1 - Science of Synthesis: Knowledge Updates 2014/1 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 14]
1.6 - Table of Contents [Seite 16]
1.7 - Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10 - 8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) [Seite 28]
1.7.1 - 1.7 Product Class 7: Organometallic Complexes of Iron [Seite 28]
1.7.1.1 - 1.7.1 Product Subclass 1: Iron-Arene Complexes [Seite 33]
1.7.1.1.1 - Synthesis of Product Subclass 1 [Seite 33]
1.7.1.1.1.1 - 1.7.1.1 Method 1: Direct Complexation of Arenes [Seite 33]
1.7.1.1.1.2 - 1.7.1.2 Method 2: Iron-Catalyzed Cycloaromatization [Seite 35]
1.7.1.1.1.3 - 1.7.1.3 Method 3: Modification of .6-Complexes [Seite 35]
1.7.1.1.1.3.1 - 1.7.1.3.1 Variation 1: Replacement of Chloride in Chlorobenzene Complexes by Nucleophiles [Seite 36]
1.7.1.1.1.3.2 - 1.7.1.3.2 Variation 2: Use of Palladium-Catalyzed Coupling in the Presence of Cationic Iron-Cyclopentadienyl Complexes [Seite 37]
1.7.1.1.1.3.3 - 1.7.1.3.3 Variation 3: Use of Nucleophilic Complexes Obtained by Deprotonation of Arene-Cyclopentadienyliron Complexes [Seite 38]
1.7.1.1.1.3.4 - 1.7.1.3.4 Variation 4: Ligand Modification by Ring-Closing Metathesis [Seite 38]
1.7.1.1.1.3.5 - 1.7.1.3.5 Variation 5: Nucleophile Addition to a Carbonyl Ligand [Seite 39]
1.7.1.1.1.3.6 - 1.7.1.3.6 Variation 6: Modification of Functional Groups in the Presence of Cationic Iron-Cyclopentadienyl Complexes [Seite 39]
1.7.1.1.2 - Applications of Product Subclass 1 in Organic Synthesis [Seite 39]
1.7.1.1.2.1 - 1.7.1.4 Method 4: Metal Removal To Give Organic Products [Seite 39]
1.7.1.2 - 1.7.2 Product Subclass 2: Iron-Dienyl Complexes [Seite 41]
1.7.1.2.1 - Synthesis of Product Subclass 2 [Seite 41]
1.7.1.2.1.1 - 1.7.2.1 Method 1: Direct Complexation [Seite 41]
1.7.1.2.1.1.1 - 1.7.2.1.1 Variation 1: Reaction of Cyclopentadienyl Anions with Iron Salts [Seite 41]
1.7.1.2.1.1.2 - 1.7.2.1.2 Variation 2: Transfer of Cyclopentadienyliron [Seite 43]
1.7.1.2.1.1.3 - 1.7.2.1.3 Variation 3: From Neutral Cyclopentadiene Derivatives [Seite 44]
1.7.1.2.1.2 - 1.7.2.2 Method 2: Modification of .5-Cyclopentadienyl Complexes [Seite 44]
1.7.1.2.1.2.1 - 1.7.2.2.1 Variation 1: Friedel-Crafts Acylation of Ferrocene Complexes [Seite 44]
1.7.1.2.1.2.2 - 1.7.2.2.2 Variation 2: Metalation of Ferrocene Complexes [Seite 45]
1.7.1.2.1.2.3 - 1.7.2.2.3 Variation 3: Modification of Functional Groups on Ferrocene Complexes [Seite 46]
1.7.1.2.1.2.4 - 1.7.2.2.4 Variation 4: Redox Chemistry at the Metal of Ferrocene Complexes [Seite 47]
1.7.1.2.1.2.5 - 1.7.2.2.5 Variation 5: Protonation at Iron [Seite 47]
1.7.1.2.1.2.6 - 1.7.2.2.6 Variation 6: Manipulation of Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron [Seite 47]
1.7.1.2.1.3 - 1.7.2.3 Method 3: Preparation by Hydride Abstraction [Seite 48]
1.7.1.2.1.3.1 - 1.7.2.3.1 Variation 1: Regioisomer Preparation without Rearrangement [Seite 49]
1.7.1.2.1.3.2 - 1.7.2.3.2 Variation 2: Regioisomer Preparation with Rearrangement [Seite 51]
1.7.1.2.1.4 - 1.7.2.4 Method 4: Preparation from .4-Triene Complexes with Electrophiles [Seite 51]
1.7.1.2.1.5 - 1.7.2.5 Method 5: Preparation from Dienol Complexes with Acid [Seite 53]
1.7.1.2.1.5.1 - 1.7.2.5.1 Variation 1: Without Rearrangement [Seite 53]
1.7.1.2.1.5.2 - 1.7.2.5.2 Variation 2: With Rearrangement [Seite 54]
1.7.1.2.1.6 - 1.7.2.6 Method 6: Preparation by Demethoxylation in Acid [Seite 55]
1.7.1.2.1.7 - 1.7.2.7 Method 7: Preparation by Oxidation with Thallium(III) Salts [Seite 57]
1.7.1.2.1.8 - 1.7.2.8 Method 8: Preparation from Dienone Complexes [Seite 57]
1.7.1.2.1.9 - 1.7.2.9 Method 9: Preparation from .6-Complexes [Seite 59]
1.7.1.2.1.9.1 - 1.7.2.9.1 Variation 1: Nucleophile Addition to .6-Complexes at the π [Seite 59]
1.7.1.2.1.9.2 - 1.7.2.9.2 Variation 2: Dealkoxylation of .6-Complexes [Seite 60]
1.7.1.2.1.10 - 1.7.2.10 Method 10: Nucleophile Addition to .5-Complexes [Seite 60]
1.7.1.2.1.10.1 - 1.7.2.10.1 Variation 1: Addition at the p-System [Seite 60]
1.7.1.2.1.10.2 - 1.7.2.10.2 Variation 2: Addition next to the p-System [Seite 60]
1.7.1.2.1.10.3 - 1.7.2.10.3 Variation 3: Addition at a Carbonyl Group [Seite 61]
1.7.1.2.1.11 - 1.7.2.11 Method 11: Access to Salts by a Sequence of Nucleophile Addition and Leaving-Group Removal [Seite 62]
1.7.1.2.1.11.1 - 1.7.2.11.1 Variation 1: Without Rearrangement [Seite 62]
1.7.1.2.1.11.2 - 1.7.2.11.2 Variation 2: With Rearrangement [Seite 64]
1.7.1.2.1.12 - 1.7.2.12 Method 12: Preparation by Opening Cyclopropane Rings [Seite 65]
1.7.1.2.1.13 - 1.7.2.13 Method 13: Preparation of Nonracemic Complexes [Seite 65]
1.7.1.2.1.13.1 - 1.7.2.13.1 Variation 1: From Ferrocene Complexes by Asymmetric Induction [Seite 66]
1.7.1.2.1.13.2 - 1.7.2.13.2 Variation 2: From Complexes Originating from Resolution or Asymmetric Induction [Seite 66]
1.7.1.2.1.13.3 - 1.7.2.13.3 Variation 3: From Complexes Originating from Biological Sources [Seite 67]
1.7.1.2.2 - Applications of Product Subclass 2 in Organic Synthesis [Seite 68]
1.7.1.2.2.1 - 1.7.2.14 Method 14: Metal Removal To Give Organic Products [Seite 68]
1.7.1.2.2.1.1 - 1.7.2.14.1 Variation 1: From Ferrocene Complexes [Seite 68]
1.7.1.2.2.1.2 - 1.7.2.14.2 Variation 2: From Cationic .5-Ligated Tricarbonyliron Complexes [Seite 69]
1.7.1.2.2.1.3 - 1.7.2.14.3 Variation 3: From .5-Cyclopentadienyl-Iron Complexes Formed by Nucleophilic Addition to .6-Complexes [Seite 69]
1.7.1.3 - 1.7.3 Product Subclass 3: Iron-Diene Complexes [Seite 69]
1.7.1.3.1 - Synthesis of Product Subclass 3 [Seite 70]
1.7.1.3.1.1 - 1.7.3.1 Method 1: Preparation by Complexation [Seite 70]
1.7.1.3.1.1.1 - 1.7.3.1.1 Variation 1: From Dienes without Rearrangement [Seite 70]
1.7.1.3.1.1.2 - 1.7.3.1.2 Variation 2: From Dienes with Rearrangement [Seite 72]
1.7.1.3.1.1.3 - 1.7.3.1.3 Variation 3: From Arenes by In Situ Reduction [Seite 73]
1.7.1.3.1.1.4 - 1.7.3.1.4 Variation 4: From Dienes and Alkynes by Reaction with .1-Complexes [Seite 73]
1.7.1.3.1.1.5 - 1.7.3.1.5 Variation 5: From Chromium Fischer Carbene Complexes [Seite 74]
1.7.1.3.1.1.6 - 1.7.3.1.6 Variation 6: From Cycloheptatrienes and Cyclohexadienones by Reduction [Seite 74]
1.7.1.3.1.1.7 - 1.7.3.1.7 Variation 7: From Dihydrothiophene 1,1-Dioxides [Seite 75]
1.7.1.3.1.1.8 - 1.7.3.1.8 Variation 8: From Allyl Alcohols [Seite 75]
1.7.1.3.1.1.9 - 1.7.3.1.9 Variation 9: From Dihalides, Allyl Halides, and Phosphate Esters [Seite 75]
1.7.1.3.1.1.10 - 1.7.3.1.10 Variation 10: From Pyrones [Seite 76]
1.7.1.3.1.1.11 - 1.7.3.1.11 Variation 11: From Dimethylcyclopropenes [Seite 76]
1.7.1.3.1.1.12 - 1.7.3.1.12 Variation 12: From Vinylcyclopropanes [Seite 77]
1.7.1.3.1.1.13 - 1.7.3.1.13 Variation 13: From Allenes via Trimethylenemethane Lactones [Seite 77]
1.7.1.3.1.2 - 1.7.3.2 Method 2: Preparation from .3,.1-Complexes [Seite 78]
1.7.1.3.1.2.1 - 1.7.3.2.1 Variation 1: From Ferralactone Complexes [Seite 78]
1.7.1.3.1.2.2 - 1.7.3.2.2 Variation 2: From .3,.1-Complexes [Seite 79]
1.7.1.3.1.2.3 - 1.7.3.2.3 Variation 3: Nucleophile Addition to Cationic .3,.1-Carbene Complexes [Seite 79]
1.7.1.3.1.3 - 1.7.3.3 Method 3: Cyclodimerization of .2-Ligands [Seite 80]
1.7.1.3.1.4 - 1.7.3.4 Method 4: Nucleophile Addition to .5-Complexes at the p-System [Seite 81]
1.7.1.3.1.4.1 - 1.7.3.4.1 Variation 1: Cyclohexadienyl Complexes [Seite 81]
1.7.1.3.1.4.2 - 1.7.3.4.2 Variation 2: Cycloheptadienyl Complexes [Seite 91]
1.7.1.3.1.4.3 - 1.7.3.4.3 Variation 3: Cyclooctadienyl Complexes [Seite 92]
1.7.1.3.1.4.4 - 1.7.3.4.4 Variation 4: Acyclic Dienyl Complexes [Seite 92]
1.7.1.3.1.4.5 - 1.7.3.4.5 Variation 5: In Situ Generation of Acyclic Dienyl Complexes [Seite 94]
1.7.1.3.1.4.6 - 1.7.3.4.6 Variation 6: Cyclopentadienyl Complexes [Seite 96]
1.7.1.3.1.5 - 1.7.3.5 Method 5: Metal-Centered Reduction of .5-Complexes at the p-System [Seite 96]
1.7.1.3.1.6 - 1.7.3.6 Method 6: Modification of .4-Complexes [Seite 96]
1.7.1.3.1.6.1 - 1.7.3.6.1 Variation 1: By Acylation [Seite 97]
1.7.1.3.1.6.2 - 1.7.3.6.2 Variation 2: By Lithiation and Addition of Electrophiles [Seite 97]
1.7.1.3.1.6.3 - 1.7.3.6.3 Variation 3: By Palladium Coupling [Seite 99]
1.7.1.3.1.6.4 - 1.7.3.6.4 Variation 4: Cyclization Reactions of .4-Diene Complexes [Seite 100]
1.7.1.3.1.6.5 - 1.7.3.6.5 Variation 5: Oxidative Cyclization of .4-Diene Complexes [Seite 101]
1.7.1.3.1.6.6 - 1.7.3.6.6 Variation 6: Nucleophile Addition to .4-Complexes at the p-System [Seite 102]
1.7.1.3.1.6.7 - 1.7.3.6.7 Variation 7: Nucleophile Addition to .4-Complexes at a Carbonyl Ligand [Seite 103]
1.7.1.3.1.6.8 - 1.7.3.6.8 Variation 8: Nucleophile Addition to .4-Complexes next to the p-System [Seite 103]
1.7.1.3.1.6.9 - 1.7.3.6.9 Variation 9: Reactions of Enolates and Silyl Enol Ethers [Seite 107]
1.7.1.3.1.6.10 - 1.7.3.6.10 Variation 10: Epoxide Formation and Cyclopropanation next to the p-System [Seite 108]
1.7.1.3.1.6.11 - 1.7.3.6.11 Variation 11: Diol Synthesis next to the p-System [Seite 109]
1.7.1.3.1.6.12 - 1.7.3.6.12 Variation 12: Epoxide Opening next to the p-System [Seite 110]
1.7.1.3.1.6.13 - 1.7.3.6.13 Variation 13: Cycloaddition Reactions next to the p-System [Seite 110]
1.7.1.3.1.6.14 - 1.7.3.6.14 Variation 14: By 1,3-Migration of a Tricarbonyliron Group [Seite 112]
1.7.1.3.1.6.15 - 1.7.3.6.15 Variation 15: Functionalization of Cycloheptatriene Complexes [Seite 113]
1.7.1.3.1.7 - 1.7.3.7 Method 7: Complexation of Heterodienes [Seite 114]
1.7.1.3.1.8 - 1.7.3.8 Method 8: Additional Methods for the Formation of .4-Complexes [Seite 115]
1.7.1.3.1.8.1 - 1.7.3.8.1 Variation 1: Alkylation of .3-Anions [Seite 115]
1.7.1.3.1.8.2 - 1.7.3.8.2 Variation 2: From Pentacarbonyliron by Nucleophile Addition at Carbonyl [Seite 115]
1.7.1.3.1.8.3 - 1.7.3.8.3 Variation 3: Exchange of Carbonyl for Phosphines, Phosphites, and Nitrosonium [Seite 116]
1.7.1.3.1.8.4 - 1.7.3.8.4 Variation 4: Radical and Carbene Methods in the Presence of Iron Complexes [Seite 117]
1.7.1.3.1.9 - 1.7.3.9 Method 9: Preparation of Nonracemic Complexes [Seite 117]
1.7.1.3.1.9.1 - 1.7.3.9.1 Variation 1: Asymmetric Complexation [Seite 117]
1.7.1.3.1.9.2 - 1.7.3.9.2 Variation 2: Asymmetric Modification and Kinetic Resolution of .4-Complexes [Seite 121]
1.7.1.3.1.9.3 - 1.7.3.9.3 Variation 3: By Asymmetric Induction and Kinetic Resolution with .5-Complexes [Seite 122]
1.7.1.3.1.9.4 - 1.7.3.9.4 Variation 4: Classical Resolution of Chiral .4-Complexes [Seite 122]
1.7.1.3.1.9.5 - 1.7.3.9.5 Variation 5: Kinetic Resolution of Chiral .4-Complexes [Seite 124]
1.7.1.3.2 - Applications of Product Subclass 3 in Organic Synthesis [Seite 125]
1.7.1.3.2.1 - 1.7.3.10 Method 10: Metal Removal To Give Organic Products [Seite 125]
1.7.1.3.2.1.1 - 1.7.3.10.1 Variation 1: Decomplexation without Ligand Modification [Seite 125]
1.7.1.3.2.1.2 - 1.7.3.10.2 Variation 2: Decomplexation with Ligand Modification [Seite 130]
1.7.1.3.2.2 - 1.7.3.11 Method 11: Reactions next to .3-Complexes, Followed by Rearrangement [Seite 137]
1.7.1.4 - 1.7.4 Product Subclass 4: Iron-Allyl Complexes [Seite 137]
1.7.1.4.1 - Synthesis of Product Subclass 4 [Seite 137]
1.7.1.4.1.1 - 1.7.4.1 Method 1: Protonation of Diene Complexes [Seite 137]
1.7.1.4.1.1.1 - 1.7.4.1.1 Variation 1: From .2-Complexes [Seite 137]
1.7.1.4.1.1.2 - 1.7.4.1.2 Variation 2: From .4-Complexes [Seite 138]
1.7.1.4.1.1.3 - 1.7.4.1.3 Variation 3: During Direct Complexation of Allyl Alcohols and Dienes in the Presence of Acid [Seite 138]
1.7.1.4.1.2 - 1.7.4.2 Method 2: Preparation by Leaving-Group Displacement from .2-Complexes [Seite 138]
1.7.1.4.1.3 - 1.7.4.3 Method 3: Preparation by Opening Vinyl Epoxides and Cyclopropanes [Seite 139]
1.7.1.4.1.3.1 - 1.7.4.3.1 Variation 1: From Epoxides [Seite 139]
1.7.1.4.1.3.2 - 1.7.4.3.2 Variation 2: From Aziridines [Seite 141]
1.7.1.4.1.3.3 - 1.7.4.3.3 Variation 3: From Cyclopropanes [Seite 141]
1.7.1.4.1.3.4 - 1.7.4.3.4 Variation 4: From Cyclobutanes [Seite 142]
1.7.1.4.1.4 - 1.7.4.4 Method 4: Nucleophile Addition at a Complexed p-System [Seite 142]
1.7.1.4.1.4.1 - 1.7.4.4.1 Variation 1: Nucleophile Addition to .4-Complexes [Seite 142]
1.7.1.4.1.4.2 - 1.7.4.4.2 Variation 2: Nucleophile Addition to .5-Complexes [Seite 143]
1.7.1.4.1.4.3 - 1.7.4.4.3 Variation 3: Modification of Functionality and Ligand Exchange [Seite 144]
1.7.1.4.1.5 - 1.7.4.5 Method 5: Nucleophile Addition to .3-Complexes next to the p-System [Seite 145]
1.7.1.4.1.6 - 1.7.4.6 Method 6: Nucleophile Addition at a Carbonyl Ligand [Seite 146]
1.7.1.4.1.6.1 - 1.7.4.6.1 Variation 1: Nucleophile Addition to .4-Complexes [Seite 146]
1.7.1.4.1.6.2 - 1.7.4.6.2 Variation 2: Nucleophile Addition to .2,.2-Complexes [Seite 146]
1.7.1.4.1.7 - 1.7.4.7 Method 7: Additional Methods for the Formation of .3-Complexes [Seite 146]
1.7.1.4.1.7.1 - 1.7.4.7.1 Variation 1: Anionic .3-Complexes [Seite 146]
1.7.1.4.1.7.2 - 1.7.4.7.2 Variation 2: Modification by Carbonyl Insertion [Seite 147]
1.7.1.4.1.7.3 - 1.7.4.7.3 Variation 3: Modification by Alkene Insertion [Seite 147]
1.7.1.4.1.7.4 - 1.7.4.7.4 Variation 4: From .4-Vinylketene Complexes [Seite 147]
1.7.1.4.1.7.5 - 1.7.4.7.5 Variation 5: Reductive Methods To Make Anionic .3-Complexes [Seite 148]
1.7.1.4.1.7.6 - 1.7.4.7.6 Variation 6: Exchange of Carbonyl for Nitrosonium [Seite 148]
1.7.1.4.1.8 - 1.7.4.8 Method 8: Preparation of Nonracemic Complexes [Seite 148]
1.7.1.4.2 - Applications of Product Subclass 4 in Organic Synthesis [Seite 149]
1.7.1.4.2.1 - 1.7.4.9 Method 9: Metal Removal To Give Organic Products [Seite 149]
1.7.1.5 - 1.7.5 Product Subclass 5: Iron-Alkene Complexes [Seite 153]
1.7.1.5.1 - Synthesis of Product Subclass 5 [Seite 153]
1.7.1.5.1.1 - 1.7.5.1 Method 1: Direct Complexation of Alkenes [Seite 153]
1.7.1.5.1.1.1 - 1.7.5.1.1 Variation 1: Ligand Exchange with a Butene Complex [Seite 153]
1.7.1.5.1.1.2 - 1.7.5.1.2 Variation 2: Reaction with Nonacarbonyldiiron [Seite 153]
1.7.1.5.1.1.3 - 1.7.5.1.3 Variation 3: Reaction with Pentacarbonyliron [Seite 154]
1.7.1.5.1.2 - 1.7.5.2 Method 2: Preparation by Hydride Abstraction from .1-Complexes [Seite 154]
1.7.1.5.1.3 - 1.7.5.3 Method 3: Preparation by Protonation of .1-Complexes [Seite 155]
1.7.1.5.1.3.1 - 1.7.5.3.1 Variation 1: Protonation of .1-Allyl Complexes [Seite 155]
1.7.1.5.1.3.2 - 1.7.5.3.2 Variation 2: Removal of Leaving Groups from .1-Alkyl Complexes [Seite 156]
1.7.1.5.1.3.3 - 1.7.5.3.3 Variation 3: Protonation at Iron [Seite 156]
1.7.1.5.1.4 - 1.7.5.4 Method 4: Reactions of .1-Allyl Complexes with Electrophiles [Seite 156]
1.7.1.5.1.4.1 - 1.7.5.4.1 Variation 1: Reaction with Aldehydes and Ketones in the Presence of a Lewis Acid [Seite 156]
1.7.1.5.1.4.2 - 1.7.5.4.2 Variation 2: Reaction with Activated Alkenes [Seite 157]
1.7.1.5.1.4.3 - 1.7.5.4.3 Variation 3: Reaction with .2-Alkene Complexes [Seite 158]
1.7.1.5.1.4.4 - 1.7.5.4.4 Variation 4: Reaction with .5-Dienyl Complexes [Seite 158]
1.7.1.5.1.5 - 1.7.5.5 Method 5: Nucleophile Addition at a Complexed p-System [Seite 158]
1.7.1.5.1.5.1 - 1.7.5.5.1 Variation 1: Nucleophile Addition to .2-Complexes [Seite 158]
1.7.1.5.1.5.2 - 1.7.5.5.2 Variation 2: Nucleophile Addition to .3-Complexes [Seite 159]
1.7.1.5.1.5.3 - 1.7.5.5.3 Variation 3: Nucleophile Addition to .4-Complexes [Seite 159]
1.7.1.5.1.5.4 - 1.7.5.5.4 Variation 4: Nucleophile Addition to .5-Complexes [Seite 160]
1.7.1.5.1.6 - 1.7.5.6 Method 6: Preparation of Nonracemic Complexes [Seite 160]
1.7.1.5.2 - Applications of Product Subclass 5 in Organic Synthesis [Seite 161]
1.7.1.5.2.1 - 1.7.5.7 Method 7: Metal Removal To Give Organic Products [Seite 161]
1.7.1.6 - 1.7.6 Product Subclass 6: Iron-Carbene Complexes [Seite 162]
1.7.1.6.1 - Synthesis of Product Subclass 6 [Seite 162]
1.7.1.6.1.1 - 1.7.6.1 Method 1: Preparation by the Fischer Carbene Method [Seite 162]
1.7.1.6.1.2 - 1.7.6.2 Method 2: From Azadiene Iron Complexes [Seite 163]
1.7.1.6.1.3 - 1.7.6.3 Method 3: Removal of Leaving Groups from Metal-Alkyl Complexes [Seite 164]
1.7.1.6.1.4 - 1.7.6.4 Method 4: Formation of Iron-N-Heterocyclic Carbene Complexes [Seite 164]
1.7.1.6.1.5 - 1.7.6.5 Method 5: Modification of Other Carbene Complexes [Seite 165]
1.7.1.6.1.5.1 - 1.7.6.5.1 Variation 1: Exchange of Substituents at the Carbene Complex [Seite 165]
1.7.1.6.1.5.2 - 1.7.6.5.2 Variation 2: Reaction at Functional Groups Adjacent to the Carbene Complex [Seite 165]
1.7.1.6.1.5.3 - 1.7.6.5.3 Variation 3: Photolysis of Carbene Complexes [Seite 166]
1.7.1.6.1.6 - 1.7.6.6 Method 6: Preparation by Ring Expansion [Seite 166]
1.7.1.6.1.7 - 1.7.6.7 Method 7: Preparation of Bridging Carbene Complexes [Seite 166]
1.7.1.6.1.8 - 1.7.6.8 Method 8: Reduction of Cationic µ-CH Bridging Carbyne Complexes [Seite 169]
1.7.1.6.1.9 - 1.7.6.9 Method 9: Preparation of Nonracemic Complexes [Seite 169]
1.7.1.6.2 - Applications of Product Subclass 6 in Organic Synthesis [Seite 169]
1.7.1.6.2.1 - 1.7.6.10 Method 10: Cyclopropanation by Transfer of Diazo Esters [Seite 169]
1.7.1.6.2.2 - 1.7.6.11 Method 11: C--H Insertion Reactions [Seite 170]
1.7.1.6.2.3 - 1.7.6.12 Method 12: Cyclization with Alkynes To Form Naphthols and Furans [Seite 170]
1.7.1.6.2.4 - 1.7.6.13 Method 13: Removal of the Metal by Oxidation [Seite 171]
1.7.1.7 - 1.7.7 Product Subclass 7: Iron-.1-Alkyl, -Alkenyl, -Alkynyl, and -Heteroatom-Bound Complexes [Seite 171]
1.7.1.7.1 - Synthesis of Product Subclass 7 [Seite 171]
1.7.1.7.1.1 - 1.7.7.1 Method 1: Metal Addition to Electrophiles [Seite 171]
1.7.1.7.1.2 - 1.7.7.2 Method 2: Metal Addition to Nucleophiles/Lewis Bases [Seite 172]
1.7.1.7.1.3 - 1.7.7.3 Method 3: Nucleophile Addition and Deprotonation Reactions [Seite 172]
1.7.1.7.1.4 - 1.7.7.4 Method 4: Additional Methods for the Formation of .1-Alkyl Complexes [Seite 173]
1.7.1.7.1.4.1 - 1.7.7.4.1 Variation 1: Nucleophile Addition to .1-Carbene Complexes [Seite 173]
1.7.1.7.1.4.2 - 1.7.7.4.2 Variation 2: Nucleophile Addition to .2-Alkyne Complexes [Seite 174]
1.7.1.7.1.4.3 - 1.7.7.4.3 Variation 3: Nucleophile Addition to Dicarbonyl(.5-cyclopentadienyl)iron Halides [Seite 174]
1.7.1.7.1.4.4 - 1.7.7.4.4 Variation 4: Nucleophile Addition to Carbonyl Complexes [Seite 175]
1.7.1.7.1.4.5 - 1.7.7.4.5 Variation 5: .1-Aryl and .1-Alkynyl Complexes by Catalyzed Coupling Reactions [Seite 176]
1.7.1.7.1.4.6 - 1.7.7.4.6 Variation 6: .1-Alkynyl Complexes from Alkynes [Seite 176]
1.7.1.7.1.4.7 - 1.7.7.4.7 Variation 7: Deprotonation of .2-Alkene Complexes [Seite 176]
1.7.1.7.1.4.8 - 1.7.7.4.8 Variation 8: Introduction of Sulfur and Selenium to Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron [Seite 176]
1.7.1.7.1.5 - 1.7.7.5 Method 5: Reactions of Allyl Complexes [Seite 176]
1.7.1.7.1.5.1 - 1.7.7.5.1 Variation 1: .1-Allyl Complexes [Seite 177]
1.7.1.7.1.5.2 - 1.7.7.5.2 Variation 2: .3-Allyl Complexes [Seite 177]
1.7.1.7.1.6 - 1.7.7.6 Method 6: Modification of Ligands in .1-Complexes [Seite 177]
1.7.1.7.1.7 - 1.7.7.7 Method 7: Preparation of Nonracemic Complexes [Seite 179]
1.7.1.7.2 - Applications of Product Subclass 7 in Organic Synthesis [Seite 181]
1.7.1.7.2.1 - 1.7.7.8 Method 8: Oxidation of .1-Products [Seite 181]
1.7.1.7.2.1.1 - 1.7.7.8.1 Variation 1: Metal Removal To Generate a Carboxylic Acid [Seite 181]
1.7.1.7.2.1.2 - 1.7.7.8.2 Variation 2: Metal Removal To Generate an Ester [Seite 181]
1.7.1.7.2.1.3 - 1.7.7.8.3 Variation 3: Metal Removal To Generate an Amide [Seite 182]
1.7.1.7.2.1.4 - 1.7.7.8.4 Variation 4: Metal Removal To Generate Alkyl Bromides or Epoxides [Seite 183]
1.7.1.7.2.1.5 - 1.7.7.8.5 Variation 5: Metal Removal To Generate Ketones and Lactones [Seite 183]
1.7.1.7.2.1.6 - 1.7.7.8.6 Variation 6: Reactions as Arylating Agents [Seite 185]
1.7.1.7.2.1.7 - 1.7.7.8.7 Variation 7: Metal Removal with Transmetalation to Mercury [Seite 186]
1.7.1.7.2.2 - 1.7.7.9 Method 9: Additional Methods for Decomplexation of .1-Alkyl Complexes [Seite 186]
1.7.1.7.2.2.1 - 1.7.7.9.1 Variation 1: Disproportionation of .1-Products [Seite 186]
1.7.1.7.2.2.2 - 1.7.7.9.2 Variation 2: Photochemical Dimerization [Seite 186]
1.7.1.7.2.2.3 - 1.7.7.9.3 Variation 3: Asymmetric Cycloaddition [Seite 187]
1.7.1.7.2.3 - 1.7.7.10 Method 10: Formation and Reaction of Oxyallyl Cation Complexes [Seite 187]
1.7.1.7.2.3.1 - 1.7.7.10.1 Variation 1: [4 + 3] Cycloaddition [Seite 187]
1.7.1.7.2.3.2 - 1.7.7.10.2 Variation 2: [2 + 3] Cycloaddition [Seite 187]
1.7.1.7.2.3.3 - 1.7.7.10.3 Variation 3: Electrophilic Substitution [Seite 188]
1.7.1.7.2.4 - 1.7.7.11 Method 11: Application of Collman's Reagent and Related Tetracarbonylferrate Salts [Seite 188]
1.7.1.7.2.4.1 - 1.7.7.11.1 Variation 1: Cyclization to Alkenes [Seite 189]
1.7.1.7.2.4.2 - 1.7.7.11.2 Variation 2: Reductions with the Tetracarbonylhydroferrate Complex [Seite 190]
1.7.1.7.3 - 1.7.8.17 Ferrocenes [Seite 220]
1.7.1.7.3.1 - 1.7.8.17.1 Synthesis of Ferrocenes [Seite 220]
1.7.1.7.3.1.1 - 1.7.8.17.1.1 Method 1: Monosubstituted and 1,1'-Disubstituted Ferrocenes by Metal-Mediated Procedures [Seite 220]
1.7.1.7.3.1.1.1 - 1.7.8.17.1.1.1 Variation 1: Synthesis of Halogenated Ferrocenes [Seite 220]
1.7.1.7.3.1.1.2 - 1.7.8.17.1.1.2 Variation 2: Synthesis of Hydroxy- and Alkoxyferrocenes and 1,1'-Dihydroxyferrocene [Seite 222]
1.7.1.7.3.1.1.3 - 1.7.8.17.1.1.3 Variation 3: Synthesis of Aminoferrocenes and 1,1'-Diaminoferrocenes [Seite 223]
1.7.1.7.3.1.1.4 - 1.7.8.17.1.1.4 Variation 4: Synthesis of Carboxyferrocene, Formylferrocene, 1,1'-Dicarboxyferrocene, and 1,1'-Diformylferrocene [Seite 224]
1.7.1.7.3.1.1.5 - 1.7.8.17.1.1.5 Variation 5: Synthesis of 1'-Formyl-2,5-dimethylazaferrocene [Seite 226]
1.7.1.7.3.1.2 - 1.7.8.17.1.2 Method 2: Acyl- and Alkenylferrocenes under Friedel-Crafts Conditions [Seite 226]
1.7.1.7.3.1.2.1 - 1.7.8.17.1.2.1 Variation 1: Synthesis of Alkenylferrocenes and 1,1'-Dialkenylferrocenes [Seite 227]
1.7.1.7.3.1.3 - 1.7.8.17.1.3 Method 3: Chiral Ferrocenylalkyl Alcohols and Ferrocenylalkylamines [Seite 227]
1.7.1.7.3.1.3.1 - 1.7.8.17.1.3.1 Variation 1: Via Stereoselective Alkylation and Arylation of Formylferrocene [Seite 228]
1.7.1.7.3.1.3.2 - 1.7.8.17.1.3.2 Variation 2: Via Stereoselective Reduction of Acyl Intermediates [Seite 230]
1.7.1.7.3.1.3.3 - 1.7.8.17.1.3.3 Variation 3: Via Enzymatic Methods [Seite 231]
1.7.1.7.3.1.4 - 1.7.8.17.1.4 Method 4: Oxazol-2-ylferrocenes [Seite 232]
1.7.1.7.3.1.5 - 1.7.8.17.1.5 Method 5: Chiral Ferrocenyl Aminals [Seite 233]
1.7.1.7.3.1.6 - 1.7.8.17.1.6 Method 6: Chiral Ferrocenyl Sulfoxides [Seite 233]
1.7.1.7.3.1.7 - 1.7.8.17.1.7 Method 7: Chiral 1,2-Disubstituted Ferrocenes by Diastereoselective Functionalization [Seite 234]
1.7.1.7.3.1.7.1 - 1.7.8.17.1.7.1 Variation 1: From 1-Ferrocenyl-N,N-dimethylethylamine [Seite 234]
1.7.1.7.3.1.7.2 - 1.7.8.17.1.7.2 Variation 2: From (4,5-Dihydrooxazol-2-yl)ferrocenes [Seite 236]
1.7.1.7.3.1.7.3 - 1.7.8.17.1.7.3 Variation 3: From Chiral Ferrocenyl Acetals and Aminals [Seite 237]
1.7.1.7.3.1.7.4 - 1.7.8.17.1.7.4 Variation 4: From Chiral Ferrocenyl Sulfoxides [Seite 238]
1.7.1.7.3.1.8 - 1.7.8.17.1.8 Method 8: C--C Bond Formation by Substitution of Ferrocenyl Alcohols [Seite 238]
1.7.1.7.3.1.9 - 1.7.8.17.1.9 Method 9: Cross-Coupling Reactions of Iodoferrocene and Ferrocenylboronic Acid [Seite 239]
1.7.1.7.3.1.10 - 1.7.8.17.1.10 Method 10: Chiral 1,2-Disubstituted Ferrocenes via Enantioselective Sparteine-Mediated Lithiation [Seite 240]
1.7.1.7.3.1.11 - 1.7.8.17.1.11 Method 11: 1,1',2-Trisubstituted Ferrocenes (BPPF-Type Ligands) [Seite 240]
1.7.1.7.3.1.12 - 1.7.8.17.1.12 Method 12: Tetrasubstituted Ferrocenes from 1,1'-Bis(1-methoxyalkyl)ferrocenes [Seite 240]
1.7.1.7.3.1.13 - 1.7.8.17.1.13 Method 13: Chiral Biferrocenes [Seite 241]
1.7.1.7.3.2 - 1.7.8.17.2 Applications of Ferrocenes in Organic Synthesis [Seite 241]
1.7.1.7.3.2.1 - 1.7.8.17.2.1 Method 1: Catalytic Enantioselective Hydrogenation [Seite 242]
1.7.1.7.3.2.2 - 1.7.8.17.2.2 Method 2: Catalytic Enantioselective Hydroboration [Seite 249]
1.7.1.7.3.2.3 - 1.7.8.17.2.3 Method 3: Catalytic Enantioselective Hydrosilylation [Seite 250]
1.7.1.7.3.2.4 - 1.7.8.17.2.4 Method 4: Catalytic Enantioselective Allylic Substitution [Seite 251]
1.7.1.7.3.2.5 - 1.7.8.17.2.5 Method 5: Catalytic Enantioselective Aldol Reactions [Seite 253]
1.7.1.7.3.2.6 - 1.7.8.17.2.6 Method 6: Diethylzinc Addition to Aldehydes [Seite 253]
1.7.1.7.3.2.7 - 1.7.8.17.2.7 Method 7: Michael Addition Reactions [Seite 255]
1.7.1.7.3.2.8 - 1.7.8.17.2.8 Method 8: Asymmetric Arylation of Aldehydes [Seite 255]
1.7.1.7.3.2.9 - 1.7.8.17.2.9 Method 9: Metal-Catalyzed [3 + 2] Cycloaddition [Seite 255]
1.7.1.7.3.2.10 - 1.7.8.17.2.10 Method 10: Ring Opening of Azabenzonorbornadienes [Seite 257]
1.7.1.7.3.2.11 - 1.7.8.17.2.11 Method 11: Applications as Bioactives [Seite 257]
1.7.1.7.3.2.12 - 1.7.8.17.2.12 Method 12: Applications as Bioconjugates [Seite 260]
1.7.1.7.3.2.13 - 1.7.8.17.2.13 Method 13: Applications in Electron Reservoirs and in Nonlinear Optics (NLO) [Seite 262]
1.7.1.7.3.2.14 - 1.7.8.17.2.14 Method 14: Applications in Oligomers and Polymers [Seite 268]
1.7.1.7.3.2.15 - 1.7.8.17.2.15 Method 15: Applications as Functional Devices [Seite 270]
1.8 - Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au) [Seite 282]
1.8.1 - 3.1 Product Class 1: Organometallic Complexes of Zinc [Seite 282]
1.8.1.1 - 3.1.11 Organometallic Complexes of Zinc [Seite 282]
1.8.1.1.1 - 3.1.11.1 Zinc-Catalyzed Organic Transformations [Seite 282]
1.8.1.1.1.1 - 3.1.11.1.1 Method 1: Zinc-Catalyzed C--C Bond-Forming Reactions [Seite 282]
1.8.1.1.1.1.1 - 3.1.11.1.1.1 Variation 1: Zinc-Catalyzed Aldol Reaction [Seite 282]
1.8.1.1.1.1.2 - 3.1.11.1.1.2 Variation 2: Zinc-Catalyzed Henry Reaction [Seite 296]
1.8.1.1.1.1.3 - 3.1.11.1.1.3 Variation 3: Zinc-Catalyzed Mannich Reaction [Seite 301]
1.8.1.1.1.1.4 - 3.1.11.1.1.4 Variation 4: Zinc-Catalyzed Michael Reaction [Seite 306]
1.8.1.1.1.1.5 - 3.1.11.1.1.5 Variation 5: Zinc-Catalyzed Friedel-Crafts Reactions [Seite 311]
1.8.1.1.1.1.6 - 3.1.11.1.1.6 Variation 6: Zinc-Catalyzed Alkynylation Reactions [Seite 317]
1.8.1.1.1.1.7 - 3.1.11.1.1.7 Variation 7: Other Zinc-Catalyzed C--C Bond-Forming Reactions [Seite 321]
1.8.1.1.1.2 - 3.1.11.1.2 Method 2: Zinc-Catalyzed C--N Bond-Forming Reactions [Seite 329]
1.8.1.1.1.3 - 3.1.11.1.3 Method 3: Zinc-Catalyzed C--O Bond-Forming Reactions [Seite 350]
1.8.1.1.1.4 - 3.1.11.1.4 Method 4: Zinc-Catalyzed Reduction Reactions [Seite 355]
1.8.1.1.1.5 - 3.1.11.1.5 Method 5: Zinc-Catalyzed Oxidation Reactions [Seite 366]
1.9 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 378]
1.9.1 - 4.4 Product Class 4: Silicon Compounds [Seite 378]
1.9.1.1 - 4.4.46 Product Subclass 46: Siloles [Seite 378]
1.9.1.1.1 - Synthesis of Product Subclass 46 [Seite 379]
1.9.1.1.1.1 - 4.4.46.1 Ring Synthesis from Acyclic Compounds [Seite 379]
1.9.1.1.1.1.1 - 4.4.46.1.1 Method 1: Formation of One Si--C Bond of the Silole [Seite 379]
1.9.1.1.1.1.1.1 - 4.4.46.1.1.1 Variation 1: Nucleophilic Addition of a Carbanion to the Silicon Atom [Seite 379]
1.9.1.1.1.1.1.2 - 4.4.46.1.1.2 Variation 2: Intramolecular Hydrosilylation of Alkynes [Seite 379]
1.9.1.1.1.1.1.3 - 4.4.46.1.1.3 Variation 3: Reductive Cyclization of Alkynes [Seite 380]
1.9.1.1.1.1.1.4 - 4.4.46.1.1.4 Variation 4: Nucleophilic Addition of a Silyl Anion to Alkynes [Seite 381]
1.9.1.1.1.1.1.5 - 4.4.46.1.1.5 Variation 5: Electrophilic Substitution of an Aromatic Ring with a Silyl Cation [Seite 382]
1.9.1.1.1.1.1.6 - 4.4.46.1.1.6 Variation 6: Rhodium-Catalyzed Intramolecular trans-Bis-silylation of Alkynes [Seite 382]
1.9.1.1.1.1.1.7 - 4.4.46.1.1.7 Variation 7: Gold-Catalyzed Intramolecular trans-Allylsilylation of Alkynes [Seite 383]
1.9.1.1.1.1.1.8 - 4.4.46.1.1.8 Variation 8: Palladium-Catalyzed Intramolecular C(sp2)--Si Coupling via Cleavage of a C(sp3)--Si Bond [Seite 383]
1.9.1.1.1.1.2 - 4.4.46.1.2 Method 2: Formation of C--C Bonds of the Silole [Seite 384]
1.9.1.1.1.1.2.1 - 4.4.46.1.2.1 Variation 1: Reductive Cyclization of Dialkynylsilanes [Seite 384]
1.9.1.1.1.1.2.2 - 4.4.46.1.2.2 Variation 2: Intramolecular Cross-Coupling Reaction of Diarylsilanes [Seite 386]
1.9.1.1.1.1.2.3 - 4.4.46.1.2.3 Variation 3: Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Silicon-Bridged Diynes with Alkynes [Seite 387]
1.9.1.1.1.1.2.4 - 4.4.46.1.2.4 Variation 4: Ring-Closing Metathesis of Alkenyl(2-alkenylphenyl)silanes [Seite 388]
1.9.1.1.1.1.3 - 4.4.46.1.3 Method 3: Formation of Two Si--C Bonds of the Silole [Seite 389]
1.9.1.1.1.1.3.1 - 4.4.46.1.3.1 Variation 1: Nucleophilic Attack of Dianions at the Silicon Atom [Seite 389]
1.9.1.1.1.1.3.2 - 4.4.46.1.3.2 Variation 2: Transmetalation of Zirconium-Containing Metallacycles [Seite 391]
1.9.1.1.1.1.3.3 - 4.4.46.1.3.3 Variation 3: Ruthenium-Catalyzed Double Hydrosilylation of Buta-1,3-diynes [Seite 392]
1.9.1.1.1.1.4 - 4.4.46.1.4 Method 4: Formation of One Si--C and One C--C Bond of the Silole [Seite 392]
1.9.1.1.1.1.4.1 - 4.4.46.1.4.1 Variation 1: Rhodium-Catalyzed Coupling of (2-Silylphenyl)boronic Acids with Alkynes [Seite 392]
1.9.1.1.1.1.4.2 - 4.4.46.1.4.2 Variation 2: Palladium-Catalyzed Intermolecular Coupling of 2-Silylaryl Bromides with Alkynes [Seite 393]
1.9.1.1.1.1.5 - 4.4.46.1.5 Method 5: Formation of Two Si--C Bonds and One C--C Bond of the Silole [Seite 393]
1.9.1.1.1.1.5.1 - 4.4.46.1.5.1 Variation 1: Palladium-Catalyzed Coupling of Silylboronic Esters with Alkynes [Seite 393]
1.9.1.1.1.1.6 - 4.4.46.1.6 Method 6: Rearrangement of a Rhodium-Alkene Complex [Seite 394]
1.9.1.1.1.2 - 4.4.46.2 Ring Synthesis by Transformation from Another Ring System [Seite 395]
1.9.1.1.1.2.1 - 4.4.46.2.1 Method 1: Ring Expansion of Silirenes [Seite 395]
1.10 - Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides [Seite 398]
1.10.1 - 20.5 Product Class 5: Carboxylic Acid Esters [Seite 398]
1.10.1.1 - 20.5.9.2 2,2-Diheteroatom-Substituted Alkanoic Acid Esters [Seite 398]
1.10.1.1.1 - 20.5.9.2.1 Method 1: Formation from ß,.-Unsaturated a-Oxo Esters [Seite 398]
1.10.1.1.2 - 20.5.9.2.2 Method 2: Formation from a-Sulfanyl and a-Thioxo Esters [Seite 402]
1.10.1.1.2.1 - 20.5.9.2.2.1 Variation 1: Thia-Diels-Alder Reactions of Dithiooxalates [Seite 402]
1.10.1.1.2.2 - 20.5.9.2.2.2 Variation 2: Desulfurizing Difluorination of 2-Sulfanylacetates [Seite 403]
1.10.1.1.3 - 20.5.9.2.3 Method 3: Formation of 2,2-Dinitrogen-Substituted Esters [Seite 404]
1.10.1.1.3.1 - 20.5.9.2.3.1 Variation 1: Formation of 2,2-Dinitrogen-Substituted Esters by Displacement of Halide [Seite 404]
1.10.1.1.3.2 - 20.5.9.2.3.2 Variation 2: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to a,ß-Unsaturated Esters [Seite 405]
1.10.1.1.3.3 - 20.5.9.2.3.3 Variation 3: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to Imino- and Azocarboxylates [Seite 406]
1.10.1.1.3.4 - 20.5.9.2.3.4 Variation 4: Formation of 2,2-Dinitrogen-Substituted Esters by a-Nitration of Esters [Seite 407]
1.10.1.1.4 - 20.5.9.2.4 Method 4: Formation by Halogenation of ß-Oxo Esters [Seite 408]
1.10.1.1.5 - 20.5.9.2.5 Method 5: Formation by Nucleophilic Attack of the a-Carbon of Alkanoic Acid Esters [Seite 411]
1.10.1.1.5.1 - 20.5.9.2.5.1 Variation 1: Metal-Mediated C--C Bond Formation from Trihaloacetates and 2,2-Difluoro-2-silylacetates [Seite 411]
1.10.1.1.5.2 - 20.5.9.2.5.2 Variation 2: Nucleophilic Substitution at the a-Carbon of Dihaloacetates or Diheteroatom-Substituted Ketene Silyl Acetals [Seite 414]
1.10.1.1.5.3 - 20.5.9.2.5.3 Variation 3: Nucleophilic Substitution of Alkyl Chloroformates [Seite 415]
1.10.1.1.6 - 20.5.9.2.6 Method 6: Formation of a,a-Dihalo Esters by Radical-Mediated Transformations [Seite 416]
1.10.1.1.7 - 20.5.9.2.7 Method 7: Difluorination of Acid Chlorides [Seite 419]
1.11 - Volume 26: Ketones [Seite 424]
1.11.1 - 26.8 Product Class 8: Aryl Ketones [Seite 424]
1.11.1.1 - 26.8.4 Aryl Ketones [Seite 424]
1.11.1.1.1 - 26.8.4.1 Synthesis from Arenes [Seite 424]
1.11.1.1.1.1 - 26.8.4.1.1 Friedel-Crafts Acylation [Seite 424]
1.11.1.1.1.1.1 - 26.8.4.1.1.1 Method 1: Acylation Using Acid Chlorides or Anhydrides [Seite 425]
1.11.1.1.1.1.1.1 - 26.8.4.1.1.1.1 Variation 1: With p-Block Metal Catalysts [Seite 425]
1.11.1.1.1.1.1.2 - 26.8.4.1.1.1.2 Variation 2: With Transition-Metal Catalysts [Seite 427]
1.11.1.1.1.1.1.3 - 26.8.4.1.1.1.3 Variation 3: With Lanthanides and Actinides [Seite 430]
1.11.1.1.1.1.1.4 - 26.8.4.1.1.1.4 Variation 4: With Solid-Supported Catalysts [Seite 432]
1.11.1.1.1.1.1.5 - 26.8.4.1.1.1.5 Variation 5: With Brønsted Acid Catalysts [Seite 433]
1.11.1.1.1.1.2 - 26.8.4.1.1.2 Method 2: Acylation Using Carboxylic Acids [Seite 435]
1.11.1.1.1.1.3 - 26.8.4.1.1.3 Method 3: Acylation Using Esters [Seite 437]
1.11.1.1.2 - 26.8.4.2 Synthesis from Arylmetals [Seite 438]
1.11.1.1.2.1 - 26.8.4.2.1 Method 1: Synthesis from Arenes via C--H Activation [Seite 439]
1.11.1.1.2.2 - 26.8.4.2.2 Method 2: Synthesis from Arylboron Reagents [Seite 440]
1.11.1.1.2.2.1 - 26.8.4.2.2.1 Variation 1: With Acid Chlorides or Anhydrides [Seite 440]
1.11.1.1.2.2.2 - 26.8.4.2.2.2 Variation 2: With Esters [Seite 441]
1.11.1.1.2.2.3 - 26.8.4.2.2.3 Variation 3: With Nitriles [Seite 442]
1.11.1.1.2.2.4 - 26.8.4.2.2.4 Variation 4: With Aldehydes [Seite 443]
1.11.1.1.2.3 - 26.8.4.2.3 Method 3: Synthesis from Carboxylic Acids [Seite 444]
1.11.1.1.2.4 - 26.8.4.2.4 Method 4: Synthesis from Sulfinic Acids [Seite 444]
1.11.1.1.3 - 26.8.4.3 Synthesis from Aryl Halides [Seite 445]
1.11.1.1.3.1 - 26.8.4.3.1 Method 1: Synthesis via Organometallic Reagents [Seite 445]
1.11.1.1.3.1.1 - 26.8.4.3.1.1 Variation 1: With Amides [Seite 445]
1.11.1.1.3.1.2 - 26.8.4.3.1.2 Variation 2: With Acid Chlorides [Seite 447]
1.11.1.1.3.1.3 - 26.8.4.3.1.3 Variation 3: With Vinyl Ethers/Acetates/Enamines/Enamides [Seite 449]
1.11.1.1.3.1.4 - 26.8.4.3.1.4 Variation 4: With Hydrazones [Seite 451]
1.11.1.1.3.2 - 26.8.4.3.2 Method 2: Carbonylation [Seite 452]
1.11.1.1.4 - 26.8.4.4 Synthesis from Acyl Anion Equivalents [Seite 457]
1.11.1.1.5 - 26.8.4.5 Synthesis via Oxidation [Seite 462]
1.11.1.1.5.1 - 26.8.4.5.1 Method 1: Oxidation of Benzylic Alcohols [Seite 462]
1.11.1.1.5.2 - 26.8.4.5.2 Method 2: Oxidation of Aryl Methylenes [Seite 465]
1.11.1.1.6 - 26.8.4.6 Synthesis via Rearrangement [Seite 466]
1.11.1.1.6.1 - 26.8.4.6.1 Method 1: Fries Rearrangement [Seite 466]
1.11.1.1.6.2 - 26.8.4.6.2 Method 2: Alkyne Hydration/Rearrangement [Seite 467]
1.11.1.1.7 - 26.8.4.7 Synthesis via Cycloaddition of Arynes [Seite 468]
1.12 - Author Index [Seite 476]
1.13 - Abbreviations [Seite 516]
1.14 - List of All Volumes [Seite 522]