1 - Science of Synthesis: Knowledge Updates 2011/3 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 18]
1.6 - Table of Contents [Seite 20]
1.7 - Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) [Seite 34]
1.7.1 - 2.10 Product Class 10: Organometallic Complexes of Titanium [Seite 34]
1.7.1.1 - 2.10.18 Organometallic Complexes of Titanium [Seite 34]
1.7.1.1.1 - 2.10.18.1 Titanium-Mediated Alkenation Reactions [Seite 34]
1.7.1.1.1.1 - 2.10.18.1.1 Method 1: Using Thioacetals as Carbene Complex Precursors [Seite 34]
1.7.1.1.1.2 - 2.10.18.1.2 Method 2: Using Monohalides as Carbene Complex Precursors [Seite 45]
1.7.1.1.1.3 - 2.10.18.1.3 Method 3: Using gem-Dichlorides as Carbene Complex Precursors [Seite 46]
1.7.1.1.1.4 - 2.10.18.1.4 Method 4: Using 1,1-Dichloroalk-1-enes as Carbene Complex Precursors [Seite 47]
1.7.1.1.1.5 - 2.10.18.1.5 Method 5: Using Alkenyl and Alkynyl Sulfones [Seite 48]
1.7.1.1.2 - 2.10.18.2 Titanium-Mediated Alkene Metathesis [Seite 49]
1.7.1.1.2.1 - 2.10.18.2.1 Method 1: Metathesis and Related Reactions via Titanacyclobutanes [Seite 49]
1.7.1.1.2.1.1 - 2.10.18.2.1.1 Variation 1: Reaction of Titanocene Alkylidenes with Alkenes [Seite 49]
1.7.1.1.2.1.2 - 2.10.18.2.1.2 Variation 2: Intramolecular Reaction of Titanocene Alkylidenes Bearing an Alkene Moiety [Seite 52]
1.7.1.1.2.1.3 - 2.10.18.2.1.3 Variation 3: Reaction of Unsaturated Titanocene-Carbene Complexes with Alkenes [Seite 56]
1.7.1.1.2.2 - 2.10.18.2.2 Method 2: Metathesis and Related Reactions via Titanacyclobutenes [Seite 60]
1.7.1.1.2.2.1 - 2.10.18.2.2.1 Variation 1: Reaction of Alkenylcarbene Complexes of Titanium with Acetylene [Seite 60]
1.7.1.1.2.2.2 - 2.10.18.2.2.2 Variation 2: Reaction of Titanocene Alkylidenes with Alkynes [Seite 60]
1.7.1.1.2.2.3 - 2.10.18.2.2.3 Variation 3: Reaction of Titanocene Alkenylidenes with Alkynes [Seite 63]
1.7.1.1.2.2.4 - 2.10.18.2.2.4 Variation 4: Reaction of Titanocene Alkylidenes with Alkynyl Sulfones [Seite 64]
1.7.1.1.2.2.5 - 2.10.18.2.2.5 Variation 5: Valence Tautomerization of Alkenylcarbene Complexes [Seite 65]
1.7.1.1.2.2.6 - 2.10.18.2.2.6 Variation 6: Titanium-Promoted Alkylation of Propargyl Carbonates [Seite 66]
1.8 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 70]
1.8.1 - 4.4 Product Class 4: Silicon Compounds [Seite 70]
1.8.1.1 - 4.4.2.5 Silenes (Update 1) [Seite 70]
1.8.1.1.1 - 4.4.2.5.1 Method 1: Synthesis of Silenes by Photolysis or Thermolysis of Acylpolysilanes and Derivatives [Seite 72]
1.8.1.1.1.1 - 4.4.2.5.1.1 Variation 1: Thermolysis of Carbamoylpolysilanes [Seite 72]
1.8.1.1.1.2 - 4.4.2.5.1.2 Variation 2: Thermal Rearrangement of Mercury Bis(acylsilanes) [Seite 73]
1.8.1.1.2 - 4.4.2.5.2 Method 2: Salt Elimination Methods [Seite 74]
1.8.1.1.2.1 - 4.4.2.5.2.1 Variation 1: Reaction of Lithium Disilenides with Acyl or Vinyl Halides [Seite 75]
1.8.1.1.2.2 - 4.4.2.5.2.2 Variation 2: Reaction of Dilithiosiloles with Ketones [Seite 76]
1.8.1.1.3 - 4.4.2.5.3 Method 3: Sila-Peterson Alkenation Reactions [Seite 76]
1.8.1.1.4 - 4.4.2.5.4 Method 4: Silylene-Silene and Carbene-Silene Isomerizations [Seite 78]
1.8.1.2 - 4.4.2.6 Silenes (Update 2) [Seite 80]
1.8.1.2.1 - 4.4.2.6.1 Silenolates [Seite 80]
1.8.1.2.1.1 - 4.4.2.6.1.1 Method 1: Synthesis of Silen-2-olates by Trimethylsilyl-Metal Exchange [Seite 84]
1.8.1.2.1.1.1 - 4.4.2.6.1.1.1 Variation 1: With Germyllithium Reagents [Seite 84]
1.8.1.2.1.1.2 - 4.4.2.6.1.1.2 Variation 2: With Silyllithium Reagents [Seite 84]
1.8.1.2.1.1.3 - 4.4.2.6.1.1.3 Variation 3: With Potassium tert-Butoxide [Seite 85]
1.8.1.2.2 - 4.4.2.6.2 Method 2: Synthesis of Silen-2-olates by Reaction of Bis(lithiosilyl)mercury Compounds with Acyl Chlorides [Seite 86]
1.9 - Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides [Seite 90]
1.9.1 - 20.2 Product Class 2: Carboxylic Acids [Seite 90]
1.9.1.1 - 20.2.1.2.10 Synthesis from Carboxylic Acid Derivatives [Seite 90]
1.9.1.1.1 - 20.2.1.2.10.1 Method 1: Hydrolysis of Esters [Seite 90]
1.9.1.1.1.1 - 20.2.1.2.10.1.1 Variation 1: Nucleophile-Promoted Cleavage [Seite 90]
1.9.1.1.1.2 - 20.2.1.2.10.1.2 Variation 2: Hydrogenolytic Cleavage of Benzyl Esters [Seite 91]
1.9.1.1.1.3 - 20.2.1.2.10.1.3 Variation 3: Transition-Metal-Mediated Cleavage of Allyl Esters [Seite 92]
1.9.1.1.1.4 - 20.2.1.2.10.1.4 Variation 4: Cleavage of 2-Haloethyl Esters [Seite 94]
1.9.1.1.1.5 - 20.2.1.2.10.1.5 Variation 5: Light-Induced Cleavage [Seite 96]
1.9.1.1.1.6 - 20.2.1.2.10.1.6 Variation 6: Fluoride-Mediated Cleavage of Silyl Esters [Seite 97]
1.9.1.1.1.7 - 20.2.1.2.10.1.7 Variation 7: Enzymatic Hydrolysis [Seite 98]
1.9.1.1.2 - 20.2.1.2.10.2 Method 2: Hydrolysis of Hydrazides [Seite 99]
1.9.1.1.2.1 - 20.2.1.2.10.2.1 Variation 1: Base-Mediated Hydrolysis [Seite 99]
1.9.1.1.2.2 - 20.2.1.2.10.2.2 Variation 2: Acid-Catalyzed Hydrolysis [Seite 100]
1.9.1.1.2.3 - 20.2.1.2.10.2.3 Variation 3: Oxidative Hydrolysis [Seite 101]
1.9.1.1.2.4 - 20.2.1.2.10.2.4 Variation 4: Enzymatic Hydrolysis [Seite 102]
1.9.1.1.3 - 20.2.1.2.10.3 Method 3: Hydrolysis of 1,1,1-Trihalides [Seite 103]
1.9.2 - 20.5 Product Class 5: Carboxylic Acid Esters [Seite 110]
1.9.2.1 - 20.5.1.2.8 Synthesis from Carboxylic Acids and Derivatives [Seite 110]
1.9.2.1.1 - 20.5.1.2.8.1 Synthesis from Carboxylic Acids [Seite 110]
1.9.2.1.1.1 - 20.5.1.2.8.1.1 Method 1: Synthesis via Active Esters [Seite 110]
1.9.2.1.1.1.1 - 20.5.1.2.8.1.1.1 Variation 1: Via Mixed Sulfonic Anhydrides [Seite 111]
1.9.2.1.1.1.2 - 20.5.1.2.8.1.1.2 Variation 2: Via (Acyloxy)phosphorus Compounds [Seite 113]
1.9.2.1.1.1.3 - 20.5.1.2.8.1.1.3 Variation 3: Via Esters of Electron-Deficient Alcohols or of N-Acylhydroxylamines [Seite 114]
1.9.2.1.1.1.4 - 20.5.1.2.8.1.1.4 Variation 4: Via Ketene Acyl Acetals [Seite 115]
1.9.2.1.1.2 - 20.5.1.2.8.1.2 Method 2: Oxidative Coupling [Seite 116]
1.9.2.1.1.3 - 20.5.1.2.8.1.3 Method 3: Electrophilic Esterification [Seite 116]
1.9.2.1.1.3.1 - 20.5.1.2.8.1.3.1 Variation 1: Using Alkyl Halides [Seite 116]
1.9.2.1.1.3.2 - 20.5.1.2.8.1.3.2 Variation 2: Using Diazoalkanes [Seite 118]
1.9.2.1.1.4 - 20.5.1.2.8.1.4 Method 4: Enzymatic Esterification [Seite 119]
1.9.2.1.2 - 20.5.1.2.8.2 Synthesis from Carboxylic Acid Derivatives [Seite 120]
1.9.2.1.2.1 - 20.5.1.2.8.2.1 Method 1: Synthesis from Thioesters [Seite 120]
1.9.2.1.2.2 - 20.5.1.2.8.2.2 Method 2: Synthesis from Carboxylic Acid Hydrazides [Seite 121]
1.10 - Volume 27: Heteroatom Analogues of Aldehydes and Ketones [Seite 126]
1.10.1 - 27.7 Product Class 7: Imines [Seite 126]
1.10.1.1 - 27.7.6 Imines [Seite 126]
1.10.1.1.1 - 27.7.6.1 N-Unsubstituted Imines [Seite 126]
1.10.1.1.1.1 - 27.7.6.1.1 Synthesis of N-Unsubstituted Imines [Seite 126]
1.10.1.1.1.1.1 - 27.7.6.1.1.1 Method 1: Reaction of Aldehydes and Ketones with Ammonia [Seite 126]
1.10.1.1.1.1.2 - 27.7.6.1.1.2 Method 2: Synthesis from Oximes [Seite 127]
1.10.1.1.1.1.3 - 27.7.6.1.1.3 Method 3: Oxidation of Primary Amines [Seite 128]
1.10.1.1.1.1.4 - 27.7.6.1.1.4 Method 4: Synthesis from Nitriles [Seite 128]
1.10.1.1.1.1.5 - 27.7.6.1.1.5 Method 5: Miscellaneous Procedures [Seite 130]
1.10.1.1.2 - 27.7.6.2 N-Silylimines [Seite 130]
1.10.1.1.2.1 - 27.7.6.2.1 Synthesis of N-Silylimines [Seite 130]
1.10.1.1.2.1.1 - 27.7.6.2.1.1 Method 1: Reaction of Carbonyl Compounds with Lithium Hexamethyldisilazanide [Seite 130]
1.10.1.1.2.1.2 - 27.7.6.2.1.2 Method 2: Reaction of Nitriles with Organometallic Reagents [Seite 131]
1.10.1.1.3 - 27.7.6.3 N-Alkyl- and N-Arylimines [Seite 132]
1.10.1.1.3.1 - 27.7.6.3.1 Synthesis of N-Alkyl- and N-Arylimines [Seite 133]
1.10.1.1.3.1.1 - 27.7.6.3.1.1 Method 1: Reaction of Aldehydes or Ketones with Primary Amines [Seite 133]
1.10.1.1.3.1.1.1 - 27.7.6.3.1.1.1 Variation 1: With Azeotropic Removal of Water [Seite 133]
1.10.1.1.3.1.1.2 - 27.7.6.3.1.1.2 Variation 2: With Titanium(IV) Chloride [Seite 133]
1.10.1.1.3.1.1.3 - 27.7.6.3.1.1.3 Variation 3: With Solid-Phase Lewis Acids [Seite 135]
1.10.1.1.3.1.1.4 - 27.7.6.3.1.1.4 Variation 4: With Other Lewis Acids [Seite 135]
1.10.1.1.3.1.1.5 - 27.7.6.3.1.1.5 Variation 5: Miscellaneous Procedures [Seite 137]
1.10.1.1.3.1.2 - 27.7.6.3.1.2 Method 2: Reaction of Imidates with Organometallic Reagents [Seite 137]
1.10.1.1.3.1.3 - 27.7.6.3.1.3 Method 3: Synthesis from Amides [Seite 138]
1.10.1.1.3.1.3.1 - 27.7.6.3.1.3.1 Variation 1: By Reduction [Seite 138]
1.10.1.1.3.1.3.2 - 27.7.6.3.1.3.2 Variation 2: By Addition of Organometallic Reagents [Seite 139]
1.10.1.1.3.1.3.3 - 27.7.6.3.1.3.3 Variation 3: By Hydrolysis of N-Vinyl Lactams [Seite 140]
1.10.1.1.3.1.3.4 - 27.7.6.3.1.3.4 Variation 4: Via Nitrilium Ions [Seite 140]
1.10.1.1.3.1.3.5 - 27.7.6.3.1.3.5 Variation 5: Miscellaneous Procedures [Seite 142]
1.10.1.1.3.1.4 - 27.7.6.3.1.4 Method 4: Synthesis from Oximes [Seite 142]
1.10.1.1.3.1.5 - 27.7.6.3.1.5 Method 5: Synthesis from Imidoyl Halides [Seite 144]
1.10.1.1.3.1.5.1 - 27.7.6.3.1.5.1 Variation 1: By Reduction [Seite 144]
1.10.1.1.3.1.5.2 - 27.7.6.3.1.5.2 Variation 2: By Substitution [Seite 145]
1.10.1.1.3.1.5.3 - 27.7.6.3.1.5.3 Variation 3: Via Palladium-Catalyzed Cross Coupling [Seite 145]
1.10.1.1.3.1.5.4 - 27.7.6.3.1.5.4 Variation 4: Via 1,3-Dipolar Cycloaddition [Seite 147]
1.10.1.1.3.1.6 - 27.7.6.3.1.6 Method 6: Oxidation of Amines [Seite 147]
1.10.1.1.3.1.6.1 - 27.7.6.3.1.6.1 Variation 1: Oxidative Amination of Alkenes [Seite 147]
1.10.1.1.3.1.6.2 - 27.7.6.3.1.6.2 Variation 2: Oxidation of Secondary Amines [Seite 147]
1.10.1.1.3.1.7 - 27.7.6.3.1.7 Method 7: Dehydrohalogenation of N-Haloamines [Seite 149]
1.10.1.1.3.1.8 - 27.7.6.3.1.8 Method 8: Reaction of Aldehydes and Ketones with Azides (Aza-Wittig Reaction) [Seite 151]
1.10.1.1.3.1.9 - 27.7.6.3.1.9 Method 9: Addition of Primary Amines to Alkynes [Seite 153]
1.10.1.1.3.1.10 - 27.7.6.3.1.10 Method 10: Addition of Organometallic Compounds to Nitriles [Seite 156]
1.10.1.1.3.1.11 - 27.7.6.3.1.11 Method 11: Addition/Rearrangement of Alkenic Azides [Seite 157]
1.10.1.1.3.1.12 - 27.7.6.3.1.12 Method 12: C-Alkylation of 1-Azaallyl Anions [Seite 158]
1.10.1.1.3.1.13 - 27.7.6.3.1.13 Method 13: N-Alkylation of N-Unsubstituted Imines [Seite 159]
1.10.1.1.3.1.14 - 27.7.6.3.1.14 Method 14: a-Halogenation of Imines [Seite 160]
1.10.1.1.3.1.15 - 27.7.6.3.1.15 Method 15: Synthesis from Enamines [Seite 162]
1.10.1.1.3.1.16 - 27.7.6.3.1.16 Method 16: Synthesis from Isocyanides [Seite 163]
1.10.1.1.3.1.17 - 27.7.6.3.1.17 Method 17: Synthesis from Alkenyl Halides [Seite 165]
1.10.1.1.3.1.18 - 27.7.6.3.1.18 Method 18: Miscellaneous Procedures [Seite 166]
1.10.1.1.4 - 27.7.6.4 2H-Azirines [Seite 169]
1.10.1.1.4.1 - 27.7.6.4.1 Synthesis of 2H-Azirines [Seite 169]
1.10.1.1.4.1.1 - 27.7.6.4.1.1 Method 1: Synthesis from Oximes and Hydrazonium Salts [Seite 169]
1.10.1.1.4.1.2 - 27.7.6.4.1.2 Method 2: Oxidation of Aziridines [Seite 170]
1.10.1.1.4.1.3 - 27.7.6.4.1.3 Method 3: Elimination from N-Substituted Aziridines [Seite 170]
1.10.1.1.4.1.4 - 27.7.6.4.1.4 Method 4: Synthesis from Vinyl Azides [Seite 171]
1.10.1.1.4.1.5 - 27.7.6.4.1.5 Method 5: Synthesis from Other Azirines [Seite 171]
1.10.1.1.4.1.6 - 27.7.6.4.1.6 Method 6: Miscellaneous Procedures [Seite 171]
1.10.1.1.5 - 27.7.6.5 2,3-Dihydroazetes [Seite 173]
1.10.1.1.5.1 - 27.7.6.5.1 Synthesis of 2,3-Dihydroazetes [Seite 173]
1.10.1.1.5.1.1 - 27.7.6.5.1.1 Method 1: Miscellaneous Procedures [Seite 173]
1.10.2 - 27.8 Product Class 8: Iminium Salts [Seite 184]
1.10.2.1 - 27.8.2 Iminium Salts [Seite 184]
1.10.2.1.1 - 27.8.2.1 Synthesis of Iminium Salts [Seite 184]
1.10.2.1.1.1 - 27.8.2.1.1 Method 1: Reaction of Secondary Amines with Aldehydes or Ketones [Seite 184]
1.10.2.1.1.2 - 27.8.2.1.2 Method 2: Reaction of Tertiary Amines [Seite 187]
1.10.2.1.1.3 - 27.8.2.1.3 Method 3: Cleavage of Aminals [Seite 188]
1.10.2.1.1.4 - 27.8.2.1.4 Method 4: Cleavage of Hemiaminals [Seite 189]
1.10.2.1.1.5 - 27.8.2.1.5 Method 5: Synthesis from Aldimines and Ketimines [Seite 191]
1.10.2.1.1.5.1 - 27.8.2.1.5.1 Variation 1: By Alkylation [Seite 191]
1.10.2.1.1.5.2 - 27.8.2.1.5.2 Variation 2: By Protonation [Seite 193]
1.10.2.1.1.6 - 27.8.2.1.6 Method 6: Synthesis from Enamines [Seite 194]
1.10.2.1.1.6.1 - 27.8.2.1.6.1 Variation 1: By Alkylation [Seite 194]
1.10.2.1.1.6.2 - 27.8.2.1.6.2 Variation 2: By Protonation [Seite 195]
1.10.2.1.1.6.3 - 27.8.2.1.6.3 Variation 3: By Halogenation [Seite 196]
1.10.2.1.1.7 - 27.8.2.1.7 Method 7: Synthesis from Enaminones [Seite 197]
1.10.2.1.1.8 - 27.8.2.1.8 Method 8: Cyclization of Alkenimines [Seite 199]
1.10.2.1.1.8.1 - 27.8.2.1.8.1 Variation 1: Electrophile-Induced Cyclization of .,d-Unsaturated Imines [Seite 199]
1.10.2.1.1.8.2 - 27.8.2.1.8.2 Variation 2: Treatment of .,d-Unsaturated Imines with Hydrochloric Acid [Seite 201]
1.10.2.1.1.9 - 27.8.2.1.9 Method 9: Vilsmeier Formylation [Seite 201]
1.10.2.1.1.10 - 27.8.2.1.10 Method 10: Synthesis from Other Iminium Salts [Seite 203]
1.10.2.1.1.10.1 - 27.8.2.1.10.1 Variation 1: By Cycloaddition [Seite 203]
1.10.2.1.1.10.2 - 27.8.2.1.10.2 Variation 2: By Anion Exchange [Seite 204]
1.10.2.1.1.11 - 27.8.2.1.11 Method 11: Oxidation of Amino Ketene Acetals [Seite 205]
1.10.2.1.1.12 - 27.8.2.1.12 Method 12: Organoboron Compounds as Iminium Ion Generators [Seite 205]
1.10.2.1.1.13 - 27.8.2.1.13 Method 13: Miscellaneous Reactions [Seite 206]
1.11 - Volume 39: Sulfur, Selenium, and Tellurium [Seite 212]
1.11.1 - 39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives [Seite 212]
1.11.1.1 - 39.3.9 Alkanesulfinic Acids and Acyclic Derivatives [Seite 212]
1.11.1.1.1 - 39.3.9.1 Alkanesulfinyl Halides [Seite 212]
1.11.1.1.1.1 - 39.3.9.1.1 Applications of Alkanesulfinyl Halides in Organic Synthesis [Seite 212]
1.11.1.1.1.1.1 - 39.3.9.1.1.1 Method 1: Synthesis of 1-(tert-Butylsulfonyl)aziridines [Seite 212]
1.11.1.1.1.1.2 - 39.3.9.1.1.2 Method 2: Synthesis of Alkyl Sulfoxides [Seite 212]
1.11.1.1.1.1.3 - 39.3.9.1.1.3 Method 3: Synthesis of Dipeptides [Seite 213]
1.11.1.1.1.1.4 - 39.3.9.1.1.4 Method 4: Synthesis of (Alkylsulfonyl)allenes [Seite 214]
1.11.1.1.2 - 39.3.9.2 Alkanesulfinic Acid Esters [Seite 215]
1.11.1.1.2.1 - 39.3.9.2.1 Synthesis of Alkanesulfinic Acid Esters [Seite 215]
1.11.1.1.2.1.1 - 39.3.9.2.1.1 Method 1: Reaction of Alk-2-ene-1-sulfinic Acid-Boron Trichloride Complexes with Ethers [Seite 216]
1.11.1.1.2.1.2 - 39.3.9.2.1.2 Method 2: Reaction of Alkanesulfinyl Chlorides with Alcohols: Asymmetric Synthesis of Alkanesulfinic Acid Esters [Seite 217]
1.11.1.1.3 - 39.3.9.3 Alkanethiosulfinic Acid Esters [Seite 218]
1.11.1.1.3.1 - 39.3.9.3.1 Synthesis of Alkanethiosulfinic Acid Esters [Seite 218]
1.11.1.1.3.1.1 - 39.3.9.3.1.1 Method 1: Synthesis from Disulfides [Seite 218]
1.11.1.1.3.1.1.1 - 39.3.9.3.1.1.1 Variation 1: By Oxidation with 3-Chloroperoxybenzoic Acid [Seite 218]
1.11.1.1.3.1.1.2 - 39.3.9.3.1.1.2 Variation 2: By Asymmetric Oxidation [Seite 218]
1.11.1.1.4 - 39.3.9.4 Alkanesulfinamides [Seite 220]
1.11.1.1.4.1 - 39.3.9.4.1 Synthesis of Alkanesulfinamides [Seite 220]
1.11.1.1.4.1.1 - 39.3.9.4.1.1 Method 1: Reduction of N-Alkylidenealkanesulfinamides [Seite 220]
1.11.1.1.4.1.1.1 - 39.3.9.4.1.1.1 Variation 1: Using Catecholborane or Lithium Triethylborohydride [Seite 220]
1.11.1.1.4.1.1.2 - 39.3.9.4.1.1.2 Variation 2: Using Sodium Borohydride or L-Selectride [Seite 221]
1.11.1.1.4.1.1.3 - 39.3.9.4.1.1.3 Variation 3: Using Diisobutylaluminum Hydride [Seite 224]
1.11.1.1.4.1.1.4 - 39.3.9.4.1.1.4 Variation 4: Stereoselective Reduction-Cyclization [Seite 225]
1.11.1.1.4.1.1.5 - 39.3.9.4.1.1.5 Variation 5: Using Diethylzinc and Nickel(II) Acetylacetonate [Seite 226]
1.11.1.1.4.1.2 - 39.3.9.4.1.2 Method 2: Nucleophilic Addition to N-Alkylidenealkanesulfinamides [Seite 227]
1.11.1.1.4.1.2.1 - 39.3.9.4.1.2.1 Variation 1: Addition of Grignard Reagents [Seite 227]
1.11.1.1.4.1.2.2 - 39.3.9.4.1.2.2 Variation 2: Addition of Organolithium Reagents [Seite 228]
1.11.1.1.4.1.2.3 - 39.3.9.4.1.2.3 Variation 3: Addition of Titanium Enolates [Seite 229]
1.11.1.1.4.1.2.4 - 39.3.9.4.1.2.4 Variation 4: Addition of Zinc Enolates [Seite 231]
1.11.1.1.4.1.2.5 - 39.3.9.4.1.2.5 Variation 5: Addition of Zinc/Copper Enolates [Seite 233]
1.11.1.1.4.1.2.6 - 39.3.9.4.1.2.6 Variation 6: Addition of (Trifluoromethyl)trimethylsilane [Seite 234]
1.11.1.1.4.1.2.7 - 39.3.9.4.1.2.7 Variation 7: Addition of Silyl Nucleophiles [Seite 235]
1.11.1.1.4.1.2.8 - 39.3.9.4.1.2.8 Variation 8: Addition of Triorganozincates [Seite 236]
1.11.1.1.4.1.2.9 - 39.3.9.4.1.2.9 Variation 9: Addition of a-Dithiolanecarboxylates [Seite 237]
1.11.1.1.4.1.2.10 - 39.3.9.4.1.2.10 Variation 10: Addition of Vinylaluminum Reagents [Seite 238]
1.11.1.1.4.1.2.11 - 39.3.9.4.1.2.11 Variation 11: Allylation Using Allyl Bromide and Zinc [Seite 239]
1.11.1.1.4.1.2.12 - 39.3.9.4.1.2.12 Variation 12: Allylation Using Allyl Bromide and Indium [Seite 241]
1.11.1.1.4.1.2.13 - 39.3.9.4.1.2.13 Variation 13: Allylation Using Allene [Seite 243]
1.11.1.1.4.1.2.14 - 39.3.9.4.1.2.14 Variation 14: Allylation Using Allylzinc Reagents [Seite 244]
1.11.1.1.4.1.2.15 - 39.3.9.4.1.2.15 Variation 15: Addition of Lithium Acetylides [Seite 246]
1.11.1.1.4.1.2.16 - 39.3.9.4.1.2.16 Variation 16: Addition of Lithium Acetylides in the Presence of Trimethylaluminum [Seite 247]
1.11.1.1.4.1.2.17 - 39.3.9.4.1.2.17 Variation 17: Addition of Lithium Acetylides in the Presence of Titanium(IV) Isopropoxide [Seite 248]
1.11.1.1.4.1.2.18 - 39.3.9.4.1.2.18 Variation 18: Addition of Alkynylmagnesium Chlorides [Seite 249]
1.11.1.1.4.1.2.19 - 39.3.9.4.1.2.19 Variation 19: Addition of Arylboronic Acids [Seite 250]
1.11.1.1.4.1.2.20 - 39.3.9.4.1.2.20 Variation 20: Addition of Alkenyl(trifluoro)borates [Seite 252]
1.11.1.1.4.1.2.21 - 39.3.9.4.1.2.21 Variation 21: Addition of Silyllithium Reagents [Seite 253]
1.11.1.1.4.1.2.22 - 39.3.9.4.1.2.22 Variation 22: Addition of Dialkylphosphine Oxides [Seite 254]
1.11.1.1.4.1.2.23 - 39.3.9.4.1.2.23 Variation 23: Addition of (Tributylstannyl)metals [Seite 255]
1.11.1.1.4.1.3 - 39.3.9.4.1.3 Method 3: Samarium-Promoted Coupling [Seite 257]
1.11.1.1.4.1.3.1 - 39.3.9.4.1.3.1 Variation 1: Reductive Homocoupling with Samarium(II) Iodide [Seite 257]
1.11.1.1.4.1.3.2 - 39.3.9.4.1.3.2 Variation 2: Coupling with Nitrones [Seite 257]
1.11.1.1.4.1.3.3 - 39.3.9.4.1.3.3 Variation 3: Coupling with Aldehydes [Seite 258]
1.11.1.1.5 - 39.3.9.5 N-Alkylidenealkanesulfinamides [Seite 259]
1.11.1.1.5.1 - 39.3.9.5.1 Synthesis of N-Alkylidenealkanesulfinamides [Seite 260]
1.11.1.1.5.1.1 - 39.3.9.5.1.1 Method 1: Condensation of Alkanesulfinamides with Aldehydes and Ketones [Seite 260]
1.11.1.1.5.1.1.1 - 39.3.9.5.1.1.1 Variation 1: Using Magnesium Sulfate [Seite 260]
1.11.1.1.5.1.1.2 - 39.3.9.5.1.1.2 Variation 2: Using Copper(II) Sulfate [Seite 260]
1.11.1.1.5.1.1.3 - 39.3.9.5.1.1.3 Variation 3: Using Titanium(IV) Ethoxide [Seite 261]
1.11.1.1.5.1.1.4 - 39.3.9.5.1.1.4 Variation 4: Using Cesium Carbonate [Seite 262]
1.11.1.1.5.1.1.5 - 39.3.9.5.1.1.5 Variation 5: Using Potassium Hydrogen Sulfate [Seite 263]
1.11.1.1.5.1.1.6 - 39.3.9.5.1.1.6 Variation 6: Using Strong Bases [Seite 264]
1.11.1.1.5.1.1.7 - 39.3.9.5.1.1.7 Variation 7: Under Barbier-Type Conditions [Seite 265]
1.11.1.1.5.1.1.8 - 39.3.9.5.1.1.8 Variation 8: Using Cesium Fluoride [Seite 266]
1.11.1.1.5.2 - 39.3.9.5.2 Applications of N-Alkylidenealkanesulfinamides in Organic Synthesis [Seite 267]
1.11.1.1.5.2.1 - 39.3.9.5.2.1 Method 1: Synthesis of Amines [Seite 267]
1.11.1.1.5.2.2 - 39.3.9.5.2.2 Method 2: Synthesis of Nitriles [Seite 267]
1.11.2 - 39.5 Product Class 5: Alkanethiols [Seite 272]
1.11.2.1 - 39.5.2 Alkanethiols [Seite 272]
1.11.2.1.1 - 39.5.2.1 Applications of Alkanethiols in Organic Synthesis [Seite 272]
1.11.2.1.1.1 - 39.5.2.1.1 Method 1: Synthesis of Sulfonyl Chlorides from Alkanethiols [Seite 275]
1.11.2.1.1.2 - 39.5.2.1.2 Method 2: Synthesis of Alkanesulfonamides from Alkanethiols [Seite 276]
1.11.2.1.1.3 - 39.5.2.1.3 Method 3: Synthesis of Thiosulfinates from Alkanethiols [Seite 276]
1.11.2.1.1.4 - 39.5.2.1.4 Method 4: Synthesis of Sulfides [Seite 277]
1.11.2.1.1.4.1 - 39.5.2.1.4.1 Variation 1: Reaction of Alkanethiols with Alkyl Halides [Seite 277]
1.11.2.1.1.4.2 - 39.5.2.1.4.2 Variation 2: Preparation of Dialkyl Sulfides by Substitution of Alcohols and Carbamates [Seite 277]
1.11.2.1.1.4.3 - 39.5.2.1.4.3 Variation 3: Ring Opening of Cyclic Ethers and Aziridines [Seite 279]
1.11.2.1.1.4.4 - 39.5.2.1.4.4 Variation 4: Addition of Alkanethiols to Simple Alkenes [Seite 280]
1.11.2.1.1.4.5 - 39.5.2.1.4.5 Variation 5: Miscellaneous Reactions for Sulfide Formation [Seite 281]
1.11.2.1.1.5 - 39.5.2.1.5 Method 5: Synthesis of ß-Sulfido Carbonyl and Related Compounds [Seite 281]
1.11.2.1.1.6 - 39.5.2.1.6 Method 6: Synthesis of Alkyl Aryl Sulfides [Seite 284]
1.11.2.1.1.7 - 39.5.2.1.7 Method 7: Synthesis of Alkyl Vinyl Sulfides [Seite 287]
1.11.2.1.1.7.1 - 39.5.2.1.7.1 Variation 1: Coupling of Alkanethiols with Vinyl Halides [Seite 287]
1.11.2.1.1.7.2 - 39.5.2.1.7.2 Variation 2: Addition of Alkanethiols to Alkynes [Seite 290]
1.11.2.1.1.8 - 39.5.2.1.8 Method 8: Synthesis of Acyclic Dialkyl Disulfides [Seite 291]
1.11.2.1.1.8.1 - 39.5.2.1.8.1 Variation 1: Symmetrical Dialkyl Disulfides [Seite 291]
1.11.2.1.1.8.2 - 39.5.2.1.8.2 Variation 2: Unsymmetrical Dialkyl Disulfides [Seite 293]
1.11.2.1.1.9 - 39.5.2.1.9 Method 9: Synthesis of Acyclic Dialkyl Trisulfides [Seite 296]
1.11.2.1.1.9.1 - 39.5.2.1.9.1 Variation 1: Symmetrical Dialkyl Trisulfides [Seite 296]
1.11.2.1.1.9.2 - 39.5.2.1.9.2 Variation 2: Unsymmetrical Dialkyl Trisulfides [Seite 297]
1.11.2.1.1.10 - 39.5.2.1.10 Method 10: Synthesis of Dithioacetals and Dithioketals [Seite 299]
1.11.2.1.1.11 - 39.5.2.1.11 Method 11: Synthesis of O,S-Acetals [Seite 302]
1.11.2.1.1.12 - 39.5.2.1.12 Method 12: Synthesis of Thioesters [Seite 305]
1.11.2.1.1.13 - 39.5.2.1.13 Method 13: Synthesis of Thiocarbamates [Seite 308]
1.11.2.1.1.14 - 39.5.2.1.14 Method 14: Miscellaneous Reactions Involving Application of Alkanethiols [Seite 310]
1.11.3 - 39.6 Product Class 6: Acyclic Alkanethiolates [Seite 314]
1.11.3.1 - 39.6.1.2 Alkanethiolates of Group 1, 2, and 13-15 Metals [Seite 314]
1.11.3.1.1 - 39.6.1.2.1 Applications of Alkanethiolates of Group 13-15 Metals in Organic Synthesis [Seite 314]
1.11.3.1.1.1 - 39.6.1.2.1.1 Applications of Arsenic Alkanethiolates [Seite 314]
1.11.3.1.1.1.1 - 39.6.1.2.1.1.1 Method 1: Preparation of Sulfonium Salts [Seite 314]
1.11.3.1.1.1.2 - 39.6.1.2.1.1.2 Method 2: Preparation of Unsymmetrical Dialkyl Disulfides [Seite 315]
1.11.3.1.1.1.3 - 39.6.1.2.1.1.3 Method 3: Preparation of (Alkylsulfanyl)stannanes [Seite 315]
1.11.3.1.1.1.4 - 39.6.1.2.1.1.4 Method 4: Preparation of Phosphonotrithioate Derivatives. [Seite 315]
1.11.3.1.1.1.5 - 39.6.1.2.1.1.5 Method 5: Preparation of Trialkylarsines [Seite 316]
1.11.3.1.1.2 - 39.6.1.2.1.2 Applications of Silicon Alkanethiolates [Seite 316]
1.11.3.1.1.2.1 - 39.6.1.2.1.2.1 Method 1: Preparation of O-Silyl O,S-Acetals, S,S-Acetals, and S,S-Ketals [Seite 316]
1.11.3.1.1.2.2 - 39.6.1.2.1.2.2 Method 2: Preparation of S-Alkyl Thiocarboxylates [Seite 317]
1.11.3.1.1.2.3 - 39.6.1.2.1.2.3 Method 3: Preparation of Dialkyl Sulfides [Seite 318]
1.11.3.1.1.2.4 - 39.6.1.2.1.2.4 Method 4: Preparation of Methyl 1-Thioglycosides [Seite 322]
1.11.3.1.1.2.5 - 39.6.1.2.1.2.5 Method 5: Preparation of Disulfides [Seite 322]
1.11.3.1.1.2.6 - 39.6.1.2.1.2.6 Method 6: Miscellaneous Reactions of Silicon Alkanethiolates [Seite 323]
1.11.3.1.1.3 - 39.6.1.2.1.3 Applications of Germanium Alkanethiolates [Seite 325]
1.11.3.1.1.3.1 - 39.6.1.2.1.3.1 Method 1: Preparation of [(Alkylsulfanyl)alkyl]germanes [Seite 325]
1.11.3.1.1.3.2 - 39.6.1.2.1.3.2 Method 2: Preparation of Phosphonodithioate Derivatives [Seite 325]
1.11.3.1.1.4 - 39.6.1.2.1.4 Applications of Tin Alkanethiolates [Seite 326]
1.11.3.1.1.4.1 - 39.6.1.2.1.4.1 Method 1: Preparation of Alkyl 1-Thioglycosides [Seite 326]
1.11.3.1.1.4.2 - 39.6.1.2.1.4.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides [Seite 327]
1.11.3.1.1.4.3 - 39.6.1.2.1.4.3 Method 3: Preparation of Alkyl Disulfides [Seite 328]
1.11.3.1.1.4.4 - 39.6.1.2.1.4.4 Method 4: Miscellaneous Reactions of Tin Alkanethiolates [Seite 330]
1.11.3.1.1.5 - 39.6.1.2.1.5 Applications of Lead Alkanethiolates [Seite 333]
1.11.3.1.1.5.1 - 39.6.1.2.1.5.1 Method 1: Preparation of (Alkylsulfanyl)silanes [Seite 333]
1.11.3.1.1.5.2 - 39.6.1.2.1.5.2 Method 2: Preparation of Trithioortho Esters [Seite 333]
1.11.3.1.1.6 - 39.6.1.2.1.6 Applications of Boron Alkanethiolates [Seite 334]
1.11.3.1.1.6.1 - 39.6.1.2.1.6.1 Method 1: Preparation of S-Alkyl Thiocarboxylates [Seite 334]
1.11.3.1.1.6.2 - 39.6.1.2.1.6.2 Method 2: Preparation of Alkyl Aryl Sulfides and Alkyl Vinyl Sulfides [Seite 335]
1.11.3.1.1.6.3 - 39.6.1.2.1.6.3 Method 3: Miscellaneous Reactions of Boron Alkanethiolates [Seite 337]
1.11.3.1.1.7 - 39.6.1.2.1.7 Applications of Aluminum Alkanethiolates [Seite 339]
1.11.3.1.1.7.1 - 39.6.1.2.1.7.1 Method 1: Preparation of S-Alkyl Thiocarboxylates and Related Compounds [Seite 339]
1.11.3.1.1.7.2 - 39.6.1.2.1.7.2 Method 2: Preparation of ß-Alkylsulfanyl-Substituted Ketones and Related Compounds [Seite 341]
1.11.3.1.1.7.3 - 39.6.1.2.1.7.3 Method 3: Preparation of Alkyl Alkanimidothioates [Seite 345]
1.11.3.1.1.7.4 - 39.6.1.2.1.7.4 Method 4: Miscellaneous Reactions of Aluminum Alkanethiolates [Seite 346]
1.11.3.1.1.8 - 39.6.1.2.1.8 Applications of Indium Alkanethiolates [Seite 348]
1.11.3.1.1.8.1 - 39.6.1.2.1.8.1 Method 1: Preparation of Alkyl Aryl Sulfides [Seite 348]
1.11.3.1.1.9 - 39.6.1.2.1.9 Applications of Thallium Alkanethiolates [Seite 349]
1.11.3.1.1.9.1 - 39.6.1.2.1.9.1 Method 1: Preparation of S-Alkyl Thiocarboxylates [Seite 349]
1.11.3.1.2 - 39.6.1.2.2 Applications of Alkanethiolates of Group 1 and 2 Metals in Organic Synthesis [Seite 350]
1.11.3.1.2.1 - 39.6.1.2.2.1 Applications of Lithium Alkanethiolates [Seite 350]
1.11.3.1.2.1.1 - 39.6.1.2.2.1.1 Method 1: Preparation of Sulfides [Seite 350]
1.11.3.1.2.1.2 - 39.6.1.2.2.1.2 Method 2: Preparation of S-Alkyl Thiocarboxylates and Related Compounds [Seite 354]
1.11.3.1.2.1.3 - 39.6.1.2.2.1.3 Method 3: Miscellaneous Reactions of Lithium Alkanethiolates [Seite 356]
1.11.3.1.2.2 - 39.6.1.2.2.2 Applications of Sodium Alkanethiolates [Seite 358]
1.11.3.1.2.2.1 - 39.6.1.2.2.2.1 Method 1: Preparation of Alkyl Sulfides [Seite 358]
1.11.3.1.2.2.2 - 39.6.1.2.2.2.2 Method 2: Preparation of a-Alkylsulfanyl-Substituted Carbonyl Compounds [Seite 361]
1.11.3.1.2.2.3 - 39.6.1.2.2.2.3 Method 3: Preparation of S-Alkyl Thiocarboxylates and Related Compounds [Seite 364]
1.11.3.1.2.2.4 - 39.6.1.2.2.2.4 Method 4: Deprotection or Removal of Functional Groups [Seite 365]
1.11.3.1.2.2.5 - 39.6.1.2.2.2.5 Method 5: Miscellaneous Reactions of Sodium Alkanethiolates [Seite 367]
1.11.3.1.2.3 - 39.6.1.2.2.3 Applications of Potassium Alkanethiolates [Seite 369]
1.11.3.1.2.3.1 - 39.6.1.2.2.3.1 Method 1: Miscellaneous Reactions of Potassium Alkanethiolates [Seite 369]
1.11.3.1.2.4 - 39.6.1.2.2.4 Applications of Cesium Alkanethiolates [Seite 371]
1.11.3.1.2.4.1 - 39.6.1.2.2.4.1 Method 1: Preparation of Alkyl Sulfides [Seite 371]
1.11.3.1.2.5 - 39.6.1.2.2.5 Applications of Halomagnesium Alkanethiolates [Seite 372]
1.11.3.1.2.5.1 - 39.6.1.2.2.5.1 Method 1: Deprotection of Functional Groups [Seite 372]
1.11.4 - 39.39 Product Class 39: Tellurolanes, Larger Rings, and Derivatives of Various Oxidation States [Seite 378]
1.11.4.1 - 39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives [Seite 378]
1.11.4.2 - 39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives [Seite 380]
1.11.4.2.1 - 39.39.2.1 Synthesis of Product Subclass 2 [Seite 380]
1.11.4.2.1.1 - 39.39.2.1.1 Cyclic Tellurone Derivatives [Seite 380]
1.11.4.2.1.1.1 - 39.39.2.1.1.1 Method 1: Reaction of Spirodioxytelluranes with Hydrogen Peroxide [Seite 380]
1.11.4.2.1.1.2 - 39.39.2.1.1.2 Method 2: Reaction of 2,2-Diiodo-1,3-dihydrobenzo[c]tellurophene with Sodium Diethyldithiocarbamate and Related Compounds [Seite 381]
1.11.4.2.1.1.3 - 39.39.2.1.1.3 Method 3: Reaction of 1,1-Diiodo-1.4-tellurane with Tetraphenyl Onium Iodides [Seite 382]
1.12 - Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines [Seite 384]
1.12.1 - 40.1 Product Class 1: Amino Compounds [Seite 384]
1.12.1.1 - 40.1.1.5.5 Metal-Mediated Cyclizations of Amines [Seite 384]
1.12.1.1.1 - 40.1.1.5.5.1 Metal-Catalyzed Cycloisomerizations of N-Tethered 1,n-Enynes and 1,n-Dienes [Seite 384]
1.12.1.1.1.1 - 40.1.1.5.5.1.1 Enyne Cycloisomerization without Skeletal Reorganization [Seite 385]
1.12.1.1.1.1.1 - 40.1.1.5.5.1.1.1 Method 1: Palladium-Catalyzed Cycloisomerization to Pyrrolidine Derivatives [Seite 385]
1.12.1.1.1.1.1.1 - 40.1.1.5.5.1.1.1.1 Variation 1: Enantioselective Cycloisomerization of 1,6-Enynes Catalyzed by Chiral Bisphosphine-Palladium Complexes [Seite 388]
1.12.1.1.1.1.2 - 40.1.1.5.5.1.1.2 Method 2: Rhodium-Catalyzed 1,6-Enyne Cycloisomerization to Pyrrolidine Derivatives [Seite 390]
1.12.1.1.1.1.2.1 - 40.1.1.5.5.1.1.2.1 Variation 1: Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes to Alder-Ene-Type Products [Seite 390]
1.12.1.1.1.1.2.2 - 40.1.1.5.5.1.1.2.2 Variation 2: Rhodium-Catalyzed Asymmetric 1,6-Enyne Cycloisomerization of Terminal Alkynes [Seite 392]
1.12.1.1.1.1.2.3 - 40.1.1.5.5.1.1.2.3 Variation 3: Rhodium-Catalyzed Enantioselective Reductive Cyclization of 1,6-Enynes [Seite 394]
1.12.1.1.1.1.3 - 40.1.1.5.5.1.1.3 Method 3: Ruthenium-Catalyzed Cycloisomerization of 1,6-Enynes [Seite 395]
1.12.1.1.1.1.4 - 40.1.1.5.5.1.1.4 Method 4: Titanocene-Catalyzed Cycloisomerization of 1,6-Enynes to Pyrrolidine Derivatives [Seite 396]
1.12.1.1.1.1.5 - 40.1.1.5.5.1.1.5 Method 5: Bismuth(III) Chloride Catalyzed Cycloisomerization of 1,6-Enynes [Seite 397]
1.12.1.1.1.1.6 - 40.1.1.5.5.1.1.6 Method 6: Nickel-Catalyzed Reductive Cyclization of Unactivated N-Tethered 1,6-Enynes in the Presence of Organozinc Reagents [Seite 398]
1.12.1.1.1.1.7 - 40.1.1.5.5.1.1.7 Method 7: Cycloisomerization of 1,6-Enynes Catalyzed by Low-Valent Iron Complexes [Seite 401]
1.12.1.1.1.1.8 - 40.1.1.5.5.1.1.8 Method 8: Silver(I)-Catalyzed Cycloisomerization of 1,6-Enynes Containing Propargylic Alcohol Groups [Seite 404]
1.12.1.1.1.1.8.1 - 40.1.1.5.5.1.1.8.1 Variation 1: Intramolecular Carbostannylation Catalyzed by Silver(I) Ions [Seite 406]
1.12.1.1.1.1.9 - 40.1.1.5.5.1.1.9 Method 9: Gold(I)-Catalyzed Transformations of N-Tethered 1,6-Enynes [Seite 407]
1.12.1.1.1.1.9.1 - 40.1.1.5.5.1.1.9.1 Variation 1: Gold(I)-Catalyzed Cycloisomerization of 1,6-Enynes to 1,4-Dienes [Seite 407]
1.12.1.1.1.1.9.2 - 40.1.1.5.5.1.1.9.2 Variation 2: Gold(I)-Catalyzed Methoxycyclization of Enynes [Seite 408]
1.12.1.1.1.1.9.3 - 40.1.1.5.5.1.1.9.3 Variation 3: Gold-Catalyzed Asymmetric Hydroxycyclization [Seite 409]
1.12.1.1.1.1.9.4 - 40.1.1.5.5.1.1.9.4 Variation 4: Gold(I)-Catalyzed Tandem Cyclization/Friedel-Crafts-Type Addition [Seite 409]
1.12.1.1.1.1.10 - 40.1.1.5.5.1.1.10 Method 10: Enantioselective Cycloisomerization of 1,7-Enynes to Piperidine Derivatives [Seite 410]
1.12.1.1.1.2 - 40.1.1.5.5.1.2 Enyne Cycloisomerization with Skeletal Reorganization [Seite 412]
1.12.1.1.1.2.1 - 40.1.1.5.5.1.2.1 Method 1: Gallium(III) Chloride Catalyzed Isomerization of 1,6-Enynes to Eight-Membered Rings [Seite 413]
1.12.1.1.1.2.2 - 40.1.1.5.5.1.2.2 Method 2: Rhodium-Catalyzed Asymmetric Cycloisomerization of Nitrogen-Bridged 1,6-Enynes to Bicyclo[4.1.0]hept-4-ene Derivatives [Seite 414]
1.12.1.1.1.2.3 - 40.1.1.5.5.1.2.3 Method 3: Gold(I)-Catalyzed Transformations of 1,6-Enynes with Skeletal Rearrangement [Seite 416]
1.12.1.1.1.2.3.1 - 40.1.1.5.5.1.2.3.1 Variation 1: Rearrangements to Piperidine Derivatives [Seite 417]
1.12.1.1.1.2.3.2 - 40.1.1.5.5.1.2.3.2 Variation 2: Rearrangements of N-Tethered 1,6-Enynes to 3-Azabicyclo[4.1.0]heptene Derivatives [Seite 418]
1.12.1.1.1.2.3.3 - 40.1.1.5.5.1.2.3.3 Variation 3: Gold(I)-Catalyzed Cycloisomerizations of Amide-Tethered 1,6-Enynes [Seite 424]
1.12.1.1.1.2.4 - 40.1.1.5.5.1.2.4 Method 4: Platinum-Catalyzed Cycloisomerization Reactions of Enynes [Seite 426]
1.12.1.1.1.2.4.1 - 40.1.1.5.5.1.2.4.1 Variation 1: Application of Axially Chiral Platinum(II) Complexes [Seite 430]
1.12.1.1.1.2.4.2 - 40.1.1.5.5.1.2.4.2 Variation 2: Platinum-Catalyzed Cycloisomerization of Chiral Enynes [Seite 431]
1.12.1.1.2 - 40.1.1.5.5.2 Metathesis of N-Tethered Dienes and Enynes [Seite 433]
1.12.1.1.2.1 - 40.1.1.5.5.2.1 Method 1: Ring-Closing Metathesis of N-Tethered 1,n-Dienes [Seite 435]
1.12.1.1.2.1.1 - 40.1.1.5.5.2.1.1 Variation 1: Ring-Closing Metathesis of 1,n-Dienes in Water as Solvent [Seite 441]
1.12.1.1.2.2 - 40.1.1.5.5.2.2 Method 2: Ring-Closing Metathesis of Chiral Dienes: Synthesis of Chiral Five- to Eight-Membered Nitrogen-Containing Heterocycles [Seite 445]
1.12.1.1.2.2.1 - 40.1.1.5.5.2.2.1 Variation 1: Synthesis of Optically Active 2-Alkyl-Substituted 2,5-Dihydropyrroles [Seite 445]
1.12.1.1.2.2.2 - 40.1.1.5.5.2.2.2 Variation 2: Synthesis of Optically Active Six- to Eight-Membered Nitrogen-Containing Heterocycles [Seite 445]
1.12.1.1.2.3 - 40.1.1.5.5.2.3 Method 3: Ring-Rearrangement Metathesis [Seite 448]
1.12.1.1.2.3.1 - 40.1.1.5.5.2.3.1 Variation 1: Ring-Rearrangement Metathesis of Cyclopropene Derivatives [Seite 448]
1.12.1.1.2.3.2 - 40.1.1.5.5.2.3.2 Variation 2: Synthesis of (-)-Swainsonine by a Ruthenium-Catalyzed Ring-Closing/Ring-Opening Tandem Process [Seite 450]
1.12.1.1.2.4 - 40.1.1.5.5.2.4 Method 4: Asymmetric Ring-Closing Metathesis: Synthesis of Nitrogen-Containing Heterocycles [Seite 452]
1.12.1.1.2.4.1 - 40.1.1.5.5.2.4.1 Variation 1: Enantioselective Synthesis of Cyclic Amines through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis [Seite 453]
1.12.1.1.2.4.2 - 40.1.1.5.5.2.4.2 Variation 2: Enantioselective Synthesis of Cyclic Amides through Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis [Seite 455]
1.12.1.1.2.4.3 - 40.1.1.5.5.2.4.3 Variation 3: Application of Asymmetric Ring-Closing Metathesis to the Enantioselective Synthesis of Quebrachamine [Seite 458]
1.12.1.1.2.4.4 - 40.1.1.5.5.2.4.4 Variation 4: Microwave-Induced Ring-Closing Metathesis of Dienes [Seite 461]
1.12.1.1.2.5 - 40.1.1.5.5.2.5 Method 5: Ring-Closing Metathesis of N-Tethered Enynes [Seite 462]
1.12.1.1.2.5.1 - 40.1.1.5.5.2.5.1 Variation 1: exo-Selective Enyne Ring-Closing Metathesis Promoted by Ruthenium Carbenes: Efficient Synthesis of Chiral Five-Membered Nitrogen-Containing Heterocycles [Seite 464]
1.12.1.1.2.5.2 - 40.1.1.5.5.2.5.2 Variation 2: endo-Selective Enyne Ring-Closing Metathesis Promoted by Stereogenic-at-Molybdenum Complexes [Seite 465]
1.12.1.1.2.5.3 - 40.1.1.5.5.2.5.3 Variation 3: Enantioselective Molybdenum-Catalyzed Ring-Closing Metathesis Reactions of Dienynes [Seite 467]
1.12.1.1.2.5.4 - 40.1.1.5.5.2.5.4 Variation 4: Ring-Closing Metathesis of Chiral Enynes [Seite 468]
1.12.1.1.2.6 - 40.1.1.5.5.2.6 Method 6: Tandem Enyne Ring-Closing Metathesis and Selective Hydrogenation to a Tricyclic Carbamate [Seite 469]
1.12.1.1.2.7 - 40.1.1.5.5.2.7 Method 7: Ruthenium-Catalyzed Tandem Ring-Opening/Ring-Closing/Cross Metathesis of Cyclopropene-Containing 1,6-Enynes and Alkenes [Seite 470]
1.12.1.1.3 - 40.1.1.5.5.3 Transition-Metal-Catalyzed Cycloaddition Reactions of N-Tethered 1,n-Enynes, 1,n-Diynes, and 1,n-Dienes [Seite 471]
1.12.1.1.3.1 - 40.1.1.5.5.3.1 Method 1: Synthesis of Nitrogen-Containing Heterocycles by Pauson-Khand Reaction of Enynes [Seite 472]
1.12.1.1.3.1.1 - 40.1.1.5.5.3.1.1 Variation 1: Diastereoselective Pauson-Khand Reaction of Nitrogen-Containing 1,n-Enynes and 1,n-Dienes [Seite 473]
1.12.1.1.3.1.2 - 40.1.1.5.5.3.1.2 Variation 2: Asymmetric Pauson-Khand-Type Reaction Mediated by a Rhodium(I) Catalyst at Ambient Temperature [Seite 475]
1.12.1.1.3.1.3 - 40.1.1.5.5.3.1.3 Variation 3: Rhodium(I)-Catalyzed Carbonylative [5 + 2 + 1] and [3 + 2 + 1] Carbocyclization: Synthesis of Fused Cyclooctenones, Cyclohexenones, and Phenol Derivatives [Seite 477]
1.12.1.1.3.1.4 - 40.1.1.5.5.3.1.4 Variation 4: Rhodium-Catalyzed Pauson-Khand-Type Reaction Using an Alcohol as a Source of Carbon Monoxide [Seite 480]
1.12.1.1.3.2 - 40.1.1.5.5.3.2 Method 2: Transition-Metal-Mediated Cycloaddition and Cyclization Reactions of 2-Methylpropane-2-sulfinamide-Tethered Enyne and Diyne Substrates [Seite 482]
1.12.1.1.3.3 - 40.1.1.5.5.3.3 Method 3: Regio- and Enantioselective Intermolecular Rhodium-Catalyzed [2 + 2 + 2]-Cycloaddition Reactions of 1,6-Enynes [Seite 488]
1.12.1.1.3.3.1 - 40.1.1.5.5.3.3.1 Variation 1: Intramolecular Rhodium-Catalyzed [2 + 2 + 2] Cyclizations of N-Tethered 1,6-Diynes with a,ß-Unsaturated Carbonyl Compounds under Microwave Irradiation [Seite 494]
1.12.1.1.3.3.2 - 40.1.1.5.5.3.3.2 Variation 2: [2 + 2 + 2] Cycloaddition of 1,6-Enynes with Electron-Deficient Ketones Catalyzed by a Cationic Rhodium(I)/H8-BINAP Complex [Seite 495]
1.12.1.1.3.3.3 - 40.1.1.5.5.3.3.3 Variation 3: Cyclotrimerization of N-Tethered 1,6-Diynes with Triple Bonds: Synthesis of Chiral Aromatic Compounds [Seite 497]
1.12.1.1.3.3.4 - 40.1.1.5.5.3.3.4 Variation 4: Enantioselective Synthesis of Chiral Polycyclic Compounds with Quaternary Carbon Stereocenters by Catalytic Intramolecular Cycloaddition [Seite 500]
1.12.1.1.3.3.5 - 40.1.1.5.5.3.3.5 Variation 5: Enantioselective Synthesis of Axially Chiral N,N-Dialkylbenzamides by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of N-Tethered Diynes with N,N-Dialkylalkynylbenzamides [Seite 503]
1.12.1.1.3.3.6 - 40.1.1.5.5.3.3.6 Variation 6: Palladium-Catalyzed Tandem Reaction of N-Tethered 1,6-Diynyl Carbonates with 2,3-Dienoic Acids [Seite 504]
1.12.1.1.3.4 - 40.1.1.5.5.3.4 Method 4: Metal-Catalyzed Intramolecular Diels-Alder Reactions of Unactivated Alkynes To Give Bi- and Polycyclic Nitrogen-Containing Heterocycles [Seite 505]
1.12.1.1.3.4.1 - 40.1.1.5.5.3.4.1 Variation 1: Gold-Catalyzed [4 + 2] Cycloadditions of N-Tethered Dienallenes [Seite 509]
1.12.1.1.3.5 - 40.1.1.5.5.3.5 Method 5: Sequential Platinum-Catalyzed Cycloisomerization and Cope Rearrangement of N-Tethered Dienynes [Seite 514]
1.12.1.1.3.6 - 40.1.1.5.5.3.6 Method 6: Rhodium-Catalyzed Intramolecular Cyclization of Cyclopropyl-Containing N-Tethered 1,6-Dienes [Seite 516]
1.12.1.1.4 - 40.1.1.5.5.4 Transition-Metal-Catalyzed Cyclization/Coupling Reactions of Unsaturated Amines and Amides [Seite 518]
1.12.1.1.4.1 - 40.1.1.5.5.4.1 Method 1: Mizoroki-Heck Reactions of Amines and Amides [Seite 519]
1.12.1.1.4.1.1 - 40.1.1.5.5.4.1.1 Variation 1: Palladium-Catalyzed Domino Coupling/Cycloisomerization of N-Tethered 1,6-Enynes [Seite 519]
1.12.1.1.4.2 - 40.1.1.5.5.4.2 Method 2: Synthesis of Annulated Hexahydro-1H-benzo[f]isoindole Derivatives [Seite 521]
1.12.1.1.4.3 - 40.1.1.5.5.4.3 Method 3: Synthesis of Haouamine Precursors by Cascade Mizoroki-Heck Cyclization [Seite 522]
1.12.1.1.4.4 - 40.1.1.5.5.4.4 Method 4: Preparation of Nitrogen-Containing Spiro-Fused Dihydroindolones by Palladium-Catalyzed Tandem Mizoroki-Heck Reaction/C--H Functionalization [Seite 523]
1.12.1.1.5 - 40.1.1.5.5.5 Cross-Coupling Reactions of N-Tethered 1,6-Dienes and 1,6-Enynes [Seite 526]
1.12.1.1.5.1 - 40.1.1.5.5.5.1 Method 1: Palladium-Catalyzed Cycloalkylations of N-Tethered 2-Bromo-1,6-dienes with Organoboronic Acids [Seite 526]
1.12.1.1.5.2 - 40.1.1.5.5.5.2 Method 2: Palladium-Catalyzed Tandem Cyclization/Suzuki Coupling of N-Tethered 1,6-Enynes To Give Mono- and Bicyclic Heterocycles [Seite 527]
1.12.1.1.5.3 - 40.1.1.5.5.5.3 Method 3: Palladium-Mediated Cascade Cross-Coupling/Electrocyclization Approach to the Construction of Fused Bi- and Tricyclic Rings [Seite 528]
1.13 - Author Index [Seite 538]
1.14 - Abbreviations [Seite 568]
1.15 - List of All Volumes [Seite 574]
Abstracts
T. Takeda and A. Tsubouchi
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of organometallic complexes of titanium. ▶ Section 2.10.18.1 focuses on the preparation of titanocene alkylidenes by the reductive titanation of thioacetals, gem-dihalides, and alkyl halides, and their synthetic application in carbonyl alkenation reactions.
▶ Section 2.10.18.2 highlights the preparation of titanocene derivatives of metallacyclobutanes derived from titanocene alkylidenes and alkenes, and their synthetic application, mainly in the metathesis reaction. Other types of degradation of titanacyclobutanes such as reductive elimination and β-hydride elimination are also included. In connection with alkene metathesis, titanacyclobutenes, which are intermediates for enyne metathesis, are also discussed.
Keywords: alkenation · alkene metathesis · alkenes · alkenylcyclopropanes · carbene complexes · conjugate dienes · β-hydride elimination · reductive titanation · titanacyclobutanes · titanacyclobutenes · titanium complexes · titanocenes
H. Ottosson and A. M. Rouf
The topic of this update is synthesis of silenes, compounds with Si=C bonds, which are generally highly reactive and sensitive to the ambient atmosphere. Synthetic routes published since 2001 yielding either persistent silenes or transient silenes that can be trapped by suitable reagents are discussed. Both novel routes and modifications of earlier established routes, now employing less forcing conditions than previously reported, are covered.
Keywords: silicon compounds · silenes · unsaturated compounds · lithium compounds · rearrangement · Peterson alkenation · elimination · isomerization
H. Ottosson and J. Ohshita
This section describes the synthesis of silen-2-olates, silicon analogues of enolates with formal Si=C bonds, for example through trimethylsilyl–metal exchange of acylpolysilanes using organolithium or organopotassium reagents. The fundamental reactions of silenolates and the structural differences between silenolates dominated by keto-form versus enol-form resonance structures are also presented.
Keywords: silicon compounds · silenes · silenolates · silyl anions · lithium compounds · potassium compounds · mercury compounds · silyl–metal exchange
A. K. Mourad and C. Czekelius
This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize carboxylic acids from their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution.
Keywords: acid catalysts · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · hydrolysis · oxidative cleavage · photolysis · reductive cleavage · silyl esters
A. K. Mourad and C. Czekelius
This manuscript is an update to the earlier Science of Synthesis contribution describing general methods to synthesize esters from carboxylic acids and their derivatives. This update addresses more specific methods, new developments, and transformations of carboxylic acid derivatives which were not covered in the original contribution.
Keywords: alkylations · carboxylic acid derivatives · carboxylic acids · enzyme catalysis · esters · halo compounds · hydrazides · oxidative cleavage · thioesters
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of imines. It focuses on the literature published in the period 2004–2010.
Keywords: 2H-azirines · imines · N-unsubstituted imines · N-silyl imines · N-alkyl imines · N-aryl imines · 2,3-dihydroazetes · imino esters · nitrogen heterocycles · synthesis design
S. Dekeukeleire, M. D’hooghe, and N. De Kimpe
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of iminium salts. It focuses on the literature published in the period 2004–2010.
Keywords: iminium salts · nitrogen heterocycles · synthesis design
R. Kawęcki
This chapter is an update to the earlier Science of Synthesis, Section 39.3, describing the synthesis and applications of alkanesulfinic acids and acyclic derivatives. It includes discussion of the applications of alkanesulfinyl halides and the synthesis of alkanesulfinic acid esters, alkanethiosulfinic acid esters, and alkanesulfinamides, focusing on the literature in the period 2006–2010.
It also contains an extension of the coverage of the previous contribution describing the synthesis and applications of N-alkylidenealkanesulfinamides, here focusing on literature in the period 1997–2010.
Keywords: sulfinyl halides · sulfinic acid esters · sulfinates · sulfinylation · sulfoxides · aziridines · asymmetric synthesis · boron trichloride complexes · thiosulfinic acid esters · thiosulfinates · disulfides · asymmetric oxidation · sulfinamides · N-sulfinylimines · sulfinimines · 1,2-addition · allylation · nucleophilic addition · imines
D. Witt
This manuscript is an update to the earlier Science of Synthesis contribution on alkanethiols, and describes applications of alkanethiols as a starting material in organic synthesis. Thiols can be converted into sulfonic, sulfinic, and sulfenic acids and their derivatives, as well as sulfides, disulfides, polysulfides, sulfonium salts, and thiiranes, etc. These transformations are accomplished by nucleophilic displacement or addition, oxidation, condensation, or coupling reactions involving the thiol group.
Keywords: alkanethiols · organosulfur compounds · sulfur electrophiles · sulfur functional groups · sulfur nucleophiles · sulfur oxidation states
D. Witt
This update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkanethiolates of group 1, 2, and 13–15 metals focuses on applications of these compounds in organic synthesis. Alkanethiolates can be converted into S-alkyl thiocarboxlyates, 1-thioglycosides, S-alkyl thiosulfinates, tetrahydro-1,4-thiazin-3-ones, sulfides, disulfides, sulfonium salts, dithioacetals, and dithioketals. These transformations are accomplished by nucleophilic displacement or addition, condensation, or coupling reactions involving the thiolate group.
Keywords: alkanethiolates · S-alkyl thiocarboxylates · disulfides · dithioacetals · dithioketals · organosulfur compounds · sulfur electrophiles · sulfides · sulfonium salts · sulfur nucleophiles · thioacetals · 1-thioglycosides
T. Kimura
The topic of this section is cyclic compounds with one or more tellurium atoms, where the tellurium atom bears one sp3 carbon atom, two tellurium-heteroatom double bonds (Te=OorTe=N), and one Te-X single bond (X = O, NR1, S, etc.; R1 = H or other substituent); or one sp3 carbon atom and five single bonds: one Te-X and four Te-Z (Z = OR1, NR12,SR1, halogen, etc.; R1 = H or other substituent). Thus, this product subclass contains cyclic telluronic acid esters, cyclic telluronic acid thioesters, cyclic telluronic acid amides, and their derivatives. However, at present, no examples of such compounds have been prepared in a stable form.
Keywords: tellurium · telluronic acid esters · telluronic acid thioesters · telluronic acid amides
T. Kimura
This section describes the synthesis of cyclic compounds with one or more tellurium atoms, where a tellurium atom bridges two sp3 carbon atoms to form a cyclic structure and this tellurium atom has two...