Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Am Ende des 19. Jahrhunderts war die klassische Physik so weit fortgeschritten, dass viele Wissenschaftler dachten, alle Probleme in der Physik seien gelöst oder würden bald gelöst. Schließlich konnte die klassische Newton'sche Mechanik die Bewegungen von Himmelskörpern vorhersagen; der Elektromagnetismus wurde durch die Maxwell'schen Gleichungen beschrieben (für eine Übersicht über die Maxwell'schen Gleichungen, siehe [1]). Die Formulierung der Prinzipien der Thermodynamik hatte zum Verständnis der gegenseitigen Umwandlung von Wärme und Arbeit und den Einschränkungen dieser gegenseitigen Umwandlung geführt. Die klassische Optik ermöglichte den Entwurf und Bau wissenschaftlicher Instrumente wie Teleskop und Mikroskop, die beide das Verständnis der physikalischen Welt um uns herum erweiterten.
In der Chemie wurde eine experimentell abgeleitete Klassifizierung der Elemente erreicht (das rudimentäre Periodensystem), obwohl die Natur von Atomen und Molekülen und das Konzept der Beteiligung des Elektrons an chemischen Reaktionen nicht verstanden waren. Die Experimente von Rutherford zeigten, dass das Atom aus sehr kleinen, positiv geladenen und schweren Kernen bestand, die jedes Element identifizierten, und aus Elektronen, die die Kerne umkreisten, und die negative Ladung lieferten, um elektrisch neutrale Atome zu erzeugen. Zu diesem Zeitpunkt stellte sich natürlich die Frage: Warum fallen die Elektronen nicht in den Kern, weil sich doch entgegengesetzte elektrische Ladungen anziehen? Eine planetarische Situation, in der die Elektronen durch Zentrifugalkräfte in Umlaufbahnen gehalten wurden, war aufgrund des (Strahlungs-)Energieverlusts, den ein umlaufendes Elektron erfahren würde, nicht plausibel. Dieses Dilemma war eine der Ursachen für die Entwicklung der Quantenmechanik.
Darüber hinaus gab es andere experimentelle Ergebnisse, die mit der klassischen Physik nicht erklärt werden konnten und die die Entwicklung neuer theoretischer Konzepte erforderten, beispielsweise die Unfähigkeit klassischer Modelle, die Schwarzkörperstrahlung, den photoelektrischen Effekt und die Beobachtung der ,,Spektrallinien" in den Emissions- (oder Absorptions-)Spektren von atomarem Wasserstoff zu reproduzieren. Diese experimentellen Ergebnisse stammen aus dem ersten Jahrzehnt des 20. Jahrhunderts und lösten in den 1920er-Jahren eine fast explosive Reaktion in der theoretischen Physik aus, die zur Formulierung der Quantenmechanik führte. Die Namen dieser Physiker - Planck, Heisenberg, Einstein, Bohr, Born, de Broglie, Dirac, Pauli, Schrödinger und andere - sind unauslöschlich mit neuen theoretischen Modellen verbunden, die die Physik und Chemie revolutionierten.
Diese Entwicklung der Quantentheorie nahm Hunderte von Veröffentlichungen, Briefen und Tausende von Seiten gedruckten Materials ein und kann hier in diesem Buch nicht behandelt werden. Daher präsentiert dieses Buch viele der schwierigen theoretischen Ableitungen als bloße Tatsachen, ohne Beweise oder die zugrunde liegenden Denkprozesse anzuschneiden, da das Ziel der Diskussion in den folgenden Kapiteln die Anwendung der quantenmechanischen Prinzipien auf die Molekularspektroskopie ist. Daher sollten diese Diskussionen als Leitfaden für Studenten des 21. Jahrhunderts zur Akzeptanz quantenmechanischer Prinzipien für ihre Arbeit mit molekularer Spektroskopie ausgelegt werden.
Vor der Diskussion der drei Eckpfeilerexperimenten, die die Quantenmechanik einleiteten - Plancks Schwarzkörperstrahlungskurve, der photoelektrische Effekt und die Beobachtung von Spektrallinien in den Wasserstoffatomspektren - wird elektromagnetische Strahlung (Licht) mittels eines Wellenmodells vorgestellt, das die vorherrschende Art war, dieses Phänomen vor dem 20. Jahrhundert zu betrachten.
Wie oben erwähnt, wurde elektromagnetischen Strahlung durch die Maxwell'schen Gleichungen in den frühen 1860er-Jahren als eine Welle beschrieben. Die Lösung dieser Differenzialgleichungen beschreibt Licht als transversale Welle elektrischer und magnetischer Felder. In Abwesenheit von Ladung und elektrischem Strom kann eine solche Welle, die sich im Vakuum in der positiven z-Richtung ausbreitet, durch die folgenden Gleichungen beschrieben werden:
wobei das elektrische Feld E und das magnetische Feld B senkrecht zueinander stehen (siehe Abb. 1.1) und in Phase mit der Winkelfrequenz
oszillieren, wobei v die Frequenz der Schwingung ist, und in Einheiten von s-1 = Hz ausgedrückt wird. In (1.1) und (1.2) ist k der Wellenvektor der elektromagnetischen Welle, definiert durch (1.4)
Hierbei ist ? die Wellenlänge der Strahlung, gemessen in Längeneinheiten, und wird durch den Abstand zwischen zwei aufeinanderfolgenden Wellenbergen (oder Tälern) der elektrischen oder magnetischen Felder definiert. Vektorielle Größen wie elektrische oder magnetische Felder sind durch einen Pfeil über dem Symbol gekennzeichnet oder fett-kursiv gedruckt.
Abb. 1.1 Beschreibung der Ausbreitung einer linear polarisierten elektromagnetischen Welle als Schwingung des elektrischen (E) und magnetischen (B) Felds.
Da Licht eine Welle ist, weist es Eigenschaften wie konstruktive und destruktive Interferenz auf. Wenn also Licht auf einen schmalen Spalt trifft, zeigt es ein Beugungsmuster ähnlich dem einer einfachen Wasserwelle, die auf eine Barriere mit einer engen Öffnung fällt. Solche Welleneigenschaften von Licht waren bekannt und daher wurde angenommen, dass Licht nur Welleneigenschaften aufweist, wie durch die Maxwell'sche Gleichung vorhergesagt.
Im Allgemeinen kann jede Wellenbewegung durch ihre Wellenlänge ?, ihre Frequenz
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.