N [Seite 201]
1.9.3.1.1.1.1.1 - 11.13.1.1.1.1.1 Method 1: Synthesis from 2-Hydroxybenzoic Acids, Amides, or Azides [Seite 201]
1.9.3.1.1.1.1.2 - 11.13.1.1.1.1.2 Method 2: Synthesis from 1-(2-Hydroxyphenyl)alkanone Oximes and Derivatives Thereof (Beckmann Rearrangement) [Seite 202]
1.9.3.1.1.1.2 - 11.13.1.1.1.2 Fragments O--C--C--N and C [Seite 204]
1.9.3.1.1.1.2.1 - 11.13.1.1.1.2.1 Method 1: Synthesis from 2-Nitrophenols and Carbonic Acid Derivatives or Aldehydes [Seite 204]
1.9.3.1.1.1.2.2 - 11.13.1.1.1.2.2 Method 2: Synthesis from 2-Aminophenols and Carbonic Acid Derivatives [Seite 206]
1.9.3.1.1.1.2.2.1 - 11.13.1.1.1.2.2.1 Variation 1: Synthesis of 2-Alkoxybenzoxazoles or Benzoxazol-2(3H)-ones [Seite 206]
1.9.3.1.1.1.2.2.2 - 11.13.1.1.1.2.2.2 Variation 2: Synthesis of Benzoxazole-2(3H)-thiones [Seite 209]
1.9.3.1.1.1.2.2.3 - 11.13.1.1.1.2.2.3 Variation 3: Synthesis of Benzoxazol-2-amines [Seite 210]
1.9.3.1.1.1.2.3 - 11.13.1.1.1.2.3 Method 3: Synthesis from 2-Aminophenols and Carboxylic Acid Derivatives [Seite 211]
1.9.3.1.1.1.2.3.1 - 11.13.1.1.1.2.3.1 Variation 1: Using (Trihalomethyl)arenes or Carboxylic Acid Ortho Esters [Seite 211]
1.9.3.1.1.1.2.3.2 - 11.13.1.1.1.2.3.2 Variation 2: Using Carboxylic Acids [Seite 212]
1.9.3.1.1.1.2.3.3 - 11.13.1.1.1.2.3.3 Variation 3: Using Carboxylic Acid Chlorides [Seite 216]
1.9.3.1.1.1.2.3.4 - 11.13.1.1.1.2.3.4 Variation 4: Using Carboxylic Acid Anhydrides or Imidates [Seite 217]
1.9.3.1.1.1.2.3.5 - 11.13.1.1.1.2.3.5 Variation 5: Using Carboxamides [Seite 218]
1.9.3.1.1.1.2.3.6 - 11.13.1.1.1.2.3.6 Variation 6: Using Nitriles [Seite 220]
1.9.3.1.1.1.2.3.7 - 11.13.1.1.1.2.3.7 Variation 7: Using Carbon Monoxide and Aryl Halides [Seite 220]
1.9.3.1.1.1.2.3.8 - 11.13.1.1.1.2.3.8 Variation 8: Using Isocyanides [Seite 221]
1.9.3.1.1.1.2.4 - 11.13.1.1.1.2.4 Method 4: Synthesis from 2-Aminophenols and Aldehydes [Seite 222]
1.9.3.1.1.1.2.5 - 11.13.1.1.1.2.5 Method 5: Synthesis from 2-Aminophenols and Alcohols [Seite 222]
1.9.3.1.1.1.3 - 11.13.1.1.1.3 Fragments C--C and N--C--O [Seite 223]
1.9.3.1.1.1.3.1 - 11.13.1.1.1.3.1 Method 1: Synthesis from 1,2-Dihaloarenes and Carboxamides [Seite 223]
1.9.3.1.1.1.4 - 11.13.1.1.1.4 Fragments C--C--N and C--O [Seite 224]
1.9.3.1.1.1.4.1 - 11.13.1.1.1.4.1 Method 1: Synthesis from 2-Bromoanilines and Carboxylic Acid Chlorides [Seite 224]
1.9.3.1.1.2 - 11.13.1.1.2 By Formation of One C--O Bond [Seite 225]
1.9.3.1.1.2.1 - 11.13.1.1.2.1 Fragment C--C--N--C--O [Seite 225]
1.9.3.1.1.2.1.1 - 11.13.1.1.2.1.1 Method 1: Synthesis from N-(2-Haloaryl)carboxamides [Seite 225]
1.9.3.1.1.2.1.2 - 11.13.1.1.2.1.2 Method 2: Synthesis from N-(3-Halophenyl)carboxamides [Seite 228]
1.9.3.1.1.2.2 - 11.13.1.1.2.2 Fragment O--C--C--N--C [Seite 229]
1.9.3.1.1.2.2.1 - 11.13.1.1.2.2.1 Method 1: Synthesis from N-(2-Hydroxyphenyl)thioureas [Seite 229]
1.9.3.1.1.2.2.2 - 11.13.1.1.2.2.2 Method 2: Synthesis from N-(2-Hydroxyphenyl)ureas [Seite 230]
1.9.3.1.1.2.2.3 - 11.13.1.1.2.2.3 Method 3: Synthesis from N-(2-Hydroxyphenyl)carboxamides [Seite 231]
1.9.3.1.1.2.2.4 - 11.13.1.1.2.2.4 Method 4: Synthesis from 2-(Alkylidenamino)phenols [Seite 233]
1.9.3.1.2 - 11.13.1.2 By Annulation to the Heterocyclic Ring [Seite 235]
1.9.3.2 - 11.13.2 Synthesis by Ring Transformation [Seite 236]
1.9.3.2.1 - 11.13.2.1 Method 1: Ring Contraction of 1,4-Benzoxazines [Seite 236]
1.9.3.3 - 11.13.3 Synthesis by Substituent Modification [Seite 237]
1.9.3.3.1 - 11.13.3.1 Substitution of Existing Substituents [Seite 237]
1.9.3.3.1.1 - 11.13.3.1.1 Of Hydrogen [Seite 237]
1.9.3.3.1.1.1 - 11.13.3.1.1.1 Method 1: Lithiation [Seite 237]
1.9.3.3.1.1.2 - 11.13.3.1.1.2 Method 2: Arylation [Seite 238]
1.9.3.3.1.1.3 - 11.13.3.1.1.3 Method 3: Halogenation [Seite 239]
1.9.3.3.1.1.4 - 11.13.3.1.1.4 Method 4: Sulfanylation [Seite 240]
1.9.3.3.1.1.5 - 11.13.3.1.1.5 Method 5: Nitration [Seite 241]
1.9.3.3.1.1.6 - 11.13.3.1.1.6 Method 6: Amination [Seite 241]
1.9.3.3.1.2 - 11.13.3.1.2 Of Metals [Seite 241]
1.9.3.3.1.2.1 - 11.13.3.1.2.1 Method 1: Cross-Coupling Reactions [Seite 241]
1.9.3.3.1.3 - 11.13.3.1.3 Of Halogen [Seite 242]
1.9.3.3.1.3.1 - 11.13.3.1.3.1 Method 1: Cyanation of 2-Chlorobenzoxazoles [Seite 242]
1.9.3.3.1.3.2 - 11.13.3.1.3.2 Method 2: Fluorination of 2-Chlorobenzoxazoles [Seite 243]
1.9.3.3.1.3.3 - 11.13.3.1.3.3 Method 3: Alkoxy- or Aryloxylation of 2-Halobenzoxazoles [Seite 243]
1.9.3.3.1.3.4 - 11.13.3.1.3.4 Method 4: Amination of 2-Chlorobenzoxazoles [Seite 243]
1.9.3.3.1.4 - 11.13.3.1.4 Of Oxygen [Seite 244]
1.9.3.3.1.4.1 - 11.13.3.1.4.1 Method 1: Thionation of Benzoxazol-2(3H)-ones [Seite 244]
1.9.3.3.1.5 - 11.13.3.1.5 Of Sulfur [Seite 244]
1.9.3.3.1.5.1 - 11.13.3.1.5.1 Method 1: Chlorination of Benzoxazole-2(3H)-thiones [Seite 244]
1.9.3.3.1.5.2 - 11.13.3.1.5.2 Method 2: Alkoxylation of Benzoxazole-2(3H)-thiones [Seite 245]
1.9.3.3.1.5.3 - 11.13.3.1.5.3 Method 3: Amination of Benzoxazole-2(3H)-thiones [Seite 246]
1.9.3.3.2 - 11.13.3.2 Addition Reactions [Seite 246]
1.9.3.3.2.1 - 11.13.3.2.1 Method 1: Synthesis of 3-Alkylbenzoxazolium Salts [Seite 246]
1.9.3.3.3 - 11.13.3.3 Modification of Substituents [Seite 247]
1.9.3.3.3.1 - 11.13.3.3.1 Method 1: S-Alkylation of Benzoxazole-2(3H)-thiones [Seite 247]
1.9.3.3.3.2 - 11.13.3.3.2 Method 2: N-Alkylation of Benzoxazol-2-amines [Seite 248]
1.9.4 - 11.15 Product Class 15: Isothiazoles [Seite 254]
1.9.4.1 - 11.15.4 Isothiazoles [Seite 254]
1.9.4.1.1 - 11.15.4.1 Synthesis by Ring-Closure Reactions [Seite 256]
1.9.4.1.1.1 - 11.15.4.1.1 By Formation of One S--C and One N--C Bond [Seite 256]
1.9.4.1.1.1.1 - 11.15.4.1.1.1 Method 1: By Cycloaddition of Thiazyl Chloride to a Furan or a Pyrrole [Seite 256]
1.9.4.1.1.1.1.1 - 11.15.4.1.1.1.1 Variation 1: By Addition of Thiazyl Chloride to a Furan [Seite 256]
1.9.4.1.1.1.2 - 11.15.4.1.1.2 Method 2: By 1,3-Dipolar Cycloaddition of Nitrile Sulfides to Alkynes and Alkenes [Seite 259]
1.9.4.1.1.1.2.1 - 11.15.4.1.1.2.1 Variation 1: From 1,3,4-Oxathiazol-2-ones [Seite 259]
1.9.4.1.1.1.2.2 - 11.15.4.1.1.2.2 Variation 2: From Difluoro(imino)-.4-sulfanes [Seite 260]
1.9.4.1.1.2 - 11.15.4.1.2 By Formation of One S--N Bond [Seite 260]
1.9.4.1.1.2.1 - 11.15.4.1.2.1 Method 1: By Oxidative Ring Closure of 3-Aminoprop-2-enyl Thiocarbonyl and Related Compounds [Seite 260]
1.9.4.1.1.2.1.1 - 11.15.4.1.2.1.1 Variation 1: From 3-Aminoprop-2-enethioamides or 3-Aminoprop-2-enyl Thioketones [Seite 260]
1.9.4.1.1.2.1.2 - 11.15.4.1.2.1.2 Variation 2: From (1E)-N-Hydroxy-3,3-bis(methylsulfanyl)prop-2-en-1-imines [Seite 267]
1.9.4.1.1.2.1.3 - 11.15.4.1.2.1.3 Variation 3: From 2-[(Diphenyl-.4-sulfanylidene)amino]-4,4-dimethyl-6-oxocyclohex-1-ene-1-carbothioamides [Seite 268]
1.9.4.1.1.2.2 - 11.15.4.1.2.2 Method 2: From Bis(3-amino-3-oxopropyl) Disulfides [Seite 269]
1.9.4.1.1.2.3 - 11.15.4.1.2.3 Method 3: From 3-Chloroprop-2-enals [Seite 269]
1.9.4.1.1.2.4 - 11.15.4.1.2.4 Method 4: From 2-Sulfanylvinyl Ketones and O-Sulfonylhydroxylamines [Seite 270]
1.9.4.1.1.2.5 - 11.15.4.1.2.5 Method 5: From tert-Butyl 2-Cyano-1,3,3,3-tetrafluoropropenyl Sulfide [Seite 271]
1.9.4.1.1.3 - 11.15.4.1.3 By Formation of One C--C Bond [Seite 271]
1.9.4.1.1.3.1 - 11.15.4.1.3.1 Method 1: By Base-Promoted Intramolecular Cyclization [Seite 271]
1.9.4.1.1.3.1.1 - 11.15.4.1.3.1.1 Variation 1: Of Methyl [(Benzylsulfonyl)amino](oxo)acetate [Seite 272]
1.9.4.1.2 - 11.15.4.2 Synthesis by Ring Transformation [Seite 272]
1.9.4.1.2.1 - 11.15.4.2.1 Method 1: From 4,5-Dichloro-1,2,3-dithiazolium Chloride and Methyl 3-Aminocrotonate [Seite 272]
1.9.4.1.3 - 11.15.4.3 Synthesis by Substituent Modification [Seite 273]
1.9.4.1.3.1 - 11.15.4.3.1 Substitution of Existing Substituents [Seite 273]
1.9.4.1.3.1.1 - 11.15.4.3.1.1 Of Heteroatoms [Seite 273]
1.9.4.1.3.1.1.1 - 11.15.4.3.1.1.1 Method 1: Electrophilic Substitution [Seite 273]
1.9.4.1.3.1.1.2 - 11.15.4.3.1.1.2 Method 2: Nucleophilic Substitution [Seite 275]
1.9.4.1.3.1.1.2.1 - 11.15.4.3.1.1.2.1 Variation 1: Of Isothiazol-3-amine 1,1-Dioxides [Seite 275]
1.9.4.1.3.1.1.2.2 - 11.15.4.3.1.1.2.2 Variation 2: Of Aryl 4,5-Dichloroisothiazol-3-yl Ketones and Related Compounds [Seite 277]
1.9.4.1.3.1.1.3 - 11.15.4.3.1.1.3 Method 3: Isothiazole-5-carbaldehydes and 5-Alkylisothiazoles from Isothiazol-5-yllithiums [Seite 279]
1.9.4.1.3.1.1.4 - 11.15.4.3.1.1.4 Method 4: Substitution of Halogens by Carbofunctional Groups [Seite 280]
1.9.4.1.3.1.1.4.1 - 11.15.4.3.1.1.4.1 Variation 1: Castro-Stevens Coupling [Seite 280]
1.9.4.1.3.1.1.4.2 - 11.15.4.3.1.1.4.2 Variation 2: Stille Coupling [Seite 280]
1.9.4.1.3.1.1.4.3 - 11.15.4.3.1.1.4.3 Variation 3: Suzuki-and Negishi-like Couplings [Seite 281]
1.9.4.1.3.1.1.4.4 - 11.15.4.3.1.1.4.4 Variation 4: Sonogashira and Ullmann Couplings [Seite 285]
1.9.4.1.3.1.1.4.5 - 11.15.4.3.1.1.4.5 Variation 5: Heck Coupling [Seite 286]
1.9.4.1.3.2 - 11.15.4.3.2 Addition Reactions [Seite 287]
1.9.4.1.3.2.1 - 11.15.4.3.2.1 Addition of Organic Groups [Seite 287]
1.9.4.1.3.2.1.1 - 11.15.4.3.2.1.1 Method 1: Annulation of a Heterocyclic Ring by 1,3-Dipolar Additions [Seite 287]
1.9.4.1.3.2.1.2 - 11.15.4.3.2.1.2 Method 2: O-Alkylation of Isothiazol-3(2H)-ones [Seite 288]
1.9.4.1.3.2.2 - 11.15.4.3.2.2 Addition of Heteroatoms [Seite 289]
1.9.4.1.3.2.2.1 - 11.15.4.3.2.2.1 Method 1: Oxidation [Seite 289]
1.9.4.1.3.2.2.2 - 11.15.4.3.2.2.2 Method 2: Amination [Seite 291]
1.9.4.1.3.3 - 11.15.4.3.3 Modification of Substituents [Seite 292]
1.9.4.1.3.3.1 - 11.15.4.3.3.1 Method 1: From Acylthiazoles [Seite 292]
1.9.5 - 11.16 Product Class 16: Benzisothiazoles [Seite 296]
1.9.5.1 - 11.16.3 Benzisothiazoles [Seite 296]
1.9.5.1.1 - 11.16.3.1 1,2-Benzisothiazoles [Seite 296]
1.9.5.1.1.1 - 11.16.3.1.1 Synthesis by Ring-Closure Reactions [Seite 297]
1.9.5.1.1.1.1 - 11.16.3.1.1.1 By Formation of One S--C and One C--C Bond [Seite 297]
1.9.5.1.1.1.2 - 11.16.3.1.1.2 By Formation of One S--N and/or One N--C Bond [Seite 298]
1.9.5.1.1.1.2.1 - 11.16.3.1.1.2.1 Method 1: From Thiols, Disulfides, and Related Compounds [Seite 298]
1.9.5.1.1.1.2.2 - 11.16.3.1.1.2.2 Method 2: From Oximes [Seite 299]
1.9.5.1.1.1.2.3 - 11.16.3.1.1.2.3 Method 3: From (Aminosulfanyl)arenes [Seite 299]
1.9.5.1.1.1.2.4 - 11.16.3.1.1.2.4 Method 4: From Disulfides [Seite 302]
1.9.5.1.1.1.2.5 - 11.16.3.1.1.2.5 Method 5: From 2-Acylbenzenesulfonamides or 2-(Sulfinyl)benzamides [Seite 302]
1.9.5.1.1.2 - 11.16.3.1.2 Synthesis by Substituent Modification [Seite 307]
1.9.5.1.1.2.1 - 11.16.3.1.2.1 Substitution of Existing Substituents [Seite 307]
1.9.5.1.1.2.1.1 - 11.16.3.1.2.1.1 Nucleophilic Substitution [Seite 307]
1.9.5.1.1.2.2 - 11.16.3.1.2.2 Addition Reactions [Seite 307]
1.9.5.1.1.2.2.1 - 11.16.3.1.2.2.1 Addition of Organic Groups [Seite 307]
1.9.5.1.1.2.2.1.1 - 11.16.3.1.2.2.1.1 Method 1: Alkylation of Saccharins [Seite 307]
1.9.5.1.1.2.2.1.2 - 11.16.3.1.2.2.1.2 Method 2: Alkylation of 4,6-Dinitro-1,2-benzisothiazole or 4,6-Dinitro-1,2-benzisothiazol-3(2H)-one [Seite 308]
1.9.5.1.2 - 11.16.3.2 2,1-Benzisothiazoles [Seite 309]
1.9.5.1.2.1 - 11.16.3.2.1 Synthesis by Ring Transformation [Seite 309]
1.9.5.1.2.1.1 - 11.16.3.2.1.1 Method 1: From an Adduct of 3-Phenyl-2-thioxo-2,3-dihydrothieno[2,3-d]thiazol-6(5H)-one and N,N-Dimethyl-4-nitrosoaniline [Seite 309]
1.9.5.1.2.2 - 11.16.3.2.2 Synthesis by Substituent Modification [Seite 310]
1.9.5.1.2.2.1 - 11.16.3.2.2.1 Substitution of Existing Substituents [Seite 310]
1.9.5.1.2.2.1.1 - 11.16.3.2.2.1.1 Of Hydrogen [Seite 310]
1.9.6 - 11.17 Product Class 17: Thiazoles [Seite 314]
1.9.6.1 - 11.17.6 Thiazoles [Seite 314]
1.9.6.1.1 - 11.17.6.1 Synthesis by Ring-Closure Reactions [Seite 315]
1.9.6.1.1.1 - 11.17.6.1.1 By Formation of Three Heteroatom--Carbon Bonds [Seite 315]
1.9.6.1.1.1.1 - 11.17.6.1.1.1 By Formation of One S--C Bond and Two N--C Bonds [Seite 315]
1.9.6.1.1.1.1.1 - 11.17.6.1.1.1.1 Fragments S--C, C--C, and N [Seite 315]
1.9.6.1.1.1.1.1.1 - 11.17.6.1.1.1.1.1 Method 1: From a-Halo Ketones and Supported Reagents [Seite 315]
1.9.6.1.1.2 - 11.17.6.1.2 By Formation of Two Heteroatom--Carbon Bonds and One C--C Bond [Seite 315]
1.9.6.1.1.2.1 - 11.17.6.1.2.1 Fragments S--C, N--C, and C [Seite 315]
1.9.6.1.1.2.1.1 - 11.17.6.1.2.1.1 Method 1: From Isothiocyanates, Cyanamide, and "Acidic" Methyl Halides [Seite 315]
1.9.6.1.1.2.2 - 11.17.6.1.2.2 Fragments N--C--S, C, and C [Seite 316]
1.9.6.1.1.2.2.1 - 11.17.6.1.2.2.1 Method 1: From Aldehydes, Haloforms, and Thiourea [Seite 316]
1.9.6.1.1.2.2.2 - 11.17.6.1.2.2.2 Method 2: From Acid Chlorides, Ammonium Thiocyanate, Ethyl Bromopyruvate, and Tetramethylthiourea [Seite 317]
1.9.6.1.1.2.3 - 11.17.6.1.2.3 Fragments C--N--C, C, and S [Seite 318]
1.9.6.1.1.2.3.1 - 11.17.6.1.2.3.1 Method 1: From Dimethyl Cyanocarbonodithioimidoate, Activated Alkyl Halides, and a Sulfur Source [Seite 318]
1.9.6.1.1.3 - 11.17.6.1.3 By Formation of Two Heteroatom--Carbon Bonds [Seite 319]
1.9.6.1.1.3.1 - 11.17.6.1.3.1 Fragments C--C--N--C and S [Seite 319]
1.9.6.1.1.3.1.1 - 11.17.6.1.3.1.1 Method 1: From N-Functionalized a-Aminonitriles [Seite 319]
1.9.6.1.1.3.1.2 - 11.17.6.1.3.1.2 Method 2: From a-Acylamino Carbonyl Compounds [Seite 319]
1.9.6.1.1.3.1.3 - 11.17.6.1.3.1.3 Method 3: From 2-Isocyanoacrylates [Seite 320]
1.9.6.1.1.3.2 - 11.17.6.1.3.2 Fragments S--C--N and C--C [Seite 321]
1.9.6.1.1.3.2.1 - 11.17.6.1.3.2.1 Method 1: From the Cyclocondensation of 1-Alkynyl(aryl)-.3-iodanes with Aminothiocarbonyl Compounds [Seite 321]
1.9.6.1.1.3.2.2 - 11.17.6.1.3.2.2 Method 2: From a-Functionalized Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds [Seite 323]
1.9.6.1.1.3.2.2.1 - 11.17.6.1.3.2.2.1 Variation 1: From a-Functionalized Carboxyl Derivatives and Aminothiocarbonyl Compounds [Seite 323]
1.9.6.1.1.3.2.2.2 - 11.17.6.1.3.2.2.2 Variation 2: From a-Functionalized Carbonitriles and Aminothiocarbonyl Compounds [Seite 324]
1.9.6.1.1.3.2.3 - 11.17.6.1.3.2.3 Method 3: From a,ß-Unsaturated Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds [Seite 325]
1.9.6.1.1.3.2.4 - 11.17.6.1.3.2.4 Method 4: From a-Functionalized Ketones or Ketone Derivatives and Aminothiocarbonyl Compounds [Seite 326]
1.9.6.1.1.3.2.4.1 - 11.17.6.1.3.2.4.1 Variation 1: From a-Diazo Ketones and Aminothiocarbonyl Compounds [Seite 326]
1.9.6.1.1.3.2.4.2 - 11.17.6.1.3.2.4.2 Variation 2: From a-Halo and a,a-Dihalo Ketones and Aminothiocarbonyl Compounds [Seite 327]
1.9.6.1.1.3.2.4.3 - 11.17.6.1.3.2.4.3 Variation 3: From a-Tosyloxy Ketones and Aminothiocarbonyl Compounds [Seite 329]
1.9.6.1.1.3.2.4.4 - 11.17.6.1.3.2.4.4 Variation 4: From a-Dimethylsulfonio Ketones and Aminothiocarbonyl Compounds [Seite 331]
1.9.6.1.1.3.2.4.5 - 11.17.6.1.3.2.4.5 Variation 5: From Ketones Halogenated In Situ and Aminothiocarbonyl Compounds [Seite 331]
1.9.6.1.1.3.2.5 - 11.17.6.1.3.2.5 Method 5: From a,ß-Unsaturated Ketones and Aminothiocarbonyl Compounds [Seite 332]
1.9.6.1.1.3.2.6 - 11.17.6.1.3.2.6 Method 6: From a-Halo Aldehydes, Acetals, or Enol Ethers and Aminothiocarbonyl Compounds [Seite 333]
1.9.6.1.1.3.2.6.1 - 11.17.6.1.3.2.6.1 Variation 1: From a-Halo Aldehydes and Thioureas [Seite 333]
1.9.6.1.1.3.2.6.2 - 11.17.6.1.3.2.6.2 Variation 2: From Ethyl 3-Ethoxyacrylate and Thioureas [Seite 334]
1.9.6.1.1.3.2.6.3 - 11.17.6.1.3.2.6.3 Variation 3: From a-Halo Aldehydes and Thioamides [Seite 335]
1.9.6.1.1.3.2.7 - 11.17.6.1.3.2.7 Method 7: From Enamines and Aminothiocarbonyl Compounds [Seite 336]
1.9.6.1.1.3.2.8 - 11.17.6.1.3.2.8 Method 8: From 2,2,2-Trichloroethanols and Thioureas [Seite 337]
1.9.6.1.1.3.2.9 - 11.17.6.1.3.2.9 Method 9: From 3-Haloalk-1-enes or 3-Haloalk-1-ynes and Aminothiocarbonyl Compounds [Seite 338]
1.9.6.1.1.3.2.10 - 11.17.6.1.3.2.10 Method 10: From a-Halo Carbonyl Compounds and Thiocyanates [Seite 338]
1.9.6.1.1.3.2.11 - 11.17.6.1.3.2.11 Method 11: From 1-Chloroalk-1-ynes and Aminothiocarbonyl Compounds [Seite 339]
1.9.6.1.1.3.2.12 - 11.17.6.1.3.2.12 Method 12: From Allenes and Thioamides [Seite 340]
1.9.6.1.1.3.3 - 11.17.6.1.3.3 Fragments C--C--S and C--N [Seite 340]
1.9.6.1.1.3.3.1 - 11.17.6.1.3.3.1 Method 1: From 2-Sulfanylalkanoic Acids or Derivatives and Nitriles [Seite 340]
1.9.6.1.1.3.4 - 11.17.6.1.3.4 Fragments C--C--N and C--S [Seite 342]
1.9.6.1.1.3.4.1 - 11.17.6.1.3.4.1 Method 1: From a-Aminonitriles and Carbonyl Sulfide Sources [Seite 342]
1.9.6.1.1.3.4.2 - 11.17.6.1.3.4.2 Method 2: From a-Amino Acids and Thiocarboxylic Acid Esters [Seite 343]
1.9.6.1.1.3.4.3 - 11.17.6.1.3.4.3 Method 3: From Vinylamines and Chloroformylsulfenyl Chloride [Seite 343]
1.9.6.1.1.3.4.4 - 11.17.6.1.3.4.4 Method 4: From Alk-2-ynylamines and Carbon Disulfide [Seite 344]
1.9.6.1.1.3.5 - 11.17.6.1.3.5 Fragments C--C--S--C and N [Seite 345]
1.9.6.1.1.3.5.1 - 11.17.6.1.3.5.1 Method 1: Cyclodehydration of S-(2-Oxoalkyl) Thioesters in the Presence of Ammonium Acetate [Seite 345]
1.9.6.1.1.4 - 11.17.6.1.4 By Formation of One Heteroatom--Carbon and One C--C Bond [Seite 345]
1.9.6.1.1.4.1 - 11.17.6.1.4.1 Fragments C--N--C--S and C [Seite 345]
1.9.6.1.1.4.1.1 - 11.17.6.1.4.1.1 Method 1: From Resin-Bound N-Cyanocarbonimidodithioate and Functionalized Methyl Halides [Seite 345]
1.9.6.1.1.4.1.2 - 11.17.6.1.4.1.2 Method 2: From N-Cyanocarbonimidodithioates and "Acidic" Methyl Halides [Seite 346]
1.9.6.1.1.4.1.3 - 11.17.6.1.4.1.3 Method 3: From N-Cyanoimidothiocarbamates and "Acidic" Methyl Halides [Seite 346]
1.9.6.1.1.4.1.4 - 11.17.6.1.4.1.4 Method 4: From N-(Diaminomethylene)- or N-[Amino(alkylsulfanyl)methylene]thioureas and a-Halo Ketones [Seite 347]
1.9.6.1.1.4.1.5 - 11.17.6.1.4.1.5 Method 5: From N-(Aminomethylene)- or N-(Alkoxymethylene)thioureas and "Acidic" Methyl Halides [Seite 348]
1.9.6.1.1.4.1.6 - 11.17.6.1.4.1.6 Method 6: From N-Acylthioureas and "Acidic" Methyl Halides [Seite 349]
1.9.6.1.1.4.1.7 - 11.17.6.1.4.1.7 Method 7: From N-(Aminomethylene)- or N-(Hydroxymethylene)thioamides and "Acidic" Methyl Halides [Seite 350]
1.9.6.1.1.4.2 - 11.17.6.1.4.2 Fragments C--N--C and S--C [Seite 351]
1.9.6.1.1.4.2.1 - 11.17.6.1.4.2.1 Method 1: From N-Cyanoimidothioates and Sulfanylacetic Acid Derivatives [Seite 351]
1.9.6.1.1.4.2.2 - 11.17.6.1.4.2.2 Method 2: From Alkyl Isocyanides and S--C Synthons [Seite 352]
1.9.6.1.1.4.2.3 - 11.17.6.1.4.2.3 Method 3: From C-Aryl-N-methylglycines and S--C Synthons [Seite 352]
1.9.6.1.1.5 - 11.17.6.1.5 By Formation of One Heteroatom--Carbon Bond [Seite 353]
1.9.6.1.1.5.1 - 11.17.6.1.5.1 By Formation of One S--C Bond [Seite 353]
1.9.6.1.1.5.1.1 - 11.17.6.1.5.1.1 Fragment C--C--N--C--S [Seite 353]
1.9.6.1.1.5.1.1.1 - 11.17.6.1.5.1.1.1 Method 1: From N-Thiocarbonyl a-Amino Acids and Derivatives [Seite 353]
1.9.6.1.1.5.1.1.2 - 11.17.6.1.5.1.1.2 Method 2: From a-(Thioacylamino)carbothioamides [Seite 354]
1.9.6.1.1.5.1.1.3 - 11.17.6.1.5.1.1.3 Method 3: From a-Thioacylamino Acetals or a-(Thioacylamino)aldehydes [Seite 355]
1.9.6.1.1.5.1.1.4 - 11.17.6.1.5.1.1.4 Method 4: From N-a-Haloacyl Isothiocyanates [Seite 356]
1.9.6.1.1.5.1.1.5 - 11.17.6.1.5.1.1.5 Method 5: From Allenyl Isothiocyanates [Seite 357]
1.9.6.1.1.5.1.1.6 - 11.17.6.1.5.1.1.6 Method 6: From N-[2,2-Dichloro-2-phenyl-1-(thioacetylamino)ethyl]benzenesulfonamide [Seite 358]
1.9.6.1.1.5.1.1.7 - 11.17.6.1.5.1.1.7 Method 7: From ß-Hydroxy Thioamides [Seite 358]
1.9.6.1.1.5.1.1.8 - 11.17.6.1.5.1.1.8 Method 8: From N-(2-Bromoalk-2-enyl)thioamides [Seite 359]
1.9.6.1.1.5.1.1.9 - 11.17.6.1.5.1.1.9 Method 9: From 2,2-Dichloro-1-tosylvinyl Isothiocyanate and Various Nucleophiles [Seite 360]
1.9.6.1.1.5.1.2 - 11.17.6.1.5.1.2 Fragment C--N--C--C--S [Seite 361]
1.9.6.1.1.5.1.2.1 - 11.17.6.1.5.1.2.1 Method 1: From Di- and Tripeptides [Seite 361]
1.9.6.1.1.5.1.2.2 - 11.17.6.1.5.1.2.2 Method 2: From Thiamine Disulfides [Seite 362]
1.9.6.1.1.5.2 - 11.17.6.1.5.2 By Formation of One N--C Bond [Seite 364]
1.9.6.1.1.5.2.1 - 11.17.6.1.5.2.1 Fragment C--C--S--C--N [Seite 364]
1.9.6.1.1.5.2.1.1 - 11.17.6.1.5.2.1.1 Method 1: From a-Thiocyanato Carboxylic Acids and Derivatives [Seite 364]
1.9.6.1.1.5.2.1.2 - 11.17.6.1.5.2.1.2 Method 2: From a-Imidoylsulfanyl Ketones [Seite 365]
1.9.6.1.1.5.2.1.3 - 11.17.6.1.5.2.1.3 Method 3: From a-Thiocyanato Ketones [Seite 365]
1.9.6.1.1.5.2.1.4 - 11.17.6.1.5.2.1.4 Method 4: From S-Alkynylisothiouronium or Thiobenzimidonium Salts and Base [Seite 366]
1.9.6.1.1.5.2.1.5 - 11.17.6.1.5.2.1.5 Method 5: From 3-Aryl-2-thiocyanatopropanenitriles [Seite 367]
1.9.6.1.1.5.2.1.6 - 11.17.6.1.5.2.1.6 Method 6: From 3-Thiocyanatoprop-1-ynes [Seite 368]
1.9.6.1.1.5.2.2 - 11.17.6.1.5.2.2 Fragment C--S--C--C--N [Seite 368]
1.9.6.1.1.5.2.2.1 - 11.17.6.1.5.2.2.1 Method 1: From 2-(Hydroxyimino)alkyl Dithiocarbonates [Seite 368]
1.9.6.1.1.5.2.2.2 - 11.17.6.1.5.2.2.2 Method 2: From ß-Thiocyanatoenamines [Seite 369]
1.9.6.1.1.6 - 11.17.6.1.6 By Formation of One C--C Bond [Seite 370]
1.9.6.1.1.6.1 - 11.17.6.1.6.1 Fragment C--S--C--N--C [Seite 370]
1.9.6.1.1.6.1.1 - 11.17.6.1.6.1.1 Method 1: From N-(1-Amino-2,2,2-trichloroethylidene)isothioureas [Seite 370]
1.9.6.1.1.6.1.2 - 11.17.6.1.6.1.2 Method 2: From Alkyl N-Acylthioimidates [Seite 370]
1.9.6.1.2 - 11.17.6.2 Synthesis by Ring Transformation [Seite 371]
1.9.6.1.2.1 - 11.17.6.2.1 Method 1: By Ring Enlargement of Three-Membered Heterocycles [Seite 371]
1.9.6.1.2.2 - 11.17.6.2.2 Method 2: By Formal Exchange of Ring Atoms with Retention of Ring Size [Seite 372]
1.9.6.1.2.3 - 11.17.6.2.3 Method 3: By Ring Contraction of Heterocycles [Seite 373]
1.9.6.1.3 - 11.17.6.3 Aromatization [Seite 374]
1.9.6.1.3.1 - 11.17.6.3.1 Method 1: By Dehydration of Dihydrothiazoles [Seite 374]
1.9.6.1.3.2 - 11.17.6.3.2 Method 2: Aromatization by Addition Reactions [Seite 375]
1.9.6.1.3.2.1 - 11.17.6.3.2.1 Variation 1: Nucleophilic Additions to Exocyclic Double Bonds [Seite 375]
1.9.6.1.3.2.2 - 11.17.6.3.2.2 Variation 2: S-Alkylation of Thiazole-2(3H)-thiones [Seite 376]
1.9.6.1.3.2.3 - 11.17.6.3.2.3 Variation 3: S-Alkylation and N-Elimination of 3-Substituted Thiazole-2(3H)-thiones [Seite 377]
1.9.6.1.3.2.4 - 11.17.6.3.2.4 Variation 4: N-Alkylation of 3-Substituted Thiazol-2(3H)-imines [Seite 377]
1.9.6.1.3.3 - 11.17.6.3.3 Method 3: Elimination of Sulfur from Thiazole-2(3H)-thiones [Seite 378]
1.9.6.1.3.4 - 11.17.6.3.4 Method 4: Base-Induced Conversion of 4,5-Dihydrothiazoles into Thiazoles [Seite 379]
1.9.6.1.3.5 - 11.17.6.3.5 Method 5: Oxidation of 4,5-Dihydrothiazoles [Seite 380]
1.9.6.1.3.6 - 11.17.6.3.6 Method 6: Oxidation of Thiazolidines [Seite 381]
1.9.6.1.3.7 - 11.17.6.3.7 Method 7: Aromatization by Rearrangement (Isomerization) [Seite 382]
1.9.6.1.4 - 11.17.6.4 Synthesis from Other Thiazoles [Seite 383]
1.9.6.1.4.1 - 11.17.6.4.1 Addition Reactions [Seite 383]
1.9.6.1.4.1.1 - 11.17.6.4.1.1 Method 1: Quaternization [Seite 383]
1.9.6.1.4.1.2 - 11.17.6.4.1.2 Method 2: Formation of Thiazole 3-Oxides [Seite 384]
1.9.6.1.4.2 - 11.17.6.4.2 Synthesis by Substituent Modification [Seite 384]
1.9.6.1.4.2.1 - 11.17.6.4.2.1 Method 1: Replacement of Hydrogen by Deuterium [Seite 384]
1.9.6.1.4.2.2 - 11.17.6.4.2.2 Method 2: Replacement of Hydrogen by Metals [Seite 385]
1.9.6.1.4.2.2.1 - 11.17.6.4.2.2.1 Variation 1: Replacement of Hydrogen by Magnesium or Zinc [Seite 385]
1.9.6.1.4.2.2.2 - 11.17.6.4.2.2.2 Variation 2: Replacement of Hydrogen by Silicon or Tin [Seite 386]
1.9.6.1.4.2.2.3 - 11.17.6.4.2.2.3 Variation 3: Replacement of Hydrogen by Boron [Seite 387]
1.9.6.1.4.2.3 - 11.17.6.4.2.3 Method 3: Replacement of Hydrogen by Carbon Electrophiles [Seite 388]
1.9.6.1.4.2.4 - 11.17.6.4.2.4 Method 4: Replacement of Hydrogen by Non-Carbon Electrophiles [Seite 392]
1.9.6.1.4.2.4.1 - 11.17.6.4.2.4.1 Variation 1: Halogenation of Thiazoles [Seite 392]
1.9.6.1.4.2.4.2 - 11.17.6.4.2.4.2 Variation 2: Introduction of Sulfo or Thiocyanato Groups [Seite 393]
1.9.6.1.4.2.4.3 - 11.17.6.4.2.4.3 Variation 3: Introduction of Alkylsulfanyl or Arylsulfanyl Groups [Seite 394]
1.9.6.1.4.2.4.4 - 11.17.6.4.2.4.4 Variation 4: Nitration of Thiazoles [Seite 395]
1.9.6.1.4.2.4.5 - 11.17.6.4.2.4.5 Variation 5: Introduction of Arylazo Groups [Seite 396]
1.9.6.1.4.2.4.6 - 11.17.6.4.2.4.6 Variation 6: Replacement of Hydrogen by Phosphorus [Seite 397]
1.9.6.1.4.2.5 - 11.17.6.4.2.5 Method 5: Introduction of Amino Groups [Seite 397]
1.9.6.1.4.3 - 11.17.6.4.3 Synthesis of Thiazoles from Metalated Thiazoles [Seite 399]
1.9.6.1.4.3.1 - 11.17.6.4.3.1 Method 1: Replacement of Lithium, Magnesium, or Zinc by Carbon Electrophiles [Seite 399]
1.9.6.1.4.3.2 - 11.17.6.4.3.2 Method 2: Replacement of Silyl Groups by Hydrogen [Seite 400]
1.9.6.1.4.3.3 - 11.17.6.4.3.3 Method 3: Replacement of Silyl or Stannyl Groups by Carbon Electrophiles [Seite 401]
1.9.6.1.4.3.4 - 11.17.6.4.3.4 Method 4: Replacement of Stannyl Groups by Halogens [Seite 404]
1.9.6.1.4.3.5 - 11.17.6.4.3.5 Method 5: Replacement of Metals by Other Groups [Seite 405]
1.9.6.1.4.3.5.1 - 11.17.6.4.3.5.1 Variation 1: Replacement of Lithium by Sulfur-Containing Reagents [Seite 405]
1.9.6.1.4.3.6 - 11.17.6.4.3.6 Method 6: Modification of Other Substituents [Seite 406]
1.9.6.1.4.3.6.1 - 11.17.6.4.3.6.1 Variation 1: Decarboxylation of Thiazolecarboxylic Acids and -carboxylates [Seite 406]
1.9.6.1.4.3.6.2 - 11.17.6.4.3.6.2 Variation 2: Replacement of a Carbon Substituent by Nitrogen [Seite 407]
1.9.6.1.4.3.6.3 - 11.17.6.4.3.6.3 Variation 3: Replacement of a Carbon Substituent by Halogen [Seite 407]
1.9.6.1.4.3.6.4 - 11.17.6.4.3.6.4 Variation 4: Replacement of a Nitrogen Substituent by Hydrogen [Seite 408]
1.9.6.1.4.3.6.5 - 11.17.6.4.3.6.5 Variation 5: Replacement of a Nitrogen Substituent by Carbon [Seite 408]
1.9.6.1.4.3.6.6 - 11.17.6.4.3.6.6 Variation 6: Replacement of One Nitrogen Substituent by Another [Seite 409]
1.9.6.1.4.3.6.7 - 11.17.6.4.3.6.7 Variation 7: Replacement of Nitrogen Substituents by Halogens [Seite 409]
1.9.6.1.4.3.6.8 - 11.17.6.4.3.6.8 Variation 8: Replacement of Oxygen or Sulfur Groups by Hydrogen [Seite 410]
1.9.6.1.4.3.6.9 - 11.17.6.4.3.6.9 Variation 9: Replacement of Oxygen or Sulfur Groups by Carbon-Containing Substituents [Seite 411]
1.9.6.1.4.3.6.10 - 11.17.6.4.3.6.10 Variation 10: Replacement of Oxygen or Sulfur Substituents by Nitrogen [Seite 413]
1.9.6.1.4.3.6.11 - 11.17.6.4.3.6.11 Variation 11: Replacement of Oxygen or Sulfur Substituents by Halogen [Seite 414]
1.9.6.1.4.3.6.12 - 11.17.6.4.3.6.12 Variation 12: Replacement of Oxygen Substituents by Sulfur [Seite 415]
1.9.6.1.4.3.6.13 - 11.17.6.4.3.6.13 Variation 13: Replacement of Sulfur Substituents by Oxygen [Seite 415]
1.9.6.1.4.3.6.14 - 11.17.6.4.3.6.14 Variation 14: Replacement of One Sulfur Substituent by Another [Seite 416]
1.9.6.1.4.3.6.15 - 11.17.6.4.3.6.15 Variation 15: Replacement of Halogen by Hydrogen [Seite 417]
1.9.6.1.4.3.6.16 - 11.17.6.4.3.6.16 Variation 16: Replacement of Halogen by Carbon Nucleophiles [Seite 417]
1.9.6.1.4.3.6.17 - 11.17.6.4.3.6.17 Variation 17: Replacement of Halogen by Nitrogen Substituents [Seite 418]
1.9.6.1.4.3.6.18 - 11.17.6.4.3.6.18 Variation 18: Replacement of Halogen by Oxygen or Sulfur Substituents [Seite 419]
1.9.6.1.4.3.6.19 - 11.17.6.4.3.6.19 Variation 19: Replacement of Halogen by Tin or Boron Substituents [Seite 419]
1.9.6.1.5 - 11.17.6.5 Modification of Substituents [Seite 421]
1.9.6.1.5.1 - 11.17.6.5.1 Modification of Carbofunctional Substituents [Seite 421]
1.9.6.1.5.1.1 - 11.17.6.5.1.1 Method 1: Condensation at Alkyl Groups of Alkylthiazoles [Seite 421]
1.9.6.1.5.1.2 - 11.17.6.5.1.2 Method 2: Other Transformations of Carbofunctional Substituents of Thiazoles [Seite 421]
1.9.6.1.5.2 - 11.17.6.5.2 Modification of Heterofunctional Substituents [Seite 423]
1.9.6.1.5.2.1 - 11.17.6.5.2.1 Method 1: Modification of O- and S-Substituents [Seite 423]
1.9.6.1.5.3 - 11.17.6.5.3 Rearrangement of Substituents [Seite 424]
1.9.7 - 11.18 Product Class 18: Benzothiazoles and Related Compounds [Seite 440]
1.9.7.1 - 11.18.5 Benzothiazoles [Seite 440]
1.9.7.1.1 - 11.18.5.1 Synthesis by Ring-Closure Reactions [Seite 441]
1.9.7.1.1.1 - 11.18.5.1.1 By Annulation to an Arene or Hetarene Ring [Seite 441]
1.9.7.1.1.1.1 - 11.18.5.1.1.1 By Formation of One S--C and One N--C Bond [Seite 441]
1.9.7.1.1.1.1.1 - 11.18.5.1.1.1.1 Method 1: From 2-Amino(het)arenethiols [Seite 441]
1.9.7.1.1.1.1.1.1 - 11.18.5.1.1.1.1.1 Variation 1: With Cyanamides [Seite 441]
1.9.7.1.1.1.1.1.2 - 11.18.5.1.1.1.1.2 Variation 2: With Anhydrides [Seite 441]
1.9.7.1.1.1.1.1.3 - 11.18.5.1.1.1.1.3 Variation 3: With Carboxylic Acids [Seite 441]
1.9.7.1.1.1.1.1.4 - 11.18.5.1.1.1.1.4 Variation 4: With Aldehydes [Seite 442]
1.9.7.1.1.1.2 - 11.18.5.1.1.2 By Formation of One S--C Bond [Seite 444]
1.9.7.1.1.1.2.1 - 11.18.5.1.1.2.1 Method 1: From N-Arylthioureas [Seite 444]
1.9.7.1.1.1.2.1.1 - 11.18.5.1.1.2.1.1 Variation 1: With a Leaving Group in the 2-Position [Seite 444]
1.9.7.1.1.1.2.2 - 11.18.5.1.1.2.2 Method 2: From N-Arylthioamides [Seite 445]
1.9.7.1.1.1.2.2.1 - 11.18.5.1.1.2.2.1 Variation 1: From 2-Unsubstituted N-Arylthioamides [Seite 445]
1.9.7.1.1.1.2.2.2 - 11.18.5.1.1.2.2.2 Variation 2: From N-Arylthioamides with a Halogen or Hydroxy Leaving Group in the 2-Position [Seite 447]
1.9.7.1.1.1.2.2.3 - 11.18.5.1.1.2.2.3 Variation 3: In Situ Formation from Amides [Seite 448]
1.9.7.1.1.1.2.3 - 11.18.5.1.1.2.3 Method 3: From ortho-Nitrogen-Fuctionalized Aryl Disulfides [Seite 449]
1.9.7.1.2 - 11.18.5.2 Synthesis by Substituent Modification [Seite 450]
1.9.7.1.2.1 - 11.18.5.2.1 Substitution of Existing Substituents [Seite 450]
1.9.7.1.2.1.1 - 11.18.5.2.1.1 Of Heteroatoms [Seite 450]
1.9.7.1.2.1.1.1 - 11.18.5.2.1.1.1 Method 1: By Hetero Functions [Seite 450]
1.9.8 - 11.20 Product Class 20: Isoselenazoles [Seite 452]
1.9.8.1 - 11.20.3 Isoselenazoles [Seite 452]
1.9.8.1.1 - 11.20.3.1 Synthesis by Ring-Closure Reactions [Seite 452]
1.9.8.1.1.1 - 11.20.3.1.1 By Formation of One Se--N, One Se--C, and One N--C Bond [Seite 452]
1.9.8.1.1.1.1 - 11.20.3.1.1.1 Fragments C--C--C, N, and Se [Seite 452]
1.9.8.1.1.1.1.1 - 11.20.3.1.1.1.1 Method 1: Reaction of a,ß-Unsaturated ß-Chloroaldehydes with Potassium Selenocyanate and Ammonium Chloride [Seite 452]
1.9.8.1.1.2 - 11.20.3.1.2 By Formation of One Se--N and One N--C Bond [Seite 454]
1.9.8.1.1.2.1 - 11.20.3.1.2.1 Fragments Se-C--C--C and N [Seite 454]
1.9.8.1.1.2.1.1 - 11.20.3.1.2.1.1 Method 1: Reaction of 4-(Methylselanyl)- or 4-(Phenylselanyl)-1,1,1-trihaloalk-3-en-2-ones with Bromine and Ammonia [Seite 454]
1.9.8.1.1.2.1.2 - 11.20.3.1.2.1.2 Method 2: Reaction of ß-[(N,N-Dimethylcarbamoyl)selanyl]alkenyl Ketones and Hydroxylamine-O-sulfonic Acid [Seite 455]
1.9.8.1.1.3 - 11.20.3.1.3 By Formation of One Se--N and One Se--C Bond [Seite 455]
1.9.8.1.1.3.1 - 11.20.3.1.3.1 Fragments N--C--C--C and Se [Seite 455]
1.9.8.1.1.3.1.1 - 11.20.3.1.3.1.1 Method 1: Reaction of Alkynone Oxime 4-Toluenesulfonates with Sodium Hydrogen Selenide or N,N-Dimethylselenocarbamate Ion [Seite 455]
1.9.8.1.2 - 11.20.3.2 Synthesis by Substituent Modification [Seite 456]
1.9.8.1.2.1 - 11.20.3.2.1 Modification of Substituents [Seite 456]
1.9.8.1.2.1.1 - 11.20.3.2.1.1 Method 1: Reaction of 3-(Trichloromethyl)isoselenazoles with Sulfuric Acid [Seite 456]
1.9.9 - 11.21 Product Class 21: Annulated Isoselenazole Compounds [Seite 460]
1.9.9.1 - 11.21.5 Annulated Isoselenazole Compounds [Seite 460]
1.9.9.1.1 - 11.21.5.1 Synthesis by Ring-Closure Reactions [Seite 460]
1.9.9.1.1.1 - 11.21.5.1.1 By Formation of One Se--N and One N--C Bond [Seite 460]
1.9.9.1.1.1.1 - 11.21.5.1.1.1 Fragments Se--Arene--C and N [Seite 460]
1.9.9.1.1.1.1.1 - 11.21.5.1.1.1.1 Method 1: Reaction of 2-(Chloroselanyl)benzoyl Chloride with 4-Amino benzoic Acid [Seite 460]
1.9.9.1.1.2 - 11.21.5.1.2 By Formation of One Se--N Bond [Seite 461]
1.9.9.1.1.2.1 - 11.21.5.1.2.1 Fragment Se--Arene--C--N [Seite 461]
1.9.9.1.1.2.1.1 - 11.21.5.1.2.1.1 Method 1: ortho-Metalation of Isophthalamides, Selenation, and Subsequent Oxidation [Seite 461]
1.9.10 - 11.22 Product Class 22: Selenazoles [Seite 464]
1.9.10.1 - 11.22.4 Selenazoles [Seite 464]
1.9.10.1.1 - 11.22.4.1 Synthesis by Ring-Closure Reactions [Seite 464]
1.9.10.1.1.1 - 11.22.4.1.1 By Formation of Two Se--C Bonds and One C--C Bond [Seite 464]
1.9.10.1.1.1.1 - 11.22.4.1.1.1 Fragments C--N--C, Se, and C [Seite 464]
1.9.10.1.1.1.1.1 - 11.22.4.1.1.1.1 Method 1: Reaction of Dithioimidocarbonates with Secondary Amines, Sodium Selenide, and Haloalkanes [Seite 464]
1.9.10.1.1.2 - 11.22.4.1.2 By Formation of One Se--C and One N--C Bond [Seite 466]
1.9.10.1.1.2.1 - 11.22.4.1.2.1 Fragments Se--C--N and C--C [Seite 466]
1.9.10.1.1.2.1.1 - 11.22.4.1.2.1.1 Method 1: Reaction of Selenocarboxamides with a-Halocarbonyl Compounds [Seite 466]
1.9.10.1.1.2.1.1.1 - 11.22.4.1.2.1.1.1 Variation 1: Reaction of Selenocarboxamides with a-Bromo Ketones [Seite 466]
1.9.10.1.1.2.1.1.2 - 11.22.4.1.2.1.1.2 Variation 2: Reaction of Selenoformamide with a-Bromo Ketones [Seite 468]
1.9.10.1.1.2.1.1.3 - 11.22.4.1.2.1.1.3 Variation 3: Reaction of Cyanoselenoamide or Bis(selenoamides) with a-Halocarbonyl Compounds [Seite 469]
1.9.10.1.1.2.1.2 - 11.22.4.1.2.1.2 Method 2: Reaction of Selenocarboxamides with Acetylenic Compounds [Seite 470]
1.9.10.1.1.2.1.3 - 11.22.4.1.2.1.3 Method 3: Cycloaddition of Selenocarboxamides with Selanyl Propadienyl Cations [Seite 471]
1.9.10.1.1.2.1.4 - 11.22.4.1.2.1.4 Method 4: From Selenoureas and a-Halocarbonyl Compounds [Seite 472]
1.9.10.1.1.2.1.4.1 - 11.22.4.1.2.1.4.1 Variation 1: Reaction of N-Phenylselenourea with 1,3-Dichloroacetone [Seite 472]
1.9.10.1.1.2.1.4.2 - 11.22.4.1.2.1.4.2 Variation 2: Reaction of Selenourea or N-Benzoylselenourea with a-Halocarbonyl Compounds [Seite 475]
1.9.10.1.1.2.1.4.3 - 11.22.4.1.2.1.4.3 Variation 3: Reaction of Selenourea with a-Bromo Ketones in the Presence of ß-Cyclodextrin [Seite 476]
1.9.10.1.1.2.1.4.4 - 11.22.4.1.2.1.4.4 Variation 4: Reaction of Selenourea with a-Bromo-ß-oxo Esters in the Presence of ß-Cyclodextrin [Seite 477]
1.9.10.1.1.2.1.4.5 - 11.22.4.1.2.1.4.5 Variation 5: Reaction of Selenourea with a-Bromo Ketones in the Presence of Copper(II) Chloride-Pyridine Complex [Seite 478]
1.9.10.1.1.2.1.4.6 - 11.22.4.1.2.1.4.6 Variation 6: Reaction of Selenourea with 1-Aryl-2-bromoethanones in an Ionic Liquid/Water System [Seite 479]
1.9.10.1.1.2.1.5 - 11.22.4.1.2.1.5 Method 5: From Selenoureas and a,ß-Unsaturated Carbonyl Compounds [Seite 481]
1.9.10.1.1.2.1.5.1 - 11.22.4.1.2.1.5.1 Variation 1: Reaction of N,N-Dialkylselenoureas with a,ß-Unsaturated Ketones in the Presence of Iron(III) Chloride [Seite 481]
1.9.10.1.1.2.1.5.2 - 11.22.4.1.2.1.5.2 Variation 2: Reaction of N,N-Dialkylselenoureas with a,ß-Unsaturated Aldehydes in the Presence of Iron(III) Chloride [Seite 482]
1.9.10.1.1.2.1.5.3 - 11.22.4.1.2.1.5.3 Variation 3: Reaction of N,N-Dialkylselenoureas with 1,2-Dicarbonyl Compounds in the Presence of Iron(III) Chloride [Seite 482]
1.9.10.1.1.2.1.6 - 11.22.4.1.2.1.6 Method 6: From Selenoureas and a-Haloacetonitriles [Seite 483]
1.9.10.1.1.2.1.7 - 11.22.4.1.2.1.7 Method 7: From Selenoureas and Acetylenic Compounds [Seite 485]
1.9.10.1.1.3 - 11.22.4.1.3 By Formation of One Se--C and One C--C Bond [Seite 485]
1.9.10.1.1.3.1 - 11.22.4.1.3.1 Fragments Se--C--N--C and C [Seite 485]
1.9.10.1.1.3.1.1 - 11.22.4.1.3.1.1 Method 1: From Selenazadienes and a-Halocarbonyl Compounds [Seite 485]
1.9.10.1.1.3.1.1.1 - 11.22.4.1.3.1.1.1 Variation 1: Reaction of N,N-Dialkyl-N'-[(dimethylamino)methylene]selenoureas with Chloroacetyl Chloride [Seite 485]
1.9.10.1.1.3.1.1.2 - 11.22.4.1.3.1.1.2 Variation 2: Reaction of N,N-Dialkyl-N'-[(dimethylamino)methylene]selenoureas and a-Halo Ketones [Seite 488]
1.9.10.1.1.3.1.2 - 11.22.4.1.3.1.2 Method 2: From Selenazadienes and Chloroacetonitrile [Seite 489]
1.9.10.1.1.3.2 - 11.22.4.1.3.2 Fragments C--N--C and Se--C [Seite 490]
1.9.10.1.1.3.2.1 - 11.22.4.1.3.2.1 Method 1: From Dithioimidocarbonates and Ethaneselenothioates [Seite 490]
1.9.10.1.1.4 - 11.22.4.1.4 By Formation of One C--C Bond [Seite 492]
1.9.10.1.1.4.1 - 11.22.4.1.4.1 Fragment C--Se--C--N--C [Seite 492]
1.9.10.1.1.4.1.1 - 11.22.4.1.4.1.1 Method 1: Cyclization of N-Acylcarbamimidoselenoates [Seite 492]
1.9.10.1.2 - 11.22.4.2 Synthesis by Substituent Modification [Seite 493]
1.9.10.1.2.1 - 11.22.4.2.1 By Halogenation and Alkylation of the Selenium Atom [Seite 493]
1.9.10.1.2.1.1 - 11.22.4.2.1.1 Method 1: From Selenazoles to 1,1-Dihaloselenazoles and Se-Alkylselenazolium Ions [Seite 493]
1.9.10.1.2.2 - 11.22.4.2.2 Synthesis by Modification of Substituents in the Side Chain [Seite 495]
1.9.10.1.2.2.1 - 11.22.4.2.2.1 Method 1: Oxidation of 2-Benzylselenazoles and Subsequent Alkaline Hydrolysis [Seite 495]
1.9.10.1.2.2.2 - 11.22.4.2.2.2 Method 2: Azo Coupling of Substituted Selenazol-2-amines [Seite 498]
1.9.11 - 11.23 Product Class 23: Annulated Selenazole Compounds [Seite 502]
1.9.11.1 - 11.23.3 Annulated Selenazole Compounds [Seite 502]
1.9.11.1.1 - 11.23.3.1 Synthesis by Ring-Closure Reactions [Seite 502]
1.9.11.1.1.1 - 11.23.3.1.1 By Annulation to an Arene [Seite 502]
1.9.11.1.1.1.1 - 11.23.3.1.1.1 By Formation of Two Se--C Bonds [Seite 502]
1.9.11.1.1.1.1.1 - 11.23.3.1.1.1.1 Fragments Arene--N--C and Se [Seite 502]
1.9.11.1.1.1.1.1.1 - 11.23.3.1.1.1.1.1 Method 1: From 2-Halophenyl Isocyanides, Elemental Selenium, and Heteroatom Nucleophiles [Seite 502]
1.9.11.1.1.2 - 11.23.3.1.2 By Annulation to a Selenazole [Seite 503]
1.9.11.1.1.2.1 - 11.23.3.1.2.1 Method 1: Formation of 4-Chloro-1,2,3-triazines [Seite 503]
1.9.11.1.2 - 11.23.3.2 Synthesis by Substituent Modification [Seite 504]
1.9.11.1.2.1 - 11.23.3.2.1 Method 1: Modification of the Benzo Ring by Amination, Oxidation, and Substitution [Seite 504]
1.9.11.1.2.2 - 11.23.3.2.2 Method 2: Modification of the Selenazole Ring by N-Alkylation and C--C Bond Formation on a Methyl Group at the C2 Position [Seite 505]
1.9.11.1.2.2.1 - 11.23.3.2.2.1 Variation 1: Condensation with Ortho Esters or Imidamides [Seite 505]
1.9.11.1.2.2.2 - 11.23.3.2.2.2 Variation 2: Condensation with Squaric Acid [Seite 508]
1.9.11.1.2.2.3 - 11.23.3.2.2.3 Variation 3: Condensation with a Thiazole-5-carbaldehyde [Seite 510]
1.9.12 - 11.25 Product Class 25: Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds [Seite 514]
1.9.12.1 - 11.25.4 Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds [Seite 514]
1.9.12.1.1 - 11.25.4.1 Isotellurazoles (1,2-Tellurazoles) [Seite 514]
1.9.12.1.1.1 - 11.25.4.1.1 Synthesis by Ring-Closure Reactions [Seite 514]
1.9.12.1.1.1.1 - 11.25.4.1.1.1 By Formation of One Te--N and One N--C Bond [Seite 514]
1.9.12.1.1.1.1.1 - 11.25.4.1.1.1.1 Fragments Te--C--C--C and N [Seite 514]
1.9.12.1.1.1.1.1.1 - 11.25.4.1.1.1.1.1 Method 1: Reaction of ß-[(N,N-Dimethylcarbamoyl)tellanyl]alkenyl Ketones with Hydroxylamine-O-sulfonic Acid [Seite 514]
1.9.12.1.1.1.2 - 11.25.4.1.1.2 By Formation of One Te--N and One Te--C Bond [Seite 516]
1.9.12.1.1.1.2.1 - 11.25.4.1.1.2.1 Fragments N--C--C--C and Te [Seite 516]
1.9.12.1.1.1.2.1.1 - 11.25.4.1.1.2.1.1 Method 1: Reaction of Alkynone Oxime 4-Toluenesulfonates with N,N-Dimethyltellurocarbamate Ion [Seite 516]
1.9.12.1.2 - 11.25.4.2 1,2-Benzisotellurazoles [Seite 517]
1.9.12.1.2.1 - 11.25.4.2.1 Synthesis by Ring-Closure Reactions [Seite 517]
1.9.12.1.2.1.1 - 11.25.4.2.1.1 By Formation of One N--Te Bond [Seite 517]
1.9.12.1.2.1.1.1 - 11.25.4.2.1.1.1 Fragment Te--Arene--C--N [Seite 517]
1.9.12.1.2.1.1.1.1 - 11.25.4.2.1.1.1.1 Method 1: ortho-Metalation of Isophthalamides, Telluration, and Subsequent Oxidation [Seite 517]
1.9.12.1.3 - 11.25.4.3 Benzotellurazoles [Seite 518]
1.9.12.1.3.1 - 11.25.4.3.1 Synthesis by Ring-Closure Reactions [Seite 518]
1.9.12.1.3.1.1 - 11.25.4.3.1.1 By Formation of Two Te--C Bonds [Seite 518]
1.9.12.1.3.1.1.1 - 11.25.4.3.1.1.1 Fragments Arene--N--C and Te [Seite 518]
1.9.12.1.3.1.1.1.1 - 11.25.4.3.1.1.1.1 Method 1: Copper(I)-Cataly zed Reaction of 2-Iodophenyl Isocyanide with Tellurium and an Amine Nucleophile [Seite 518]
1.10 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 520]
1.10.1 - 16.20 Product Class 20: Pyridopyrazines [Seite 520]
1.10.1.1 - 16.20.3 Pyridopyrazines [Seite 520]
1.10.1.1.1 - 16.20.3.1 Pyrido[2,3-b]pyrazines [Seite 522]
1.10.1.1.1.1 - 16.20.3.1.1 Synthesis by Ring-Closure Reactions [Seite 522]
1.10.1.1.1.1.1 - 16.20.3.1.1.1 By Formation of Two N--C Bonds [Seite 522]
1.10.1.1.1.1.1.1 - 16.20.3.1.1.1.1 Method 1: Condensation of Pyridine-2,3-diamines with Dicarbonyl Compounds [Seite 522]
1.10.1.1.1.1.1.2 - 16.20.3.1.1.1.2 Method 2: Reaction of Pyridine-2,3-diamine with Alloxane or Epoxides [Seite 525]
1.10.1.1.1.1.1.3 - 16.20.3.1.1.1.3 Method 3: Reaction of Pyridine-2,3-diamine with Ethoxy(imino)acetates [Seite 526]
1.10.1.1.1.1.2 - 16.20.3.1.1.2 By Formation of One N--C Bond [Seite 526]
1.10.1.1.1.1.2.1 - 16.20.3.1.1.2.1 Method 1: Phosphoryl Chloride Mediated Heteroannulation of N,S-Acetals [Seite 526]
1.10.1.1.1.2 - 16.20.3.1.2 Synthesis by Substituent Modification [Seite 527]
1.10.1.1.2 - 16.20.3.2 Pyrido[3,4-b]pyrazines [Seite 529]
1.10.1.1.2.1 - 16.20.3.2.1 Synthesis by Ring-Closure Reactions [Seite 529]
1.10.1.1.2.1.1 - 16.20.3.2.1.1 By Formation of Two N--C Bonds [Seite 529]
1.10.1.1.2.1.1.1 - 16.20.3.2.1.1.1 Method 1: Condensation of Pyridine-3,4-diamines with Dicarbonyl Compounds [Seite 529]
1.10.1.1.2.2 - 16.20.3.2.2 Synthesis by Substituent Modification [Seite 530]
1.11 - Volume 31: Arene-X (X = Hal, O, S, Se, Te, N, P) [Seite 534]
1.11.1 - 31.4 Product Class 4: Aryl Iodine Compounds [Seite 534]
1.11.1.1 - 31.4.2.2 Iodoarenes [Seite 534]
1.11.1.1.1 - 31.4.2.2.1 Synthesis of Iodoarenes [Seite 534]
1.11.1.1.1.1 - 31.4.2.2.1.1 Method 1: Electrophilic Iodination [Seite 534]
1.11.1.1.1.1.1 - 31.4.2.2.1.1.1 Variation 1: Of Fluorophenols [Seite 534]
1.11.1.1.1.2 - 31.4.2.2.1.2 Method 2: Iodination by Hunsdiecker-Type Decarboxylation [Seite 537]
1.11.1.1.1.2.1 - 31.4.2.2.1.2.1 Variation 1: Using Classical Reagents (Silver, Mercury, or Thallium Salts) [Seite 537]
1.11.1.1.1.2.2 - 31.4.2.2.1.2.2 Variation 2: Using the Barton Modification [Seite 538]
1.11.1.1.1.3 - 31.4.2.2.1.3 Method 3: Iodination of Quinones [Seite 539]
1.11.1.1.1.3.1 - 31.4.2.2.1.3.1 Variation 1: Using an Iodine Addition-Elimination Sequence [Seite 539]
1.11.1.1.1.3.2 - 31.4.2.2.1.3.2 Variation 2: Using an Addition-Oxidation Sequence [Seite 542]
1.11.1.1.1.3.3 - 31.4.2.2.1.3.3 Variation 3: Using Hypervalent Iodine Compounds [Seite 543]
1.12 - Author Index [Seite 546]
1.13 - Abbreviations [Seite 576]
1.14 - List of All Volumes [Seite 582]
Abstracts
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of germanium hydrides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · hydrides · germyl hydride · germanium hydride · radical reduction · hydrogermylation · germylation · tris(2-furyl)germane · cross coupling · germyl cation
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of germanium cyanides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · cyanides · cyanation · halides · silver · germole
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of acylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · enol ethers · [2+2] cycloaddition · azetidines · BINAP · alkynes · carbonylation · furans · radicals · polymerization · amides
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of α-halo- and α-alkoxyvinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · substitution · hydrometalation · carbometalation · halogenation · alkynes · germatranes · desulfonylation · cross coupling · palladium(0) · styrenes
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of α-halo-, α-hydroxy-, α-alkoxy-, and α-aminoalkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · [1,2] rearrangements · oxo-carbenium · oxonium · substitution · hydroboration · boronic ester · [3+2] cycloaddition · germenes · silylation · borylation
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkynylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · alkynes · [3+2] cycloadditions · hydrostannylation · hydroboration · cross coupling · palladium(0) · substitution · cross metathesis · elimination · Pauson–Khand reaction · cyclopentenones
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of aryl- and heteroarylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · cross coupling · Stille reaction · Hiyama–Denmark reaction · substitution · Barbier conditions · transmetalation · cycloaddition · solid-phase synthesis · traceless linkers
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of vinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · vinylgermanes · alkenylgermanes · β-effect · hyperconjugation · hydrogermylation · heterogermylation · metallogermylation · cross coupling · germatranes
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of propargyl- and allenylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · propargylgermanes · allenylgermanes · transmetalation · Grignard reagents · [2+2] cycloaddition
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · benzylgermanes · cross coupling · boscalid
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of allylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · alkenylgermanes · allylation · germylene · π-allylpalladium(0) · metallogermanes · Baylis–Hillman · germyl radicals
A. C. Spivey and C.-C. Tseng
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.
Keywords: germanes · germanium compounds · alkenylgermanes · ADMET · germylene · hydrogermylation
J. Schatz and M. Seßler
This manuscript is intended to update the first report on the synthesis of selenophenes in Science of Synthesis and will briefly summarize essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. During this time, applications of selenophene-based materials in organic electronics and photonics received considerable interest, and selenophene-containing π-conjugated compounds have been proposed as organic magnetic materials.
Keywords: selenophenes · active methylene compounds · selanylenynes · cyclization · aromatization · metal–halogen exchange
J. Schatz and M. Seßler
This manuscript is intended to update the earlier report on the synthesis of tellurophenes in Science of Synthesis, and summarizes essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. The decade 2000–2010 saw an increasing interest in organic molecules as functional materials, shifting the focus away from biological or pharmaceutical application. This trend could especially be observed for thiophenes, leading, not surprisingly, also to an increasing pursuit of potential applications of tellurophenes.
Keywords: tellurophenes · tellanylenynes · cyclization · aryl cross coupling
P. Margaretha
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of isoxazoles (1,2-oxazoles). It focuses on the literature published in the period 2001–2009.
Keywords: isoxazoles · isoxazol-5-ones · dipolar cycloadditions · oximes · nitrile oxides · cyclization · multicomponent coupling · regioselectivity
S. Härtinger
This update deals with...