Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Master the lucrative discipline of quantitative trading with this insightful handbook from a master in the field
In the newly revised Second Edition of Quantitative Trading: How to Build Your Own Algorithmic Trading Business, quant trading expert Dr. Ernest P. Chan shows you how to apply both time-tested and novel quantitative trading strategies to develop or improve your own trading firm.
You'll discover new case studies and updated information on the application of cutting-edge machine learning investment techniques, as well as:
Perfect for independent retail traders seeking to start their own quantitative trading business, or investors looking to invest in such traders, this new edition of Quantitative Trading will also earn a place in the libraries of individual investors interested in exploring a career at a major financial institution.
ERNEST P. CHAN, PhD, is an expert in the application of statistical models and software for trading currencies, futures, and stocks. He holds a doctorate in theoretical physics from Cornell University and is Managing Member of investment management firm QTS Capital Management and founder of financial machine learning firm Predictnow.ai.
Preface to the 2nd Edition xi
Preface xv
Acknowledgments xxi
Chapter 1: The Whats, Whos, and Whys of Quantitative Trading 1
Who Can Become a Quantitative Trader? 2
The Business Case for Quantitative Trading 4
Scalability 5
Demand on Time 5
The Nonnecessity of Marketing 7
The Way Forward 8
Chapter 2: Fishing for Ideas 11
How to Identify a Strategy that Suits You 14
Your Working Hours 14
Your Programming Skills 15
Your Trading Capital 15
Your Goal 19
A Taste for Plausible Strategies and Their Pitfalls 20
How Does It Compare with a Benchmark, and How Consistent Are Its Returns? 20
How Deep and Long Is the Drawdown? 23
How Will Transaction Costs Affect the Strategy? 24
Does the Data Suffer from Survivorship Bias? 26
How Did the Performance of the Strategy Change over the Years? 27
Does the Strategy Suffer from Data-Snooping Bias? 28
Does the Strategy "Fly under the Radar" of Institutional Money Managers? 30
Summary 30
References 31
Chapter 3: Backtesting 33
Common Backtesting Platforms 34
Excel 34
MATLAB 34
Python 36
R 38
QuantConnect 40
Blueshift 40
Finding and Using Historical Databases 40
Are the Data Split and Dividend Adjusted? 41
Are the Data Survivorship-Bias Free? 44
Does Your Strategy Use High and Low Data? 46
Performance Measurement 47
Common Backtesting Pitfalls to Avoid 57
Look-Ahead Bias 58
Data-Snooping Bias 59
Transaction Costs 72
Strategy Refinement 77
Summary 78
References 79
Chapter 4: Setting Up Your Business 81
Business Structure: Retail or Proprietary? 81
Choosing a Brokerage or Proprietary Trading Firm 85
Physical Infrastructure 87
Summary 89
References 91
Chapter 5: Execution Systems 93
What an Automated Trading System Can Do for You 93
Building a Semiautomated Trading System 95
Building a Fully Automated Trading System 98
Minimizing Transaction Costs 101
Testing Your System by Paper Trading 103
Why Does Actual Performance Diverge from Expectations? 104
Summary 107
Chapter 6: Money and Risk Management 109
Optimal Capital Allocation and Leverage 109
Risk Management 120
Model Risk 124
Software Risk 125
Natural Disaster Risk 125
Psychological Preparedness 125
Summary 130
Appendix: A Simple Derivation of the Kelly Formula when Return Distribution Is Gaussian 131
References 132
Chapter 7: Special Topics in Quantitative Trading 133
Mean-Reverting versus Momentum Strategies 134
Regime Change and Conditional Parameter Optimization 137
Stationarity and Cointegration 147
Factor Models 160
What Is Your Exit Strategy? 169
Seasonal Trading Strategies 174
High-Frequency Trading Strategies 186
Is it Better to Have a High-Leverage versus a High-Beta Portfolio? 188
Summary 190
References 192
Chapter 8: Conclusion 193
Next Steps 197
References 198
Appendix: A Quick Survey of MATLAB 199
Bibliography 205
About the Author 209
Index 211
If you are curious enough to pick up this book, you probably have already heard of quantitative trading. But even for readers who learned about this kind of trading from the mainstream media before, it is worth clearing up some common misconceptions.
Quantitative trading, also known as algorithmic trading, is the trading of securities based strictly on the buy/sell decisions of computer algorithms. The computer algorithms are designed and perhaps programmed by the traders themselves, based on the historical performance of the encoded strategy tested against historical financial data.
Is quantitative trading just a fancy name for technical analysis, then? Granted, a strategy based on technical analysis can be part of a quantitative trading system if it can be fully encoded as computer programs. However, not all technical analysis can be regarded as quantitative trading. For example, certain chartist techniques such as "look for the formation of a head and shoulders pattern" might not be included in a quantitative trader's arsenal because they are quite subjective and may not be quantifiable.
Yet quantitative trading includes more than just technical analysis. Many quantitative trading systems incorporate fundamental data in their inputs: numbers such as revenue, cash flow, debt-to-equity ratio, and others. After all, fundamental data are nothing but numbers, and computers can certainly crunch any numbers that are fed into them! When it comes to judging the current financial performance of a company compared to its peers or compared to its historical performance, the computer is often just as good as human financial analysts-and the computer can watch thousands of such companies all at once. Some advanced quantitative systems can even incorporate news events as inputs: Nowadays, it is possible to use a computer to parse and understand the news report. (After all, I used to be a researcher in this very field at IBM, working on computer systems that can understand approximately what a document is about.)
So you get the picture: As long as you can convert information into bits and bytes that the computer can understand, it can be regarded as part of quantitative trading.
It is true that most institutional quantitative traders received their advanced degrees as physicists, mathematicians, engineers, or computer scientists. This kind of training in the hard sciences is often necessary when you want to analyze or trade complex derivative instruments. But those instruments are not the focus in this book. There is no law stating that one can become wealthy only by working with complicated financial instruments. (In fact, one can become quite poor trading complex mortgage-backed securities, as the financial crisis of 2007-08 and the demise of Bear Stearns have shown.) The kind of quantitative trading I focus on is called statistical arbitrage trading. Statistical arbitrage deals with the simplest financial instruments: stocks, futures, and sometimes currencies. One does not need an advanced degree to become a statistical arbitrage trader. If you have taken a few high school-level courses in math, statistics, computer programming, or economics, you are probably as qualified as anyone to tackle some of the basic statistical arbitrage strategies.
Okay, you say, you don't need an advanced degree, but surely it gives you an edge in statistical arbitrage trading? Not necessarily. I received a PhD from one of the top physics departments of the world (Cornell University). I worked as a successful researcher in one of the top computer science research groups in the world (at that temple of high-techdom: IBM's T. J. Watson Research Center). Then I worked in a string of top investment banks and hedge funds as a researcher and finally trader, including Morgan Stanley, Credit Suisse, and so on. As a researcher and trader in these august institutions, I had always strived to use some of the advanced mathematical techniques and training that I possessed and applied them to statistical arbitrage trading. Hundreds of millions of dollars of trades later, what was the result? Losses, more losses, and losses as far as the eye can see, for my employers and their investors. Finally, I quit the financial industry in frustration, set up a spare bedroom in my home as my trading office, and started to trade the simplest but still quantitative strategies I know. These are strategies that any smart high school student can easily research and execute. For the first time in my life, my trading strategies became profitable (one of which is described in Example 3.6), and has been the case ever since. The lesson I learned? A famous quote, often attributed to Albert Einstein, sums it up: "Make everything as simple as possible. But not simpler."
(Stay tuned: I will detail more reasons why independent traders can beat institutional money managers at their own game in Chapter 8.)
Though I became a quantitative trader through a fairly traditional path, many others didn't. Who are the typical independent quantitative traders? Among people I know, they include a former trader at a hedge fund that has gone out of business, a computer programmer who used to work for a brokerage, a former trader at one of the exchanges, a former investment banker, a former biochemist, and an architect. Some of them have received advanced technical training, but others have only basic familiarity of high school-level statistics. Most of them backtest their strategies using basic tools like Excel, though others hire programming contractors to help. Most of them have at some point in their career been professionally involved with the financial world but have now decided that being independent suits their needs better. As far as I know, most of them are doing quite well on their own, while enjoying the enormous freedom that independence brings.
Besides having gained some knowledge of finance through their former jobs, the fact that these traders have saved up a nest egg for their independent venture is obviously important, too. When one plunges into independent trading, fear of losses and of being isolated from the rest of the world is natural, and so it helps to have both a prior appreciation of risks and some savings to lean on. It is important not to have a need for immediate profits to sustain your daily living, as strategies have intrinsic rates of returns that cannot be hurried (see Chapter 6).
Instead of fear, some of you are planning to trade because of the love of thrill and danger, or an incredible self-confidence that instant wealth is imminent. This is also a dangerous emotion to bring to independent quantitative trading. As I hope to persuade you in this chapter and in the rest of the book, instant wealth is not the objective of quantitative trading.
The ideal independent quantitative trader is therefore someone who has some prior experience with finance or computer programming, who has enough savings to withstand the inevitable losses and periods without income, and whose emotion has found the right balance between fear and greed.
A lot of us are in the business of quantitative trading because it is exciting, intellectually stimulating, financially rewarding, or perhaps it is the only thing we are good at doing. But for others who may have alternative skills and opportunities, it is worth pondering whether quantitative trading is the best business for you.
Despite all the talk about untold hedge fund riches and dollars that are measured in units of billions, in many ways starting a quantitative trading business is very similar to starting any small business. We need to start small, with limited investment (perhaps only a $50,000 initial investment), and gradually scale up the business as we gain know-how and become profitable.
In other ways, however, a quantitative trading business is very different from other small businesses. Here are some of the most important.
Compared to most small businesses (other than certain dot-coms), quantitative trading is very scalable (up to a point). It is easy to find yourselves trading millions of dollars in the comfort of your own home, as long as your strategy is consistently profitable. This is because scaling up often just means changing a number in your program. This number is called leverage. You do not need to negotiate with a banker or a venture capitalist to borrow more capital for your business. The brokerages stand ready and willing to do that. If you are a member of a proprietary trading firm (more on this later in Chapter 4 on setting up a business), you may even be able to obtain leverage far exceeding that allowed by Securities and Exchange Commission (SEC) Regulation T. It is not unheard of for a proprietary trading firm to let you trade a portfolio worth $2 million intraday even if you have only $50,000 equity in your account (a ×40 leverage). If you trade futures, options, or currencies, you can obtain leverage often exceeding ×10 from a regular brokerage, sparing yourself the trouble of joining a prop trading firm. (For example, at this writing, you only need about $12,000 in margin cash to trade one contract of the E-mini S&P 500 future, which has a notional market value of about $167,500.) At the same time, quantitative trading is definitely not a get-rich-quick scheme. You should hope to have steadily...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.