Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The musculoskeletal system plays an essential role in the equilibrium and motion of the human body. Biomechanics of the musculoskeletal system uses physical laws and engineering methods to describe the mechanical behavior of the musculoskeletal system during motion. In this chapter, first, the introduction of biomechanics and related applications is presented. Second, the state of the art of knowledge in biomechanics of the musculoskeletal system, in particular the development of in silico rigid multi-body musculoskeletal models and their perspectives, is addressed.
Biomechanics is a research field which aims to solve biomedical or biological problems by using mechanical engineering methods, techniques and theories [HAT 74, WIN 11]. Living systems such as human musculoskeletal system or cardiovascular system are the main objects of biomechanics research study. Engineering methods range from experimental to numerical approaches. Experimental studies [KEY 65, SHA 01] aim to observe qualitatively and quantitatively the changes of biological tissues (e.g. bone, muscle, cartilage and ligament) or structures (e.g. knee) under normal and abnormal conditions. Experimental studies could be performed in vivo and ex vivo or in vitro conditions. In vivo experimentation relates to the study of whole living subject in natural environment. Ex vivo or in vitro experimentations deal with the testing of tissues isolated outside its biological surroundings of the living organism. Such experimentations are commonly performed in a culture environment. It is important to note that the characteristics and behaviors of a biological tissue/structure in vivo condition are completely different from those of the same tissue/structure in vitro or ex vivo conditions. Moreover, in silico numerical studies [REI 02, KIT 02, VEN 06] aim to model and simulate living systems to provide unobservable information of the tissue or structure under investigation such as bone stress under body loading or muscle force during motion. Moreover, numerical studies could be used to test the impact of a clinical treatment procedure (e.g. surgery or functional rehabilitation) or the impact of an implanted device (e.g. prosthesis or orthotic) on the living tissues or structures.
A biomechanics study is commonly performed in response to a basic research question or to depict its potential application for a specific case (e.g. clinical case and industrial case) as illustrated in Figure 1.1. An example of a basic research question could be how to determine the pathophysiological processes of musculoskeletal disorders. Such a basic research question allows us to better understand the functional behavior of tissues and structure. An example of an applied research study could be the application of the finite element method to predict the femoral bone stress when a femoral prosthesis is implanted to optimize the design and fabrication of the investigated prosthesis. In fact, such basic or applied research problems could be solved by using mechanical engineering methods, techniques and theories. Moreover, a biomechanics study relates to single-scale object of study (i.e. cell and molecule, tissue and organ, system, or individual or population) or multi-scale object of study.
Figure 1.1. Overview of biomechanics field of study
Biomechanics studies could lead to clinical, sportive and industrial applications. A non-exhaustive list of potential applications is provided below:
Biomechanics of the musculoskeletal system is a specific branch of biomechanics, which focuses on the studies of the behavior of isolated tissues and structures (e.g. bones and segments, muscles and tendons, ligaments, cartilage, nerves and joints) as well as on the interaction between these tissues to create stability and motion functions. The objective of such a study is to provide substantial insights into the physiological and pathophysiological processes of the musculoskeletal system in the normal and pathological cases, respectively.
This section aims to describe the current knowledge extracted from basic or applied research studies on the interaction of tissues using mechanical engineering methods, techniques and theories.
Musculoskeletal models are commonly used to study the interaction of tissues. From a mechanical engineering point of view, there are two approaches for developing a musculoskeletal model as illustrated in Figure 1.2. The first approach relates to the rigid multi-body dynamics using tissue properties and Newton’s laws of motion to describe the kinematic and dynamic behavior of the musculoskeletal system. The second approach deals with deformable modeling using tissue properties and finite element methods to study the structure interaction with and without fluid consideration under normal and abnormal loading conditions. In this chapter, we focus only on the rigid multi-body modeling. Current knowledge of this modeling approach is addressed in the following section.
Figure 1.2. Overview of musculoskeletal models and their interaction
In the framework of rigid multi-body dynamics, a 3D musculoskeletal model could be a generic parameterized model or a patient-specific model. The generic parameterized model uses an available model provided by musculoskeletal modeling software to scale and calibrate all properties for a specific subject. This approach reduces significantly the development time and effort. The patient-specific model uses common medical images to create individualized geometries and properties of the subject/patient under investigation, leading to more accurate simulation results. In fact, the development of a 3D musculoskeletal model requires advanced modeling knowledge and skills. Moreover, this development process is very time-consuming. For these reasons, the use of musculoskeletal modeling software is an efficient solution, especially in the case of clinical application where the decision-making needs to be performed quickly and with minimum effort. The next section addresses commonly used rigid multi-body musculoskeletal modeling software in the scientific community.
There are many pieces of modeling pieces of software, which could be used to develop generic parameterized or patient-specific musculoskeletal models. The main characteristics...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!