Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
In Kapitel 2 wird eine umfassende Betrachtung der verschiedenen Arten von Datenmodellen vorgenommen, die für die Strukturierung, Verwaltung und Analyse von Daten in Informationssystemen essenziell sind.
Konzeptionelle Datenmodelle:
Das Kapitel beginnt mit einer Erörterung der konzeptionellen Datenmodelle. Hier wird untersucht, wie diese Modelle dazu dienen, die allgemeine Struktur und die Beziehungen der Daten in einem System auf hoher Abstraktionsebene darzustellen. Die Definition, charakteristischen Merkmale sowie gängige Anwendungsbeispiele dieser Modelle werden detailliert beschrieben. Außerdem wird ein Einblick in populäre Modellierungssprachen gegeben, die für die Erstellung konzeptioneller Modelle genutzt werden.
Logische Datenmodelle:
Anschließend werden logische Datenmodelle betrachtet, die eine detailliertere und technischere Darstellung der Datenstruktur bieten. Der Abschnitt beleuchtet ihre Bedeutung und Funktion und stellt die Unterschiede zu konzeptionellen Modellen heraus. Es werden beispielhafte Darstellungen und Modellierungstechniken vorgestellt, die verdeutlichen, wie logische Modelle in der Praxis eingesetzt werden.
Physische Datenmodelle:
Physische Datenmodelle stehen als nächstes im Fokus. Dieser Teil konzentriert sich darauf, wie Datenmodelle in spezifischen Datenbanksystemen umgesetzt und optimiert werden. Es wird die Beziehung zu logischen Datenmodellen erläutert und die Gestaltung sowie die Optimierung von Datenstrukturen für verschiedene Datenbanksysteme diskutiert.
Spezialisierte Datenmodelle:
Der Abschnitt über spezialisierte Datenmodelle bietet Einblicke in spezifische Modelltypen, die für besondere Anwendungsbereiche oder Anforderungen entwickelt wurden. Hier werden die Anwendungsbereiche, Vorteile und verschiedene spezifische Modellierungstechniken und -konzepte beleuchtet.
Vergleich und Auswahl von Datenmodellen:
Eine wichtige Komponente dieses Kapitels ist die Diskussion über die Auswahlkriterien für geeignete Datenmodelltypen. Es wird erörtert, wie verschiedene Modelltypen verglichen werden können und welche praktischen Überlegungen bei der Auswahl zu berücksichtigen sind.
Hybride und integrative Modelle:
Abschließend werden hybride und integrative Datenmodelle vorgestellt. Diese Modelle kombinieren Elemente aus konzeptionellen, logischen und physischen Modellen, um den Anforderungen moderner Datenlandschaften gerecht zu werden. Der Abschnitt beleuchtet die Grundlagen, Techniken zur Integration verschiedener Modelltypen und die Herausforderungen, die mit solchen hybriden Ansätzen verbunden sind.
Dieses Kapitel bietet einen tiefgreifenden Einblick in die verschiedenen Datenmodelltypen und ihre Anwendungen, wobei sowohl die theoretischen Grundlagen als auch die praktischen Aspekte der Datenmodellierung berücksichtigt werden.
Das Kapitel über konzeptionelle Datenmodelle befasst sich mit den Grundlagen und der Bedeutung dieser Modelle im Prozess der Datenmodellierung.
Grundlagen konzeptioneller Modelle:
Konzeptionelle Datenmodelle sind abstrakte Darstellungen der strukturellen Aspekte eines Informationssystems. Sie dienen dazu, die Komplexität der Daten und ihrer Beziehungen auf einer hohen Abstraktionsebene zu erfassen, was für die effektive Planung und Gestaltung von Datenbanken und Informationssystemen unerlässlich ist.
Abstraktionsebene:
Im Gegensatz zu logischen oder physischen Datenmodellen, die sich mit der technischen Implementierung und der Datenorganisation auf der Datenbankebene befassen, konzentrieren sich konzeptionelle Modelle auf die Darstellung der Datenstrukturen in einer Weise, die für alle Stakeholder - unabhängig von ihrem technischen Hintergrund - leicht verständlich ist.
Fokus auf Entitäten und Beziehungen:
Konzeptionelle Modelle legen den Schwerpunkt auf die Identifizierung von Entitäten (Datenobjekten) und den Beziehungen zwischen diesen Entitäten. Entitäten repräsentieren die Schlüsselkonzepte oder -objekte des Geschäftsbereichs, und ihre Beziehungen spiegeln die Art und Weise wider, wie diese Objekte miteinander interagieren oder verbunden sind.
Verwendung in der Anforderungsanalyse:
Sie werden oft in den frühen Phasen der Systementwicklung eingesetzt, um die Anforderungen der Stakeholder an das System zu verstehen und zu dokumentieren. Durch ihre Fähigkeit, komplexe Datenstrukturen zu vereinfachen, erleichtern sie die Kommunikation zwischen Entwicklern, Geschäftsanalysten und Endbenutzern.
Vereinfachung und Visualisierung:
Konzeptionelle Modelle bieten eine vereinfachte Sicht auf die Datenstrukturen, die von den technischen Details der Datenhaltung und -verarbeitung abstrahiert. Sie werden oft durch grafische Darstellungen wie Entity-Relationship-Diagramme (ER-Diagramme) visualisiert, die eine intuitive Sicht auf die Datenstrukturen bieten.
Werkzeuge und Techniken:
Zur Erstellung konzeptioneller Modelle werden verschiedene Werkzeuge und Techniken eingesetzt, darunter ER-Diagramme, UML (Unified Modeling Language) und andere spezialisierte Modellierungswerkzeuge. Diese Werkzeuge erleichtern die Darstellung, Analyse und Überarbeitung von Datenmodellen.
Bedeutung für die Systementwicklung:
Konzeptionelle Datenmodelle sind von entscheidender Bedeutung für den Erfolg von Systementwicklungsprojekten. Sie dienen als Grundlage für die weitere Entwicklung und Ausarbeitung von logischen und physischen Datenmodellen und stellen sicher, dass das Endsystem den Geschäftsanforderungen und Benutzererwartungen entspricht.
Ziele konzeptioneller Modelle:
Konzeptionelle Modelle dienen dazu, die Datenstruktur eines Systems auf einer hohen Abstraktionsebene zu erfassen und zu veranschaulichen. Ihre Ziele sind vielfältig und zentral für den Erfolg der Datenmodellierung und Systementwicklung.
Darstellung der Datenstrukturen:
Das Hauptziel eines konzeptionellen Modells ist es, die strukturellen Aspekte der Daten eines Informationssystems auf eine abstrakte und verständliche Weise darzustellen. Dies umfasst die Identifizierung von Entitäten, deren Eigenschaften (Attribute) und die Beziehungen zwischen diesen Entitäten.
Verbesserung der Verständlichkeit:
Konzeptionelle Modelle sollen komplexe Datenstrukturen und -beziehungen vereinfachen, sodass sie für alle Stakeholder - von Systementwicklern bis hin zu Geschäftsanalysten und Endnutzern - leicht verständlich sind. Die klare und intuitive Darstellung hilft, Missverständnisse zu vermeiden und erleichtert die Kommunikation über Systemanforderungen.
Unterstützung der Anforderungsanalyse:
In den frühen Phasen der Systementwicklung helfen konzeptionelle Modelle dabei, die Anforderungen der Stakeholder an das System zu identifizieren und zu dokumentieren. Sie sind ein wesentliches Werkzeug für die Erfassung, Analyse und Bestätigung der Datenanforderungen.
Grundlage für weiterführende Datenmodelle:
Konzeptionelle Modelle dienen als Ausgangspunkt für die Erstellung detaillierterer logischer und physischer Datenmodelle. Sie liefern die grundlegenden Informationen, die benötigt werden, um technische Modelle zu entwickeln, die auf spezifische Datenbankmanagementsysteme und Speichertechnologien zugeschnitten sind.
Förderung der Benutzerbeteiligung:
Durch ihre klare und benutzerfreundliche Darstellung fördern konzeptionelle Modelle die Beteiligung und das Engagement der Benutzer im Entwicklungsprozess. Dies erhöht die Wahrscheinlichkeit, dass das Endsystem den tatsächlichen Bedürfnissen und Erwartungen der Nutzer entspricht.
Flexibilität und Skalierbarkeit:
Ein weiteres Ziel konzeptioneller Modelle ist es, eine flexible und skalierbare Grundlage für die Datenmodellierung zu bieten. Sie sollten so gestaltet sein, dass sie leicht an Veränderungen in den Geschäftsprozessen oder an technologische Entwicklungen angepasst werden können.
Komponenten konzeptioneller Modelle:
Konzeptionelle Modelle sollen komplexe Datenstrukturen und -beziehungen vereinfachen, sodass sie für alle Stakeholder - von Systementwicklern bis hin zu Geschäftsanalysten und Endnutzern - leicht verständlich...
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.