Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book highlights the state of the art of machine learning applied to the science of gravitational waves. The main topics of the book range from the search for astrophysical gravitational wave signals to noise suppression techniques and control systems using machine learning-based algorithms. During the four years of work in the COST Action CA17137-A network for Gravitational Waves, Geophysics and Machine Learning (G2net), the collaboration produced several original publications as well as tutorials and lectures in the training schools we organized. The book encapsulates the immense amount of finding and achievements.
It is a timely reference for young researchers approaching the analysis of data from gravitational wave experiments, with alternative approaches based on the use of artificial intelligence techniques.
Dr. Elena Cuoco is Full Professor at the University of Bologna since 2024, she conducts research in the field of gravitational waves. She is a member of the LIGO/Virgo/KAGRA collaboration, where she works on data analysis and the application of artificial intelligence techniques for detector characterization and the search for gravitational signals of astrophysical origin. From 2018 to 2023, she served as the Action Chair for COST Action CA17137, dedicated to the application of machine learning to gravitational wave science. Author of numerous scientific publications, she is involved in various initiatives at the European and international levels.
1. Neural network time-series classifiers for gravitational-wave searches in single-detector periods.- 2. A simple self similarity-based unsupervised noise monitor for gravitational-wave detectors.- 3 Simulation of transient noise bursts in gravitational wave interferometers.- 4. Efficient ML Algorithms for Detecting Glitches and Data Patterns in LIGO Time Series.- 5. Denoising gravitational-wave signals from binary black holes with dilated convolutional autoencoder.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.