1 - Science of Synthesis: Knowledge Updates 2017/2 [Seite 1]
2 - Title Page [Seite 7]
3 - Imprint [Seite 8]
4 - Preface [Seite 9]
5 - Abstracts [Seite 11]
6 - Overview [Seite 19]
7 - Table of Contents [Seite 21]
8 - 17.9.24 Phthalocyanines and Related Compounds [Seite 35]
8.1 - 17.9.24.1 Metal-Free Phthalocyanines [Seite 36]
8.1.1 - 17.9.24.1.1 Method 1: Synthesis from Phthalonitrile [Seite 37]
8.1.2 - 17.9.24.1.2 Method 2: Synthesis from Bicyclo[2.2.2]octadiene-Fused Tetraazaporphyrins (Porphyrazines) [Seite 39]
8.1.3 - 17.9.24.1.3 Method 3: Synthesis from Phthalimide, Phthalic Anhydride, or Phthalic Acid [Seite 40]
8.1.4 - 17.9.24.1.4 Method 4: Demetalation of a Zinc Complex [Seite 42]
8.2 - 17.9.24.2 Metal-Phthalocyanine Complexes [Seite 42]
8.2.1 - 17.9.24.2.1 Method 1: Synthesis from Phthalonitrile [Seite 43]
8.2.2 - 17.9.24.2.2 Method 2: Synthesis from Phthalic Anhydride [Seite 47]
8.2.3 - 17.9.24.2.3 Method 3: Synthesis from Phthalic Acid [Seite 49]
8.2.4 - 17.9.24.2.4 Method 4: Synthesis from Phthalimide [Seite 49]
8.3 - 17.9.24.3 1,8(11),15(18),22(25)-Tetrasubstituted Phthalocyanines and 1:25,11:15-Bridged Phthalocyanines [Seite 51]
8.3.1 - 17.9.24.3.1 Method 1: Synthesis from 3-Substituted Phthalonitriles [Seite 51]
8.3.1.1 - 17.9.24.3.1.1 Variation 1: Regioselective Preparation of 1,8,15,22-Tetrasubstituted Phthalocyanines from 3-Substituted Phthalonitriles [Seite 51]
8.3.2 - 17.9.24.3.2 Method 2: Side-Strapped 1:25,11:15-Tetrasubstituted Phthalocyanines from Bis (isoindolinediimines) [Seite 52]
8.3.3 - 17.9.24.3.3 Method 3: Postfunctionalization of Phthalocyanines [Seite 53]
8.3.3.1 - 17.9.24.3.3.1 Variation 1: Derivatization of Peripheral Substituents [Seite 54]
8.3.3.2 - 17.9.24.3.3.2 Variation 2: Chiral 1,8,15,22-Tetrasubstituted Phthalocyanines [Seite 56]
8.4 - 17.9.24.4 2,9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines and 2:24,10:16-Bridged Phthalocyanines [Seite 61]
8.4.1 - 17.9.24.4.1 Method 1: Synthesis from 4-Substituted Phthalonitriles [Seite 62]
8.4.1.1 - 17.9.24.4.1.1 Variation 1: Side-Strapped 2:24,10:16-Bridged Phthalocyanines from 4,4?-Substituted Bis (phthalonitriles) [Seite 62]
8.4.2 - 17.9.24.4.2 Method 2: Synthesis from 4-Substituted Phthalic Anhydrides [Seite 64]
8.4.3 - 17.9.24.4.3 Method 3: Synthesis from 4-5 Substituted Phthalimides [Seite 65]
8.4.4 - 17.9.24.4.4 Method 4: Derivatization of Peripheral Substituents [Seite 65]
8.4.5 - 17.9.24.4.5 Method 5: Postfunctionalization of Axial Substituents [Seite 67]
8.5 - 17.9.24.5 1,3,8,10(9,11),15,17(16,18),22,24(23,25)-Octasubstituted Phthalocyanines [Seite 68]
8.5.1 - 17.9.24.5.1 Method 1: Synthesis from 3,5-Disubstituted Phthalic Acids [Seite 68]
8.5.2 - 17.9.24.5.2 Method 2: Postfunctionalization of Phthalocyanines [Seite 69]
8.6 - 17.9.24.6 1,4,8,11,15,18,22,25-Octasubstituted Phthalocyanines [Seite 71]
8.6.1 - 17.9.24.6.1 Method 1: Synthesis from 3,6-Disubstituted Phthalonitriles [Seite 71]
8.6.2 - 17.9.24.6.2 Method 2: Derivatization of Peripheral Substituents [Seite 73]
8.6.3 - 17.9.24.6.3 Method 3: Postfunctionalization of Axial Substituents [Seite 73]
8.7 - 17.9.24.7 2,3,9,10,16,17,23,24-Octasubstituted Phthalocyanines [Seite 75]
8.7.1 - 17.9.24.7.1 Method 1: Synthesis from 4,5-Disubstituted Phthalonitriles [Seite 75]
8.7.1.1 - 17.9.24.7.1.1 Variation 1: Octasubstituted Phthalocyanines Possessing Two Types of Substituents [Seite 77]
8.7.2 - 17.9.24.7.2 Method 2: Synthesis from 4,5-Disubstituted Phthalic Anhydrides [Seite 79]
8.7.3 - 17.9.24.7.3 Method 3: Synthesis from 5,6-Disubstituted Isoindoline-1,3-diimines [Seite 79]
8.7.4 - 17.9.24.7.4 Method 4: Derivatization of Peripheral Substituents [Seite 80]
8.7.5 - 17.9.24.7.5 Method 5: Postfunctionalization of Axial Substituents [Seite 82]
8.8 - 17.9.24.8 2:3,9:10,16:17,23:24-Bridged Phthalocyanines [Seite 84]
8.8.1 - 17.9.24.8.1 Method 1: Synthesis from 4:5-Bridged Phthalonitriles [Seite 84]
8.8.2 - 17.9.24.8.2 Method 2: Synthesis from 5:6-Bridged Isoindoline-1,3-diimines [Seite 86]
8.8.3 - 17.9.24.8.3 Method 3: Synthesis from 5:6-Bridged Phthalic Anhydrides [Seite 87]
8.8.4 - 17.9.24.8.4 Method 4: Derivatization of Peripheral Substituents [Seite 88]
8.9 - 17.9.24.9 Dodecasubstituted Phthalocyanines [Seite 90]
8.9.1 - 17.9.24.9.1 Method 1: Synthesis from 3,4,5-Trisubstituted Phthalonitriles [Seite 91]
8.9.2 - 17.9.24.9.2 Method 2: Synthesis from 3,4,5-Trisubstituted Phthalic Acids [Seite 92]
8.9.3 - 17.9.24.9.3 Method 3: Synthesis from 3,4,6-Trisubstituted Phthalonitriles [Seite 92]
8.10 - 17.9.24.10 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecasubstituted Phthalocyanines, 1:2,3:4,8:9,10:11,15:16,17:18,22:23,24:25-Bridged Phthalocyanines, and 1,2:3,4,8,9:10,11,15,16:17,18,22,23:24,25-Bridged Phthalocyanines [Seite 93]
8.10.1 - 17.9.24.10.1 Method 1: Synthesis from 3,4,5,6-Tetrasubstituted Phthalonitriles [Seite 94]
8.10.1.1 - 17.9.24.10.1.1 Variation 1: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Symmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles [Seite 95]
8.10.1.2 - 17.9.24.10.1.2 Variation 2: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Unsymmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles [Seite 96]
8.10.1.3 - 17.9.24.10.1.3 Variation 3: Hexadecasubstituted Phthalocyanines Possessing Three Types of Substituents [Seite 98]
8.10.1.4 - 17.9.24.10.1.4 Variation 4: 1,4,8,11,15,18,22,25-Octasubstituted 2:3,9:10,16:17,23:24-Bridged Phthalocyanines from Phthalonitriles [Seite 99]
8.10.1.5 - 17.9.24.10.1.5 Variation 5: 2,3,4,8,9,10,16,17,18,22,23,24-Dodecasubstituted 1:25,11:15-Bridged Phthalocyanines from Bis (phthalonitriles) [Seite 100]
8.10.2 - 17.9.24.10.2 Method 2: Synthesis from 3,4,5,6-Tetrasubstituted Phthalic Anhydrides [Seite 100]
8.10.3 - 17.9.24.10.3 Method 3: Synthesis from 3,4,5,6-Tetrasubstituted Phthalimides [Seite 101]
8.10.4 - 17.9.24.10.4 Method 4: Synthesis from 3,4,5,6-Tetrasubstituted Isoindoline-1,3-diimines [Seite 102]
8.10.5 - 17.9.24.10.5 Method 5: Derivatization of Peripheral Substituents [Seite 103]
8.10.6 - 17.9.24.10.6 Method 6: Postfunctionalization of Axial Substituents [Seite 105]
8.11 - 17.9.24.11 5,10,15,20-Tetraazaporphyrins (Porphyrazines) [Seite 106]
8.11.1 - 17.9.24.11.1 Method 1: Synthesis from 2,3-Disubstituted Maleonitriles [Seite 107]
8.11.1.1 - 17.9.24.11.1.1 Variation 1: 2:3,7:8,12:13,17:18-Bridged Tetraazaporphyrins from Cyclic Maleonitriles [Seite 108]
8.11.2 - 17.9.24.11.2 Method 2: Synthesis from 3,4-Disubstituted Pyrrole-2,5-diimines [Seite 109]
8.11.3 - 17.9.24.11.3 Method 3: Nonuniformly Substituted Tetraazaporphyrins [Seite 110]
8.11.3.1 - 17.9.24.11.3.1 Variation 1: A2B2-Type Tetraazaporphyrins from Crossover Macrocyclization Reactions [Seite 111]
8.11.4 - 17.9.24.11.4 Method 4: Post-Functionalization of Porphyrazines [Seite 113]
8.12 - 17.9.24.12 1,2-Naphthalocyanines [Seite 115]
8.12.1 - 17.9.24.12.1 Method 1: Synthesis from Naphthalene-1,2-dicarbonitriles [Seite 115]
8.13 - 17.9.24.13 2,3-Naphthalocyanines [Seite 116]
8.13.1 - 17.9.24.13.1 Method 1: Synthesis from Naphthalene-2,3-dicarbonitriles [Seite 116]
8.13.2 - 17.9.24.13.2 Method 2: Synthesis from Benzoisoindolinediimines [Seite 118]
8.13.3 - 17.9.24.13.3 Method 3: Synthesis from Naphthalene Anhydrides [Seite 120]
8.13.4 - 17.9.24.13.4 Method 4: Synthesis from Naphthalimides [Seite 121]
8.13.5 - 17.9.24.13.5 Method 5: Synthesis from Bicyclo[2.2.2]octene-fused Phthalocyanines [Seite 122]
8.13.6 - 17.9.24.13.6 Method 6: Postfunctionalization of Axial Substituents [Seite 123]
8.14 - 17.9.24.14 9,10-Phenanthrenocyanines and 2,3-Phenanthrenocyanines [Seite 125]
8.14.1 - 17.9.24.14.1 Method 1: 9,10-Phenanthrenocyanines from Phenanthrene-9,10-dicarbonitriles [Seite 125]
8.14.2 - 17.9.24.14.2 Method 2: 2,3-Phenanthrenocyanines from Phenanthrene-2,3-dicarboxylic Acid Imides [Seite 127]
8.15 - 17.9.24.15 2,3-Triphenylenocyanines [Seite 127]
8.15.1 - 17.9.24.15.1 Method 1: Synthesis from Triphenylene-2,3-dicarbonitriles [Seite 127]
8.16 - 17.9.24.16 2,3-Anthracenocyanines [Seite 129]
8.16.1 - 17.9.24.16.1 Method 1: Synthesis from Anthracene-2,3-dicarbonitriles [Seite 129]
8.17 - 17.9.24.17 4,5-Pyrenocyanines [Seite 130]
8.17.1 - 17.9.24.17.1 Method 1: Synthesis from Pyrene-4,5-dicarbonitriles [Seite 130]
8.18 - 17.9.24.18 4,5-Benzoperylenocyanines [Seite 131]
8.18.1 - 17.9.24.18.1 Method 1: Synthesis from Benzo[ghi]perylene-1,2-dicarbonitriles [Seite 131]
8.19 - 17.9.24.19 Helicenocyanines and Benzohelicenocyanines [Seite 132]
8.19.1 - 17.9.24.19.1 Method 1: Synthesis from [5]Helicene-7,8-dicarbonitriles [Seite 133]
8.19.2 - 17.9.24.19.2 Method 2: Synthesis from Benzo[5]helicene-8,9-dicarbonitriles [Seite 134]
8.20 - 17.9.24.20 Azulenocyanines [Seite 135]
8.20.1 - 17.9.24.20.1 Method 1: Synthesis from Azulene-5,6-dicarbonitriles [Seite 135]
8.21 - 17.9.24.21 Tetraazachlorins and Tetraazabacteriochlorins [Seite 137]
8.21.1 - 17.9.24.21.1 Method 1: Mixed Condensation of Succinonitrile Derivatives and Another Dinitrile [Seite 137]
8.21.2 - 17.9.24.21.2 Method 2: Mixed Condensation of Succinonitrile Derivatives with Phthalic Anhydrides or Phthalimides [Seite 141]
8.21.3 - 17.9.24.21.3 Method 3: Cycloaddition Reactions of Tetraazaporphyrins [Seite 143]
8.22 - 17.9.24.22 Tetra- and Octaazaphthalocyanines [Seite 145]
8.22.1 - 17.9.24.22.1 Method 1: Synthesis from Pyridine-3,4-dicarbonitrile [Seite 147]
8.22.2 - 17.9.24.22.2 Method 2: Synthesis from Pyridine-3,4-dicarboxylic Acid [Seite 147]
8.22.3 - 17.9.24.22.3 Method 3: Synthesis from 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-diimine [Seite 148]
8.22.4 - 17.9.24.22.4 Method 4: Synthesis from Diazaisoindoline-1,3-diimines [Seite 149]
8.22.5 - 17.9.24.22.5 Method 5: Synthesis from Pyrazine-2,3-dicarboxylic Acid [Seite 150]
8.22.6 - 17.9.24.22.6 Method 6: Modification of Preformed Azaphthalocyanines [Seite 150]
8.23 - 17.9.24.23 Triazacorroles [Seite 152]
8.23.1 - 17.9.24.23.1 Method 1: Synthesis from Isoindoline-1,3-diimines [Seite 153]
8.23.2 - 17.9.24.23.2 Method 2: Synthesis from Phthalocyanines [Seite 153]
8.23.3 - 17.9.24.23.3 Method 3: Synthesis from Tetraazaporphyrins [Seite 155]
8.23.4 - 17.9.24.23.4 Method 4: Modification of Preformed Triazacorroles [Seite 155]
8.23.4.1 - 17.9.24.23.4.1 Variation 1: Demetalation of Phosphorus(V) Triazacorroles [Seite 155]
8.23.4.2 - 17.9.24.23.4.2 Variation 2: Metalation of Free-Base Triazacorroles [Seite 156]
8.23.4.3 - 17.9.24.23.4.3 Variation 3: Modification of the Central Metal [Seite 157]
8.24 - 17.9.24.24 Subphthalocyanines [Seite 159]
8.24.1 - 17.9.24.24.1 Method 1: Synthesis from Phthalonitriles [Seite 159]
8.24.1.1 - 17.9.24.24.1.1 Variation 1: 1,8,15(18)-Trisubstituted Subphthalocyanines from 3-Substituted Phthalonitriles [Seite 161]
8.24.1.2 - 17.9.24.24.1.2 Variation 2: 2,9,16(17)-Trisubstituted Subphthalocyanines from 4-Substituted Phthalonitriles [Seite 162]
8.24.1.3 - 17.9.24.24.1.3 Variation 3: 2,3,9,10,16,17-Hexasubstituted Subphthalocyanines and 2,3-Subnaphthalocyanines from 4,5-Disubstituted Phthalonitriles [Seite 163]
8.24.1.4 - 17.9.24.24.1.4 Variation 4: Hexasubstituted Subphthalocyanines and 1,2-Subnaphthalocyanines from 3,4- and 3,5-Disubstituted Phthalonitriles [Seite 165]
8.24.1.5 - 17.9.24.24.1.5 Variation 5: 1,4,8,11,15,18-Hexasubstituted Subphthalocyanines from 3,6-Disubstituted Phthalonitriles [Seite 166]
8.24.1.6 - 17.9.24.24.1.6 Variation 6: Dodecasubstituted Subphthalocyanines from 3,4,5,6-Tetrasubstituted Phthalonitriles [Seite 166]
8.24.2 - 17.9.24.24.2 Method 2: Nonuniformly Substituted Subphthalocyanines by Crossover Cyclotrimerization [Seite 168]
8.24.3 - 17.9.24.24.3 Method 3: Postfunctionalization of Subphthalocyanines [Seite 171]
8.24.3.1 - 17.9.24.24.3.1 Variation 1: Derivatization of Peripheral Substituents [Seite 171]
8.24.3.2 - 17.9.24.24.3.2 Variation 2: Reactions at the B?X Bond [Seite 176]
8.25 - 17.9.24.25 Subporphyrazines [Seite 179]
8.25.1 - 17.9.24.25.1 Method 1: Synthesis from Maleonitriles [Seite 179]
8.25.2 - 17.9.24.25.2 Method 2: Postfunctionalization of Subporphyrazines [Seite 180]
8.25.2.1 - 17.9.24.25.2.1 Variation 1: Derivatization of Peripheral Substituents [Seite 180]
8.25.2.2 - 17.9.24.25.2.2 Variation 2: Reactions at the B?X Bond [Seite 182]
8.26 - 17.9.24.26 Superazaporphyrins [Seite 182]
8.26.1 - 17.9.24.26.1 Method 1: Synthesis from Pyrrole-2,5-diimines [Seite 183]
8.27 - 17.9.24.27 Nonuniformly Substituted Phthalocyanines [Seite 184]
8.27.1 - 17.9.24.27.1 Method 1: Crossover Cyclotetramerizations [Seite 184]
8.27.1.1 - 17.9.24.27.1.1 Variation 1: Synthesis of A3B Nonuniformly Substituted Phthalocyanines [Seite 186]
8.27.1.2 - 17.9.24.27.1.2 Variation 2: Side-Strapped AABB-Type Phthalocyanines [Seite 191]
8.27.1.3 - 17.9.24.27.1.3 Variation 3: Synthesis of ABAB-Type Nonuniformly Substituted Phthalocyanines [Seite 192]
8.27.2 - 17.9.24.27.2 Method 2: A3B-Type Phthalocyanines by Ring Expansion of Subphthalocyanines [Seite 192]
8.27.3 - 17.9.24.27.3 Method 3: Synthesis of A3B-Type Phthalocyanines Using a Polymer Support [Seite 194]
8.27.3.1 - 17.9.24.27.3.1 Variation 1: Synthesis of A3B-Type Phthalocyanines via ROMP-Capture-Release [Seite 196]
8.27.4 - 17.9.24.27.4 Method 4: ABAB-Type Phthalocyanines from 1,1,3-Trichloroisoindole Derivatives [Seite 198]
8.27.5 - 17.9.24.27.5 Method 5: Synthesis of ABAC-Type Phthalocyanines from Crossover Cyclotetramerization Reactions [Seite 199]
8.27.6 - 17.9.24.27.6 Method 6: Postfunctionalization of Phthalocyanines [Seite 200]
8.28 - 17.9.24.28 Multinuclear Phthalocyanines [Seite 208]
8.28.1 - 17.9.24.28.1 Method 1: Cyclotetramerization Reactions Using Phthalonitriles, Oligo (phthalonitriles), or Derivatives [Seite 208]
8.28.1.1 - 17.9.24.28.1.1 Variation 1: Dimeric Phthalocyanines from Bisphthalonitriles [Seite 208]
8.28.1.2 - 17.9.24.28.1.2 Variation 2: Trimeric Phthalocyanines from Phthalonitriles [Seite 212]
8.28.1.3 - 17.9.24.28.1.3 Variation 3: Dimeric Phthalocyanines from Fused Bis (pyrrolidinediimines) [Seite 214]
8.28.1.4 - 17.9.24.28.1.4 Variation 4: Oligomeric Phthalocyanines from Phthalonitriles [Seite 215]
8.28.2 - 17.9.24.28.2 Method 2: Synthesis by Connecting Preformed Phthalocyanines [Seite 217]
8.28.2.1 - 17.9.24.28.2.1 Variation 1: Reaction of Peripheral Substituents [Seite 217]
8.28.2.2 - 17.9.24.28.2.2 Variation 2: Axial Coordination [Seite 227]
9 - 34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen (Update 2017) [Seite 245]
9.1 - 34.1.1.8.1 Method 1: Reaction with Fluoride Ion Sources [Seite 245]
9.1.1 - 34.1.1.8.1.1 Variation 1: Using Metal Fluoride Reagents [Seite 245]
9.1.2 - 34.1.1.8.1.2 Variation 2: Using Ammonium Fluoride Salts [Seite 246]
9.2 - 34.1.1.8.2 Method 2: Reaction with Selectfluor [Seite 249]
9.2.1 - 34.1.1.8.2.1 Variation 1: Using Metal Catalysts [Seite 249]
9.2.2 - 34.1.1.8.2.2 Variation 2: Using Organocatalysts [Seite 252]
9.2.3 - 34.1.1.8.2.3 Variation 3: Using Light-Mediated Processes [Seite 253]
9.3 - 34.1.1.8.3 Method 3: Reaction with Selectfluor II [Seite 255]
9.4 - 34.1.1.8.4 Method 4: Reaction with N-Fluorobenzenesulfonimide [Seite 257]
10 - 34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen [Seite 261]
10.1 - 34.1.4.1.1 Method 1: Substitution of Primary Halides [Seite 261]
10.1.1 - 34.1.4.1.1.1 Variation 1: Using Metal Fluorides [Seite 261]
10.1.2 - 34.1.4.1.1.2 Variation 2: Using Hydrogen Fluoride Complexes [Seite 264]
10.1.3 - 34.1.4.1.1.3 Variation 3: Using Tetraalkylammonium Fluorides [Seite 265]
10.1.4 - 34.1.4.1.1.4 Variation 4: Using Fluorosilicate Derivatives [Seite 268]
10.2 - 34.1.4.1.2 Method 2: Substitution of Secondary Halides [Seite 268]
10.2.1 - 34.1.4.1.2.1 Variation 1: Using Metal Fluorides [Seite 269]
10.2.2 - 34.1.4.1.2.2 Variation 2: Using Hydrogen Fluoride Complexes [Seite 272]
10.3 - 34.1.4.1.3 Method 3: Substitution of Tertiary Halides [Seite 275]
10.3.1 - 34.1.4.1.3.1 Variation 1: Using Metal Fluorides [Seite 275]
10.3.2 - 34.1.4.1.3.2 Variation 2: Using Base-Hydrogen Fluoride Complexes [Seite 276]
10.3.3 - 34.1.4.1.3.3 Variation 3: Using Silver(I) Tetrafluoroborate [Seite 277]
10.3.4 - 34.1.4.1.3.4 Variation 4: Using Ruthenium Complexes [Seite 277]
11 - 34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities [Seite 281]
11.1 - 34.1.4.3.1 Method 1: Substitution of Trifluoromethanesulfonates and Imidazolesulfonates [Seite 281]
11.1.1 - 34.1.4.3.1.1 Variation 1: Using Difluorosilicate Derivatives [Seite 281]
11.1.2 - 34.1.4.3.1.2 Variation 2: Using Tetrabutylammonium Fluoride [Seite 282]
11.1.3 - 34.1.4.3.1.3 Variation 3: Using Base-Hydrogen Fluoride Complexes [Seite 285]
11.1.4 - 34.1.4.3.1.4 Variation 4: Using Metal Fluoride [Seite 286]
11.2 - 34.1.4.3.2 Method 2: Substitution of Cyclic Sulfates [Seite 287]
11.2.1 - 34.1.4.3.2.1 Variation 1: Using Ammonium Fluorides [Seite 287]
11.2.2 - 34.1.4.3.2.2 Variation 2: Using Tetrabutylammonium Fluoride for the Substitution of Cyclic Sulfamates [Seite 289]
11.3 - 34.1.4.3.3 Method 3: Substitution of Carboxylic Esters and Cyclic Carbonates [Seite 290]
11.4 - 34.1.4.3.4 Method 4: Substitution of O, S-Dialkyl Dithiocarbonates [Seite 291]
11.5 - 34.1.4.3.5 Method 5: Substitution of Primary Sulfonates [Seite 292]
11.5.1 - 34.1.4.3.5.1 Variation 1: Using Potassium Fluoride [Seite 293]
11.5.2 - 34.1.4.3.5.2 Variation 2: Using an Ionic Liquid and Cesium Fluoride [Seite 293]
11.5.3 - 34.1.4.3.5.3 Variation 3: Using Ammonium Fluorides under High Pressure [Seite 296]
11.5.4 - 34.1.4.3.5.4 Variation 4: Using Ammonium Fluorides or Hydrogen Difluorides [Seite 297]
11.5.5 - 34.1.4.3.5.5 Variation 5: Using Difluorosilicate Derivatives [Seite 298]
11.6 - 34.1.4.3.6 Method 6: Substitution of Secondary Sulfonates [Seite 299]
11.6.1 - 34.1.4.3.6.1 Variation 1: Using Potassium Fluoride [Seite 299]
11.6.2 - 34.1.4.3.6.2 Variation 2: Using Ammonium Fluorides [Seite 300]
11.6.3 - 34.1.4.3.6.3 Variation 3: Using Reagents Containing Hydrogen Fluoride [Seite 300]
11.6.4 - 34.1.4.3.6.4 Variation 4: Using Difluorosilicate [Seite 302]
11.6.5 - 34.1.4.3.6.5 Variation 5: Using Cesium Fluoride and Polymer-Supported Pentaethylene Glycol [Seite 303]
11.7 - 34.1.4.3.7 Method 7: Substitution of Sulfides [Seite 304]
11.7.1 - 34.1.4.3.7.1 Variation 1: Substitution of Alkyl Sulfides [Seite 304]
11.7.2 - 34.1.4.3.7.2 Variation 2: Substitution of Thioglycosides [Seite 305]
11.8 - 34.1.4.3.8 Method 8: Substitution of Ethers Using a Hydrofluoric Acid Complex [Seite 306]
11.9 - 34.1.4.3.9 Method 9: Substitution of a Carbamimidate Using Hydrofluoric Acid Complex [Seite 307]
12 - 34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group (update 2017) [Seite 311]
12.1 - 34.1.6.4.1 Method 1: Substitution of ?-Halogen Atoms [Seite 311]
12.1.1 - 34.1.6.4.1.1 Variation 1: Dechlorinative Carbon-Carbon Bond Formation at an ?-sp3 Carbon Center [Seite 311]
12.1.2 - 34.1.6.4.1.2 Variation 2: Debrominative Carbon-Carbon Bond Formation at an ?-sp3 Carbon Center [Seite 312]
12.1.3 - 34.1.6.4.1.3 Variation 3: Deiodinative Carbon-Carbon Bond Formation at an ?-sp3 Carbon Center [Seite 319]
12.1.4 - 34.1.6.4.1.4 Variation 4: Debrominative Carbon-Carbon Bond Formation at a ?-sp3 Carbon Center [Seite 321]
12.2 - 34.1.6.4.2 Method 2: Substitution of Carboxy or Alkoxycarbonyl Groups [Seite 322]
12.3 - 34.1.6.4.3 Method 3: Substitution of Other Groups [Seite 324]
12.4 - 34.1.6.4.4 Method 4: Deprotonation [Seite 327]
12.4.1 - 34.1.6.4.4.1 Variation 1: Deprotonative Construction of a Carbon-Carbon Single Bond [Seite 327]
12.4.2 - 34.1.6.4.4.2 Variation 2: Deprotonative Construction of a Carbon-Carbon Single Bond under an SN2 or SN2? Mechanism [Seite 333]
12.4.3 - 34.1.6.4.4.3 Variation 3: Deprotonative Construction of a Carbon-Carbon Single Bond by Conjugate Addition [Seite 336]
12.4.4 - 34.1.6.4.4.4 Variation 4: Deprotonative Construction of a Carbon-Carbon Single Bond by Addition to a C=X Bond [Seite 341]
12.5 - 34.1.6.4.5 Method 5: Hydrogenation (Reduction) [Seite 348]
12.5.1 - 34.1.6.4.5.1 Variation 1: Hydrogenation of a Carbon-Carbon Double Bond [Seite 348]
12.5.2 - 34.1.6.4.5.2 Variation 2: Reduction of a Carbon-Nitrogen Double Bond [Seite 350]
12.6 - 34.1.6.4.6 Method 6: Ring Formation [Seite 352]
12.6.1 - 34.1.6.4.6.1 Variation 1: By Cycloaddition [Seite 352]
12.6.2 - 34.1.6.4.6.2 Variation 2: By Iodolactonization [Seite 353]
13 - 34.2.2 Fluorocyclopropanes [Seite 359]
13.1 - 34.2.2.1 Method 1: Carbene and Carbenoid Addition to Fluoroalkenes [Seite 360]
13.1.1 - 34.2.2.1.1 Variation 1: Simmons-Smith Reaction of Fluorinated Allylic Alcohols Using Diethylzinc/Diiodomethane [Seite 360]
13.1.2 - 34.2.2.1.2 Variation 2: Simmons-Smith Reaction of Fluorinated Silyl Enol Ethers Using Diethylzinc/Diiodomethane [Seite 361]
13.1.3 - 34.2.2.1.3 Variation 3: Addition of Diazoacetic Esters to Fluoroalkenes [Seite 361]
13.1.4 - 34.2.2.1.4 Variation 4: Enantioselective Addition of Methyl 2-Diazo-2-phenylacetate to Fluoroalkenes [Seite 363]
13.1.5 - 34.2.2.1.5 Variation 5: Racemic and Catalytic Enantioselective Addition of Diacceptor Diazo Derivatives to Fluoroalkenes [Seite 364]
13.1.6 - 34.2.2.1.6 Variation 6: Intramolecular Cyclopropanation of (Z)-3-Bromo-3-fluoroallyl 2-Cyano-2-diazoacetate [Seite 367]
13.2 - 34.2.2.2 Method 2: 1-Fluoro-1-halocyclopropanes via Addition of Fluorohalocarbenes to Alkenes [Seite 367]
13.2.1 - 34.2.2.2.1 Variation 1: Phase-Transfer-Catalyzed Formation of Chlorofluorocyclopropanes [Seite 367]
13.2.2 - 34.2.2.2.2 Variation 2: Bromofluorocarbene Addition to Alkenes Using Phase-Transfer Catalysis [Seite 368]
13.3 - 34.2.2.3 Method 3: Direct Fluorocarbene Addition to Alkenes [Seite 370]
13.3.1 - 34.2.2.3.1 Variation 1: Fluorocyclopropanes from Chlorofluoromethyl Phenyl Sulfide and Alkenes [Seite 370]
13.3.2 - 34.2.2.3.2 Variation 2: Fluorocyclopropanes from Difluoroiodomethane and Alkenes [Seite 372]
13.4 - 34.2.2.4 Method 4: Fluorocyclopropanes via Michael-Initiated Ring-Closure Reaction [Seite 374]
13.4.1 - 34.2.2.4.1 Variation 1: Fluorocyclopropanes from ?-Fluorinated Sulfoximides and ?,?-Unsaturated Weinreb Amides [Seite 375]
13.4.2 - 34.2.2.4.2 Variation 2: Fluorocyclopropanes from a (1-Fluorovinyl) diphenylsulfonium Salt and Active Methylene Compounds [Seite 376]
13.4.3 - 34.2.2.4.3 Variation 3: Fluorocyclopropanes from Michael Acceptors and Ethyl 2,2-Dibromo-2-fluoroacetate [Seite 377]
13.4.4 - 34.2.2.4.4 Variation 4: Fluorocyclopropanes from Michael Acceptors and Quaternary Ammonium Salts of Bromo Fluoro Amide Derivatives [Seite 382]
13.5 - 34.2.2.5 Method 5: Fluorohydroxylation of Alkylidenecyclopropanes [Seite 383]
13.6 - 34.2.2.6 Method 6: Reaction of Chlorocyclopropanes with Fluoride Anion [Seite 383]
14 - 34.3.2 (Fluoromethyl) cyclopropanes (Update 2017) [Seite 387]
14.1 - 34.3.2.1 Method 1: Fluorodehydroxylation of Cyclopropylmethanols with N, N-Diethylaminosulfur Trifluoride or Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor) [Seite 387]
14.2 - 34.3.2.2 Method 2: Formation of Cyclopropylmethyl Sulfonates and Displacement by Fluoride [Seite 388]
14.3 - 34.3.2.3 Method 3: Rearrangement of Fluoro Epoxides [Seite 388]
15 - 34.4.2 Fluorocyclobutanes (Update 2017) [Seite 391]
15.1 - 34.4.2.1 Method 1: Fluorodehydroxylation of Cyclobutanols [Seite 391]
15.1.1 - 34.4.2.1.1 Variation 1: Fluorodehydroxylation Using Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor) [Seite 392]
15.1.2 - 34.4.2.1.2 Variation 2: Fluorodehydroxylation Using Tetramethylfluoroformamidinium Hexafluorophosphate (TFFH) [Seite 394]
15.2 - 34.4.2.2 Method 2: Reactions of Cyclobutanes Bearing a Leaving Group with Fluorinating Agents [Seite 395]
15.2.1 - 34.4.2.2.1 Variation 1: Reaction of a Bridged Halocyclobutane with Silver(I) Fluoride [Seite 395]
15.2.2 - 34.4.2.2.2 Variation 2: Reactions of Cyclobutane Trifluoromethanesulfonates with Tetrabutylammonium Fluoride [Seite 395]
15.3 - 34.4.2.3 Method 3: Ring-Expansion Reactions of Cyclopropyl Carbinols with Nucleophilic Fluoride [Seite 396]
15.3.1 - 34.4.2.3.1 Variation 1: N, N-Diethylaminosulfur Trifluoride Promoted Ring Expansion of a Methylenecyclopropyl Carbinol [Seite 396]
15.3.2 - 34.4.2.3.2 Variation 2: Nonafluorobutanesulfonyl Fluoride Promoted Ring Expansion of Methylenecyclopropyl Carbinols [Seite 396]
15.4 - 34.4.2.4 Method 4: Addition of Halogen Fluorides to Methylenecyclobutane and Cyclobutenes [Seite 397]
15.4.1 - 34.4.2.4.1 Variation 1: Addition of Bromine Monofluoride to Methylenecyclobutane [Seite 397]
15.4.2 - 34.4.2.4.2 Variation 2: Rearrangement of 2-(Benzyloxycarbonyl)-2-azabicyclo[2.2.0]hex-5-ene in the Presence of Bromine Monofluoride [Seite 398]
15.4.3 - 34.4.2.4.3 Variation 3: Addition of Iodine Monofluoride to N-Protected 2-Azabicyclo[2.2.0]hexenes [Seite 398]
15.5 - 34.4.2.5 Method 5: Synthesis of Fluorocyclobutanes by [2 + 2] Photocycloaddition Reactions [Seite 399]
15.5.1 - 34.4.2.5.1 Variation 1: Intramolecular [2 + 2] Photocycloaddition Reactions [Seite 400]
16 - 34.7.4 Allylic Fluorides (Update 2017) [Seite 403]
16.1 - 34.7.4.1 Method 1: Allylic Substitution of Oxygen-Based Leaving Groups [Seite 403]
16.1.1 - 34.7.4.1.1 Variation 1: From Allylic Alcohols [Seite 403]
16.1.2 - 34.7.4.1.2 Variation 2: From Allylic Carbonates [Seite 404]
16.1.3 - 34.7.4.1.3 Variation 3: From Allylic Esters [Seite 406]
16.1.4 - 34.7.4.1.4 Variation 4: From Allylic Imidates [Seite 407]
16.2 - 34.7.4.2 Method 2: Allylic Substitution of Sulfur-Based Leaving Groups [Seite 409]
16.3 - 34.7.4.3 Method 3: Allylic Substitution of Silicon-Based Leaving Groups [Seite 410]
16.4 - 34.7.4.4 Method 4: Allylic Substitution of Halogen Leaving Groups [Seite 413]
16.5 - 34.7.4.5 Method 5: Ring Opening/Fluorination [Seite 416]
16.5.1 - 34.7.4.5.1 Variation 1: From Vinyl Epoxides [Seite 416]
16.5.2 - 34.7.4.5.2 Variation 2: From Oxabicyclic Alkenes [Seite 417]
16.6 - 34.7.4.6 Method 6: Fluorination of Allenes [Seite 418]
16.6.1 - 34.7.4.6.1 Variation 1: Carbofluorination [Seite 418]
16.6.2 - 34.7.4.6.2 Variation 2: Iodofluorination [Seite 420]
16.7 - 34.7.4.7 Method 7: Fluorination of Alkenes [Seite 421]
16.7.1 - 34.7.4.7.1 Variation 1: Electrophilic Fluorination with Directing Groups [Seite 421]
16.7.2 - 34.7.4.7.2 Variation 2: One-Pot Fluoroselenation/Elimination [Seite 424]
16.8 - 34.7.4.8 Method 8: Fluorination of Vinylic Diazoacetates [Seite 424]
16.9 - 34.7.4.9 Method 9: One-Pot ?-Fluorination/Wittig-Type Reaction [Seite 426]
16.10 - 34.7.4.10 Method 10: Fluorination of Allylic C?H Bonds [Seite 427]
17 - 34.9.3 ?-Fluoro Alcohols [Seite 431]
17.1 - 34.9.3.1 Method 1: Fluorination of Allylic Alcohols [Seite 431]
17.2 - 34.9.3.2 Method 2: Aldol Reaction of ?-Fluoro Carbonyl Compounds [Seite 433]
17.2.1 - 34.9.3.2.1 Variation 1: Enzyme-Catalyzed Aldol Reaction [Seite 434]
17.2.2 - 34.9.3.2.2 Variation 2: Decarboxylative Aldol Reaction [Seite 435]
17.2.3 - 34.9.3.2.3 Variation 3: Detrifluoroacetylative Aldol Reaction [Seite 437]
17.3 - 34.9.3.3 Method 3: Synthesis via ?-Fluorination of Carbonyl Compounds [Seite 439]
17.3.1 - 34.9.3.1.1 Variation 1: Via Fluorination Using Enamine Catalysis [Seite 439]
17.3.2 - 34.9.3.1.2 Variation 2: Via Fluorination of Active Methine Compounds [Seite 442]
18 - 34.10.5 ?-Fluoroamines (Update 2017) [Seite 447]
18.1 - 34.10.5.1 Method 1: Reduction of ?-Fluoro Azides [Seite 448]
18.2 - 34.10.5.2 Method 2: N-Substitution of a Leaving Group ? to Fluorine [Seite 449]
18.3 - 34.10.5.3 Method 3: Ring Opening of Aziridines with Hydrogen Fluoride Equivalents [Seite 450]
18.3.1 - 34.10.5.3.1 Variation 1: Ring Opening of Aziridines with the Fluoride Ion [Seite 452]
18.4 - 34.10.5.4 Method 4: Ring Opening of Cyclic Sulfamates with the Fluoride Ion [Seite 452]
18.5 - 34.10.5.5 Method 5: C?H Activation and Fluorination of Alkylamines [Seite 453]
18.5.1 - 34.10.5.5.1 Variation 1: Photocatalytic C?H Activation and Fluorination [Seite 454]
18.6 - 34.10.5.6 Method 6: Electrophilic Fluorination of Enamines and Related Substrates [Seite 455]
18.7 - 34.10.5.7 Method 7: Fluoroalkylation of Imines [Seite 457]
18.8 - 34.10.5.8 Method 8: Electrophilic Fluorination of ?-Amino Carbonyl Compounds [Seite 460]
18.9 - 34.10.5.9 Method 9: Reductive Amination of ?-Fluoro Carbonyl Compounds [Seite 461]
18.9.1 - 34.10.5.9.1 Variation 1: Nucleophilic Addition to ?-Fluorinated Imine Derivatives [Seite 462]
18.10 - 34.10.5.10 Method 10: Fluorination of Allylic Amines [Seite 463]
18.10.1 - 34.10.5.10.1 Variation 1: Electrophilic Fluorination of Allylic Amines [Seite 464]
18.11 - 34.10.5.11 Method 11: Addition of an N-Nucleophile to a Fluoroalkene [Seite 466]
18.12 - 34.10.5.12 Method 12: Aminofluorination of Alkenes [Seite 467]
18.12.1 - 34.10.5.12.1 Variation 1: Aminofluorination of Unactivated Alkenes [Seite 469]
18.13 - 34.10.5.13 Method 13: Decarboxylative Fluorination [Seite 472]
18.14 - 34.10.5.14 Method 14: Reduction of an Unsaturated ?-Fluoroamine Precursor [Seite 473]
18.15 - 34.10.5.15 Method 15: 1,3-Dipolar Cycloadditions [Seite 474]
18.16 - 34.10.5.16 Method 16: Fluorocyclopropanation of an Unsaturated Amine [Seite 474]
19 - 40.1.6.2 Azetidines (Update 2017) [Seite 479]
19.1 - 40.1.6.2.1 Ring-Closure Reactions [Seite 479]
19.1.1 - 40.1.6.2.1.1 Method 1: Ring Closure of Amines and 1,3-Functionalized Hydrocarbons [Seite 480]
19.1.1.1 - 40.1.6.2.1.1.1 Variation 1: From Amines and 1,3-Dihalo Compounds [Seite 480]
19.1.1.2 - 40.1.6.2.1.1.2 Variation 2: From Amines and 1,3-Diol Derivatives [Seite 481]
19.1.2 - 40.1.6.2.1.2 Method 2: Organocatalyzed [2 + 2] Cycloaddition of Imines and Alkenes [Seite 482]
19.1.3 - 40.1.6.2.1.3 Method 3: Ring Closure of Acyclic Amines [Seite 483]
19.1.3.1 - 40.1.6.2.1.3.1 Variation 1: Ring Closure of ?-Haloamines [Seite 483]
19.1.3.2 - 40.1.6.2.1.3.2 Variation 2: Ring Closure of ?-Hydroxy Amines and Derivatives [Seite 484]
19.1.3.3 - 40.1.6.2.1.3.3 Variation 3: Ring Closure of ?-Alkenylamines [Seite 488]
19.1.3.4 - 40.1.6.2.1.3.4 Variation 4: Ring Closure of ?,?-Epoxyamines [Seite 489]
19.1.3.5 - 40.1.6.2.1.3.5 Variation 5: Ring Closure of ?,?-Epoxyamines [Seite 490]
19.1.3.6 - 40.1.6.2.1.3.6 Variation 6: Ring Closure of N-(Aziridin-2-ylmethyl) amines [Seite 490]
19.1.3.7 - 40.1.6.2.1.3.7 Variation 7: Ring Closure of ?-Amino Sulfonium Ions [Seite 491]
19.1.3.8 - 40.1.6.2.1.3.8 Variation 8: Ring Closure of ?-Amino Selenones [Seite 492]
19.1.3.9 - 40.1.6.2.1.3.9 Variation 9: Ring Closure of ?-Alkenylamines [Seite 493]
19.1.4 - 40.1.6.2.1.4 Method 4: Ring Closure of Acyclic Imines [Seite 494]
19.1.5 - 40.1.6.2.1.5 Method 5: Ring Closure of Stabilized Carbanions (C?C Bond Formation) [Seite 495]
19.1.5.1 - 40.1.6.2.1.5.1 Variation 1: Intramolecular Alkylation of ?-Amino Halides [Seite 495]
19.1.5.2 - 40.1.6.2.1.5.2 Variation 2: Intramolecular Alkylation of 2-(Aminomethyl) oxiranes [Seite 497]
19.2 - 40.1.6.2.2 Reduction of Four-Membered Ring Compounds [Seite 498]
19.2.1 - 40.1.6.2.2.1 Method 1: Reduction of Azetidin-2-ones (?-Lactams) [Seite 498]
19.2.2 - 40.1.6.2.2.2 Method 2: Reduction of Azetes [Seite 501]
19.3 - 40.1.6.2.3 Ring Transformation Reactions [Seite 502]
19.3.1 - 40.1.6.2.3.1 Method 1: Ring Expansion of Three-Membered Rings [Seite 502]
19.3.2 - 40.1.6.2.3.2 Method 2: Ring Contraction of Five-Membered Rings [Seite 504]
19.3.3 - 40.1.6.2.3.3 Method 3: Substitution at Ring Carbons [Seite 505]
19.3.4 - 40.1.6.2.3.4 Method 4: Substitution at the Ring Nitrogen [Seite 506]
19.3.5 - 40.1.6.2.3.5 Method 5: Resolution of Racemic Azetidines [Seite 507]
19.4 - 40.1.6.2.4 Miscellaneous Reactions [Seite 508]
20 - Author Index [Seite 513]
21 - Abbreviations [Seite 541]
Abstracts
17.9.24 Phthalocyanines and Related Compounds
M. S. Rodríguez-Morgade and T. Torres
This review updates the original Science of Synthesis chapter (Section 17.9) on phthalocyanines and various ring-fused, ring-contracted, and ring-expanded analogues. It adds some recently published methods, examples, and variations on the synthesis of unsubstituted phthalocyanines and metal phthalocyanines, as well as identically and nonidentically substituted phthalocyanine derivatives. Besides peripheral substitution, axial functionalization is also discussed, but attention is focused only on those methods that represent appreciable progress for a particular type of metal coordination and axial functionalization, provide phthalocyanines with specific features such as chirality, or allow the functionalization of phthalocyanines with entities that are difficult to introduce at the peripheral sites. This account also includes sections on new types of phthalocyanine derivatives and analogues that were not covered in the original chapter, as well as the progress made in the synthesis of some of these families in the decade since 2003.
Keywords: phthalocyanines phthalocyanine-metal complexes porphyrazines tetraazaporphyrins naphthalocyanines phenanthrenocyanines triphenylenocyanines anthracenocyanines pyrenocyanines benzoperylenocyanines helicenocyanines azulenocyanines tetraazachlorins tetraazabacteriochlorins azaphthalocyanines triazacorroles subphthalocyanines subporphyrazines superazaporphyrins pyrenocyanines phthalonitriles phthalic anhydrides phthalic acids phthalimides isoindolinediimines condensation reactions substituent modification ligand substitution
34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen
M. Rueda-Becerril and G. M. Sammis
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.1.1) describing methods for the synthesis of fluoroalkanes by substitution of hydrogen. The increasing importance of fluorine-containing molecules in the health, pharmaceutical, and agrochemical sectors has resulted in the rapid development of more-selective, morecontrolled, and safer methods for the insertion of a fluorine atom into structurally diverse molecules. Herein, the most synthetically useful methods reported from 2006 until mid-2016 to achieve such transformations are described.
Keywords: fluorination hydrogen substitution alkanes cycloalkanes fluorine compounds fluorine transfer Selectfluor photocatalysis organometallic reagents
34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen
T. P. Lequeux
This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of fluoroalkanes by substitution of a halogen atom. It includes additional methods published up until 2016. Newer approaches involve the use of fluoride complex reagents and the use of solvent effects to avoid competitive elimination reactions.
Keywords: fluoroalkanes nucleophilic substitution fluorides halides alkanes cycloalkanes nucleosides amines steroids ammonium compounds copper complexes
34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities
T. P. Lequeux
This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of fluoroalkanes by substitution of oxygen and sulfur functionalities. It now includes the literature published up until 2016. The additional material focuses on new reagents and their applications. For example, the effect of an ionic liquid on the rate of the displacement of sulfonates by cesium fluoride, and expeditious synthesis of nucleoside derivatives are described.
Keywords: fluoroalkanes nucleophilic substitution fluorides sulfonates alkanes cycloalkanes pyrans nucleosides carbohydrates steroids sulfur compounds copper complexes
34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group
T. Yamazaki
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.1.6) describing methods for the synthesis of monofluorinated compounds with a C(sp3)─F bond by way of a wide variety of transformations of molecules already bearing the key C─F bond. The focus is on methods published in the period 2005-2015.
Keywords: alkylation crossed aldol reactions conjugate addition SN2´ reactions hydrogenation reduction cycloadditions iodolactonization
34.2.2 Fluorocyclopropanes
P. Jubault, T. Poisson, and X. Pannecoucke
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.2) describing methods for the synthesis of fluorocyclopropanes. The most important breakthrough described in this update is the development of asymmetric syntheses of fluorocyclopropanes based on various approaches, such as the use of chiral fluorinated scaffolds or the development of catalytic enantioselective sequences. This review focuses on the contributions published between 2005 and 2016.
Keywords: fluorocyclopropanes cyclopropanes fluorine compounds conjugate addition carbenoids diazo compounds asymmetric catalysis alkenes
34.3.2 (Fluoromethyl) cyclopropanes
P. Jubault, T. Poisson, and X. Pannecoucke
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.3) describing methods for the synthesis of (fluoromethyl) cyclopropanes. In this review, new methods, published since 2006, by means of direct or two-step fluorodehydroxylation and by rearrangement of fluoroepoxides are described.
Keywords: (fluoromethyl) cyclopropanes cyclopropanes fluorine compounds nucleophilic fluorination carbenoids rearrangement
34.4.2 Fluorocyclobutanes
T. Poisson, P. Jubault, and X. Pannecoucke
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.4) describing methods for the synthesis of fluorocyclobutanes. In this review, progress made in the field since 2006 is reported. The use of cycloaddition reactions as well as rearrangement reactions to access the fluorocyclobutane motif are significant advances in this area.
Keywords: fluorocyclobutanes cyclobutanes fluorine compounds nucleophilic fluorination [2 + 2] cycloaddition rearrangement
34.7.4 Allylic Fluorides
C. R. Pitts and T. Lectka
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.7) regarding the synthesis of allylic monofluorides. Herein, literature from 2005-2015 is discussed. Advancements during this time period include the employment of milder fluorinating reagents, methods that favor alkene migration or retention, tactics for catalytic and asymmetric reactions, and the introduction of a creative array of functional-group interconversions.
Keywords: fluorination halogenation allylic fluorides carbon─halogen bonds allylic substitution electrophilic fluorination nucleophilic fluorination asymmetric fluorination regioselectivity
34.9.3 ß-Fluoro Alcohols
K. Shibatomi
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.9) describing methods for the synthesis of ß-fluoro alcohols. It focuses on enantioselective synthetic approaches, and includes methods based on the a-fluorination of carbonyl compounds and subsequent reduction.
Keywords: ß-fluoro alcohols fluorine compounds asymmetric fluorination decarboxylation decarbonylation aldol reaction reduction enantioselectivity Lewis acid catalysts chiral amine catalysts
34.10.5 ß-Fluoroamines
L. Hunter
This chapter is an update to the earlier Science of Synthesis contribution (Section 34.10) describing methods for the synthesis of ß-fluoroamines. This topic has continued to attract signficant attention from the synthetic community, largely due to the medicinal importance of this class of compounds. A wide variety of new methods have been developed, and this review focuses on examples that were published between 2005 and 2015.
Keywords: aminofluorination carbon─fluorine bonds electrophilic fluorination nucleophilic fluorination radical fluorination stereoselective reactions
40.1.6.2...