I. The Homotopy Theory of Configuration Spaces.- I. Basic Fibrations.- II. Configuration Space of ?n+1, n < 1.- III. Configuration Spaces of Sn+1, n < 1.- IV. The Two Dimensional Case.- II. Homology and Cohomology of $$(\mathbb{F}_k (M)$$.- V. The Algebra $$H^* (\mathbb{F}_k (M);\mathbb{Z})$$.- VI. Cellular Models.- VII. Cellular Chain Models.- III. Homology and Cohomology of Loop Spaces.- VIII. The Algebra $$H_* (\Omega \mathbb{F}_k (M)))$$.- IX. RPT-Constructions.- X. Cellular Chain Algebra Models.- XI. The Serre Spectral Sequence.- XII. Computation of H*(?(M)).- XIII. ?-Category and Ends.- XIV. Problems of k-body Type.- References.