1 - Preface [Seite 6]
2 - Acknowledgements [Seite 7]
3 - Contents [Seite 8]
4 - General Mechanics [Seite 24]
5 - Correlation Between Fracto-Emissions and Statistical Seismic Precursors in the Case of Low-Magnitude Earthquakes [Seite 25]
5.1 - Abstract [Seite 25]
5.2 - 1 Introduction [Seite 26]
5.3 - 2 Experimental Results [Seite 28]
5.4 - 3 Conclusions [Seite 31]
5.5 - References [Seite 32]
6 - On Constitutive Choices for Growth Terms in Binary Fluid Mixtures [Seite 33]
6.1 - 1 Introduction [Seite 33]
6.2 - 2 Balance Axioms for Binary Mixtures of Fluids [Seite 34]
6.3 - 3 `Vis Viva' Theorem and Constitutive Proposals for Exchange Terms [Seite 36]
6.4 - 4 Small Plane Vibrations in Binary Mixtures [Seite 37]
6.4.1 - 4.1 Superfluid Helium [Seite 38]
6.4.2 - 4.2 Mixture of Euler Fluids [Seite 41]
6.5 - 5 Concluding Remark [Seite 44]
6.6 - References [Seite 45]
7 - Fluid Mechanics [Seite 46]
8 - An Investigation About Polygonal Steady Vortices [Seite 47]
8.1 - 1 Introduction [Seite 47]
8.2 - 2 Equilibrium Condition [Seite 50]
8.3 - 3 Isolated Polygonal Vortex [Seite 53]
8.4 - 4 Vorticity Structure Formed by Uniform and Pointwise Vortices [Seite 57]
8.5 - 5 Concluding Remarks and Unsolved Issues [Seite 63]
8.6 - References [Seite 63]
9 - Numerical Study on the Flow Field Generated by a Double-Orifice Synthetic Jet Device [Seite 65]
9.1 - 1 Introduction [Seite 65]
9.2 - 2 Numerical Setup [Seite 66]
9.2.1 - 2.1 Data Reduction [Seite 68]
9.3 - 3 Results and Discussion [Seite 69]
9.3.1 - 3.1 Time-Averaged Flow Fields [Seite 71]
9.3.2 - 3.2 Phase-Averaged Flow Fields [Seite 73]
9.4 - 4 Conclusions and Future Work [Seite 75]
9.5 - References [Seite 75]
10 - Dynamics of a Bubble Moving Through a Liquid [Seite 77]
10.1 - 1 Introduction [Seite 77]
10.2 - 2 The Mathematical Model [Seite 79]
10.3 - 3 Dynamics of the Center of Mass [Seite 81]
10.4 - 4 Dynamics of the Bubble Radius [Seite 83]
10.5 - 5 Numerical Results and Comparison with Previous Models [Seite 84]
10.6 - 6 Conclusions [Seite 88]
10.7 - References [Seite 89]
11 - Preliminary Design of Variable-Pitch Systems for Darrieus Wind Turbine Using a Genetic Algorithm Based Optimization Procedure [Seite 90]
11.1 - Abstract [Seite 90]
11.2 - 1 Introduction [Seite 91]
11.3 - 2 Test Case [Seite 92]
11.4 - 3 Cam-Based Active Variable-Pitch System [Seite 95]
11.4.1 - 3.1 The Optimization Tool [Seite 96]
11.4.2 - 3.2 Results [Seite 97]
11.4.3 - 3.3 An Alternate Active Variable-Pitch System [Seite 100]
11.5 - 4 Conclusions [Seite 101]
11.6 - References [Seite 102]
12 - Free Topology Generation of Thermal Protection System for Reusable Space Vehicles Using Integral Soft Objects [Seite 104]
12.1 - 1 Introduction [Seite 104]
12.2 - 2 Implicit Modelling [Seite 105]
12.2.1 - 2.1 Implicit Surface Modelling [Seite 105]
12.2.2 - 2.2 Integral Soft Objects Modelling [Seite 107]
12.3 - 3 Skeleton Based Integral Soft Object Modelling of TPS [Seite 108]
12.4 - 4 Material-Based Sizing of Thermal Protection System [Seite 110]
12.4.1 - 4.1 Parametric Modelling of SBISO Primitives [Seite 111]
12.5 - 5 Modelling Procedure Capability [Seite 114]
12.6 - 6 Conclusions [Seite 115]
12.7 - References [Seite 117]
13 - On the Stability of Subsonic Impinging Jets [Seite 119]
13.1 - 1 Introduction [Seite 119]
13.2 - 2 Theoretical Framework [Seite 121]
13.2.1 - 2.1 Flow Configuration and Governing Equations [Seite 121]
13.2.2 - 2.2 Stability and Sensitivity Analysis [Seite 123]
13.2.3 - 2.3 Dynamic Mode Decomposition [Seite 124]
13.3 - 3 Numerical Setup and Validation [Seite 125]
13.3.1 - 3.1 Direct Numerical Simulation [Seite 126]
13.3.2 - 3.2 Stability and Sensitivity Analysis [Seite 126]
13.4 - 4 DNS and DMD Results [Seite 127]
13.5 - 5 Stability Analysis [Seite 130]
13.6 - 6 Conclusions [Seite 134]
13.7 - References [Seite 135]
14 - Jet-Flat Plate Interaction: Wall Pressure Coherence Modeling [Seite 137]
14.1 - 1 Introduction [Seite 137]
14.2 - 2 Model Description [Seite 138]
14.3 - 3 Model Assessment [Seite 140]
14.4 - 4 Conclusions [Seite 142]
14.5 - References [Seite 142]
15 - Numerical Simulation of Shock Boundary Layer Interaction Using Shock Fitting Technique [Seite 144]
15.1 - 1 Introduction [Seite 144]
15.2 - 2 Shock Fitting Algorithm [Seite 145]
15.2.1 - 2.1 Step 1: Cell Removal Around the Shock Front [Seite 146]
15.2.2 - 2.2 Step 2: Local Re-meshing Around the Shock Front [Seite 146]
15.2.3 - 2.3 Step 3: Grid Assembly [Seite 146]
15.2.4 - 2.4 Step 4: Calculation of the Unit Vectors Normal to the Shock Front [Seite 146]
15.2.5 - 2.5 Step 5: Solution Update Using a Shock-Capturing Code and Enforcement of the R-H Relations [Seite 148]
15.3 - 3 Numerical Simulation of Shock/Boundary-Layer Interaction [Seite 149]
15.3.1 - 3.1 Pressure Field Analysis [Seite 149]
15.3.2 - 3.2 Numerical Models [Seite 150]
15.4 - 4 Results and Discussion [Seite 151]
15.5 - 5 Conclusion [Seite 153]
15.6 - References [Seite 153]
16 - Solid and Structural Mechanics [Seite 155]
17 - Diffraction and Reflection of Antiplane Shear Waves in a Cracked Couple Stress Elastic Material [Seite 156]
17.1 - 1 Introduction [Seite 156]
17.2 - 2 Theory of Couple Stress Materials [Seite 157]
17.3 - 3 Time-Harmonic Analysis [Seite 160]
17.4 - 4 Analysis in the Frequency Domain [Seite 162]
17.5 - 5 Full-Field Solution by the Wiener-Hopf Method [Seite 164]
17.6 - 6 Results [Seite 165]
17.6.1 - 6.1 Wave Pattern [Seite 165]
17.6.2 - 6.2 Energy Release Rate [Seite 167]
17.7 - 7 Conclusions [Seite 168]
17.8 - References [Seite 168]
18 - Corrosion Fatigue Investigation on the Possible Collapse Reasons of Polcevera Bridge in Genoa [Seite 170]
18.1 - 1 Introduction [Seite 170]
18.2 - 2 Analitical Models for the Morandi Bridge [Seite 172]
18.3 - 3 Stress Redistribution Due to Corrosion [Seite 173]
18.4 - 4 Fatigue Assessment of Cable-Stay [Seite 176]
18.4.1 - 4.1 Evaluation of the Fatigue Load Spectrum [Seite 176]
18.4.2 - 4.2 Fatigue Damage Accumulation [Seite 176]
18.5 - 5 Conclusions [Seite 177]
18.6 - References [Seite 178]
19 - Investigation into Benefits of Coupling a Frame Structure with a Rocking Rigid Block [Seite 179]
19.1 - 1 Introduction [Seite 179]
19.2 - 2 Motivations of the Study [Seite 180]
19.3 - 3 Mechanical Model of the Experimented System [Seite 181]
19.3.1 - 3.1 Equations of Motion [Seite 181]
19.3.2 - 3.2 Uplift and Impact Conditions of the Block [Seite 184]
19.4 - 4 Parametric Analisys [Seite 184]
19.4.1 - 4.1 Frame and Block Characteristics [Seite 185]
19.4.2 - 4.2 Gain Coefficients [Seite 185]
19.4.3 - 4.3 Gain Map [Seite 185]
19.5 - 5 Experimental Tests [Seite 187]
19.5.1 - 5.1 Experimental Setup [Seite 187]
19.5.2 - 5.2 Gain Spectra [Seite 188]
19.6 - 6 Conclusions [Seite 191]
19.7 - References [Seite 191]
20 - Base Isolation Systems for Structures Subject to Anomalous Dynamic Events [Seite 194]
20.1 - Abstract [Seite 194]
20.2 - 1 Introduction [Seite 194]
20.3 - 2 The Mathematical Modeling of the Base Isolation System [Seite 195]
20.4 - 3 Modeling of the Base Isolation Device [Seite 198]
20.5 - 4 The Proposed Base Isolation System Applied to a Structure Subject to Anomalous Dynamic Actions [Seite 199]
20.6 - 5 Conclusions [Seite 204]
20.7 - References [Seite 205]
21 - Fractality and Size Effect in Fatigue Damage Accumulation: Comparison Between Paris and Wöhler Perspectives [Seite 207]
21.1 - 1 Introduction [Seite 207]
21.2 - 2 The Crack-Size Effects on Paris' Law [Seite 208]
21.2.1 - 2.1 Intermediate Asymptotics and Fractal Geometry [Seite 208]
21.2.2 - 2.2 Experimental Comparisons [Seite 209]
21.3 - 3 The Specimen-Size Effects on Wöhler's Curve [Seite 210]
21.3.1 - 3.1 Intermediate Asymptotics and Fractal Geometry [Seite 210]
21.3.2 - 3.2 Experimental Comparisons [Seite 211]
21.4 - 4 The Crack-Size Effect on the Fatigue Threshold [Seite 212]
21.4.1 - 4.1 Fractal and Multifractal Approaches [Seite 212]
21.4.2 - 4.2 Experimental Comparisons [Seite 213]
21.5 - 5 The Specimen-Size Effect on the Fatigue Limit [Seite 213]
21.5.1 - 5.1 Fractal Approach [Seite 213]
21.5.2 - 5.2 Experimental Comparisons [Seite 214]
21.6 - 6 Conclusions [Seite 214]
21.7 - References [Seite 215]
22 - Smart Beam Element Approach for LRPH Device [Seite 216]
22.1 - Abstract [Seite 216]
22.2 - 1 Introduction [Seite 217]
22.3 - 2 Geometrical and Mechanical Characteristics of LRPH [Seite 218]
22.4 - 3 The Smart Displacement Based (SDB) Beam Element for Discontinuous Beams [Seite 221]
22.4.1 - 3.1 A Model for Discontinuous Euler-Bernoulli Beams [Seite 221]
22.4.2 - 3.2 The Nonlinear Smart Displacement Based (SDB) Beam Element [Seite 223]
22.4.3 - 3.3 The Element Stiffness Matrix by Means of a Fibre Approach [Seite 225]
22.5 - 4 Application [Seite 227]
22.6 - 5 Conclusions [Seite 229]
22.7 - Acknowledgements [Seite 229]
22.8 - Appendix [Seite 230]
22.9 - References [Seite 230]
23 - Reliable Measures of Plastic Deformations for Elastic Plastic Structures in Shakedown Conditions [Seite 233]
23.1 - Abstract [Seite 233]
23.2 - 1 Introduction [Seite 233]
23.3 - 2 Position of the Problem [Seite 235]
23.4 - 3 Optimization Problem [Seite 237]
23.5 - 4 Application [Seite 239]
23.6 - 5 Conclusions [Seite 240]
23.7 - References [Seite 240]
24 - Preliminary Experimental Results of Shaking Table Tests on MDOF Structure Equipped with Non-conventional TMD [Seite 242]
24.1 - Abstract [Seite 242]
24.2 - 1 Introduction [Seite 242]
24.3 - 2 Physical Models [Seite 243]
24.4 - 3 Shaking Table Tests [Seite 244]
24.4.1 - 3.1 Experimental Set-up [Seite 244]
24.4.2 - 3.2 Input Signals [Seite 245]
24.5 - 4 Experimental Response [Seite 245]
24.5.1 - 4.1 4-Story Structure - F4 [Seite 246]
24.5.2 - 4.2 3-Story Structure with Support Plane - F3S [Seite 246]
24.5.3 - 4.3 3-Story Structure Equipped with the Non-conventional TMD - FTMD [Seite 246]
24.6 - 5 Conclusions [Seite 250]
24.7 - References [Seite 250]
25 - JKR, DMT and More: Gauging Adhesion of Randomly Rough Surfaces [Seite 252]
25.1 - 1 Introduction [Seite 252]
25.2 - 2 Adhesion of Rough Elastic Media [Seite 254]
25.2.1 - 2.1 Modeling Adhesion with the Advanced Asperity Model ICHA in the DMT and JKR Limits [Seite 255]
25.2.2 - 2.2 Results [Seite 256]
25.3 - 3 Conclusions [Seite 259]
25.4 - References [Seite 260]
26 - Mechanics of Machines and Mechanical Systems [Seite 262]
27 - A New Pneumatic Pad Controlled by Means of an Integrated Proportional Valve [Seite 263]
27.1 - Abstract [Seite 263]
27.2 - 1 Introduction [Seite 263]
27.3 - 2 The New Prototype of Pneumatic Pad [Seite 264]
27.3.1 - 2.1 Experimental Characterization of the Valve [Seite 266]
27.3.2 - 2.2 Static Tests on the Active Pad in Open Loop [Seite 268]
27.4 - 3 The Numerical Model [Seite 270]
27.4.1 - 3.1 Static Model of the Pad [Seite 270]
27.4.1.1 - 3.1.1 Supply Orifice Model [Seite 270]
27.4.1.2 - 3.1.2 Model of the Air Gap [Seite 271]
27.4.2 - 3.2 Dynamic Model of the Pad [Seite 272]
27.4.3 - 3.3 Model of the Proportional Valve [Seite 274]
27.4.3.1 - 3.3.1 Static Model of the Valve [Seite 274]
27.4.3.2 - 3.3.2 Dynamic Model of the Valve [Seite 275]
27.5 - 4 Comparison with Experimental Data [Seite 276]
27.5.1 - 4.1 Tests on the Valve Alone [Seite 276]
27.5.2 - 4.2 Tests on Valve and Pad [Seite 277]
27.6 - 5 Conclusions and Future Work [Seite 278]
27.7 - References [Seite 278]
28 - Oral Exostoses and Congruence of the Contact in the Temporo-Mandibular Joint [Seite 280]
28.1 - Abstract [Seite 280]
28.2 - 1 Introduction [Seite 280]
28.3 - 2 The Buccal Maxillary Exostosis Under Study [Seite 281]
28.4 - 3 Congruence Measurement and Contact Evaluation [Seite 283]
28.4.1 - 3.1 Congruence Measure [Seite 283]
28.4.2 - 3.2 Application to the Case Study [Seite 283]
28.5 - 4 Results and Discussion [Seite 284]
28.6 - 5 Conclusions [Seite 286]
28.7 - References [Seite 287]
29 - Mechatronic Design of a Robotic Arm to Remove Skins by Wine Fermentation Tanks [Seite 289]
29.1 - Abstract [Seite 289]
29.2 - 1 Introduction [Seite 289]
29.3 - 2 Robotic Arm: Type Synthesis [Seite 291]
29.4 - 3 Robotic Arm: Mechatronic Design [Seite 293]
29.5 - 4 Conclusions [Seite 294]
29.6 - References [Seite 295]
30 - Kinematic Analysis of Slider - Crank Mechanisms via the Bresse and Jerk's Circles [Seite 296]
30.1 - Abstract [Seite 296]
30.2 - 1 Introduction [Seite 296]
30.3 - 2 Kinematic Analysis: Velocity, Acceleration and Jerk Poles [Seite 297]
30.4 - 3 Bresse and Jerk's Circles: Examples [Seite 300]
30.5 - 4 Conclusions [Seite 302]
30.6 - REFERENCES [Seite 302]
31 - Numerical and Experimental Analysis of Small Scale Horizontal-Axis Wind Turbine in Yawed Conditions [Seite 303]
31.1 - 1 Introduction [Seite 304]
31.2 - 2 The Test Case and the On-site Measurements [Seite 304]
31.2.1 - 2.1 Experimental Set Up: The Wind Turbine and the Wind Tunnel [Seite 304]
31.2.2 - 2.2 The FAST Model [Seite 307]
31.2.3 - 2.3 The BEM Code [Seite 308]
31.3 - 3 Analysis and Results [Seite 310]
31.3.1 - 3.1 Study of Power and Thrust [Seite 310]
31.3.2 - 3.2 Thrust Measurement [Seite 312]
31.3.3 - 3.3 Thrust and Accelerations Spectrograms [Seite 313]
31.4 - 4 Conclusions [Seite 314]
31.5 - References [Seite 315]
32 - Field Vibrational Analysis of a Full Scale Horizontal-Axis Wind Turbine in Actual Operating Conditions [Seite 317]
32.1 - 1 Introduction [Seite 317]
32.2 - 2 The Test Case and the On-site Measurements [Seite 319]
32.3 - 3 Data Post-processing [Seite 321]
32.4 - 4 Conclusions [Seite 326]
32.5 - References [Seite 327]
33 - Static Balancing of an Exechon-Like Parallel Mechanism [Seite 328]
33.1 - Abstract [Seite 328]
33.2 - 1 Introduction [Seite 328]
33.3 - 2 Description of the Studied Parallel Mechanism [Seite 329]
33.4 - 3 Gravity Compensation of the PKM [Seite 331]
33.4.1 - 3.1 Exact Gravity Compensation of the Moving Platform [Seite 331]
33.4.2 - 3.2 Approximate Gravity Compensation of the Legs [Seite 336]
33.5 - 4 Conclusions [Seite 338]
33.6 - References [Seite 338]
34 - Analysis of Agricultural Machinery to Reduce the Vibration to the Operator Seat [Seite 340]
34.1 - 1 Introduction [Seite 340]
34.2 - 2 Theoretical Background [Seite 341]
34.2.1 - 2.1 Dynamic Substructuring [Seite 342]
34.2.2 - 2.2 Modal Reduction, the Craig-Bampton Method [Seite 344]
34.2.3 - 2.3 Transmissibility [Seite 345]
34.3 - 3 Models [Seite 345]
34.3.1 - 3.1 Lumped Parameter Models of the Agricultural Tractor [Seite 345]
34.3.2 - 3.2 Reduced Order Model of the Rear Mounted Three Points Linkage [Seite 345]
34.3.3 - 3.3 Rear Mounted or Semi-mounted Machinery [Seite 347]
34.3.4 - 3.4 Coupling of the Substructures [Seite 347]
34.4 - 4 Results [Seite 348]
34.4.1 - 4.1 Effect of Damping on the Vibration Level on the Operator Seat [Seite 348]
34.4.2 - 4.2 Experimental Validation [Seite 350]
34.4.3 - 4.3 Effect of the Mounted Machinery to the Vibrations on the Operator Seat [Seite 350]
34.4.4 - 4.4 Sensitivity Analysis of the Operator Seat Vibration to the Suspension Parameters [Seite 352]
34.5 - 5 Conclusions [Seite 352]
34.6 - References [Seite 353]
35 - An Inverse Dynamics Approach Based on the Fundamental Equations of Constrained Motion and on the Theory of Optimal Control [Seite 354]
35.1 - 1 Introduction [Seite 355]
35.2 - 2 Literature Survey [Seite 355]
35.3 - 3 Materials and Methods [Seite 356]
35.4 - 4 Results and Discussion [Seite 359]
35.5 - 5 Summary and Conclusions [Seite 365]
35.6 - References [Seite 366]
36 - Interface Models and Phase-field Approaches for Fracture and Damage Mechanics [Seite 371]
37 - Damaging of FRCM Composites Through a Micro-scale Numerical Approach [Seite 372]
37.1 - 1 Introduction [Seite 372]
37.2 - 2 Modeling Approach [Seite 373]
37.3 - 3 Results [Seite 377]
37.3.1 - 3.1 Tensile Constitutive Behavior [Seite 377]
37.3.2 - 3.2 Parameter Sensitivity Analysis [Seite 378]
37.4 - 4 Conclusions [Seite 382]
37.5 - References [Seite 382]
38 - Mixed-Mode Delamination with Large Displacement Modeling of Fiber-Bridging [Seite 384]
38.1 - 1 Introduction [Seite 384]
38.2 - 2 Small Openings Cohesive Model [Seite 385]
38.3 - 3 Transition to Fiber-Bridging Model [Seite 388]
38.4 - 4 Numerical Examples [Seite 390]
38.4.1 - 4.1 Fracture Energy Evolution in MMB Tests [Seite 390]
38.4.2 - 4.2 DCB Test [Seite 391]
38.5 - 5 Conclusions [Seite 393]
38.6 - References [Seite 393]
39 - An Experimental and Numerical Study to Evaluate the Crack Path Under Mixed Mode Loading on PVC Foams [Seite 395]
39.1 - Abstract [Seite 395]
39.2 - 1 Introduction [Seite 395]
39.3 - 2 Experimental Tests [Seite 397]
39.3.1 - 2.1 Compression Tests [Seite 397]
39.3.2 - 2.2 Fracture Tests [Seite 400]
39.4 - 3 Numerical Simulation [Seite 402]
39.5 - 4 Conclusions [Seite 403]
39.6 - Acknowledgements [Seite 403]
39.7 - References [Seite 403]
40 - Interphase Model and Phase-Field Approach for Strain Localization [Seite 406]
40.1 - 1 Introduction [Seite 407]
40.2 - 2 The 1D Phase-Field Model [Seite 408]
40.3 - 3 Application [Seite 410]
40.4 - 4 Conclusions [Seite 411]
40.5 - References [Seite 412]
41 - Multiple Crack Localization and Debonding Mechanisms for Thin Thermal Coating Films [Seite 414]
41.1 - 1 Introduction [Seite 414]
41.2 - 2 Substrate and Coating Layer [Seite 415]
41.2.1 - 2.1 The Nonlocal Damage Model for the Coating [Seite 417]
41.2.2 - 2.2 The Cohesive-Frictional Interface Model [Seite 419]
41.3 - 3 Numerical Application [Seite 420]
41.3.1 - 3.1 Thin Coating Results [Seite 420]
41.3.2 - 3.2 Thick Coating Results [Seite 421]
41.4 - References [Seite 423]
42 - Progressive Damage in Quasi-brittle Solids [Seite 425]
42.1 - 1 Introduction [Seite 425]
42.2 - 2 The Local State [Seite 427]
42.2.1 - 2.1 The Convex Constraints [Seite 428]
42.3 - 3 Equilibrium [Seite 428]
42.3.1 - 3.1 Variation wrt u [Seite 429]
42.3.2 - 3.2 Variations wrt i [Seite 429]
42.3.3 - 3.3 Variation wrt d [Seite 429]
42.4 - 4 Dissipation [Seite 430]
42.5 - 5 The Traction Bar [Seite 432]
42.6 - 6 Closure [Seite 435]
42.7 - References [Seite 435]
43 - Cohesive-Frictional Interface in an Equilibrium Based Finite Element Formulation [Seite 436]
43.1 - Abstract [Seite 436]
43.2 - 1 Introduction [Seite 436]
43.3 - 2 The Hybrid Equilibrium Formulation [Seite 437]
43.4 - 3 Extrinsic Cohesive-Frictional Model [Seite 439]
43.4.1 - 3.1 Damage Activation Condition [Seite 440]
43.4.2 - 3.2 Frictional Limit Condition [Seite 441]
43.5 - 4 Numerical Simulation [Seite 441]
43.6 - 5 Conclusions [Seite 442]
43.7 - Acknowledgment [Seite 442]
43.8 - References [Seite 442]
44 - Layered Phase Field Approach to Shells [Seite 444]
44.1 - 1 Introduction [Seite 444]
44.2 - 2 Layered Phase-Field Approach to Thin and Slender Structures [Seite 445]
44.2.1 - 2.1 Phase Field Models [Seite 445]
44.2.2 - 2.2 Structural Theories [Seite 446]
44.2.3 - 2.3 Phase Field Models and Structural Theories: A Layered Approach [Seite 447]
44.3 - 3 Results [Seite 449]
44.3.1 - 3.1 Three Point Bending Beam [Seite 450]
44.3.2 - 3.2 Three Point Bending Reinforced Beam [Seite 451]
44.3.3 - 3.3 Simply Supported Square Plate [Seite 451]
44.4 - 4 Conclusions [Seite 453]
44.5 - References [Seite 453]
45 - Composites in Civil Engineering [Seite 455]
46 - Interface Laws for Multi-physic Composites [Seite 456]
46.1 - 1 Introduction [Seite 456]
46.2 - 2 Statement of the Problem [Seite 457]
46.3 - 3 The Asymptotic Expansions Method [Seite 459]
46.4 - 4 The Multi-physic Interface Models [Seite 460]
46.4.1 - 4.1 The Soft Multi-physic Interface [Seite 460]
46.4.2 - 4.2 The Hard Multi-physic Interface [Seite 461]
46.4.3 - 4.3 The Rigid Multi-physic Interface [Seite 462]
46.4.4 - 4.4 The General Multi-physic Interface [Seite 462]
46.5 - 5 Finite Element Implementation and Numerical Test [Seite 463]
46.5.1 - 5.1 Numerical Study: The Piezoelectric Composite Plate [Seite 464]
46.6 - 6 Concluding Remarks [Seite 468]
46.7 - References [Seite 468]
47 - Study of the Bond Behavior of FRCM-Masonry Joints Using a Modified Beam Test [Seite 470]
47.1 - Abstract [Seite 470]
47.2 - 1 Introduction [Seite 470]
47.3 - 2 Experimental Results [Seite 471]
47.4 - 3 Analytical Model [Seite 473]
47.4.1 - 3.1 Compatibility Conditions [Seite 473]
47.4.2 - 3.2 Equilibrium Equations [Seite 474]
47.4.3 - 3.3 Governing Equation at the Matrix-Fiber Interface [Seite 475]
47.4.4 - 3.4 Cohesive Material Law [Seite 475]
47.5 - 4 Evaluation of the Debonding Phenomenon [Seite 476]
47.5.1 - 4.1 Elastic Stage [Seite 477]
47.5.2 - 4.2 Elastic-Softening Stage [Seite 478]
47.5.3 - 4.3 Elastic-Softening-Debonding Stage [Seite 479]
47.5.4 - 4.4 Softening-Debonding Stage [Seite 481]
47.5.5 - 4.5 Fully Debonded Stage [Seite 482]
47.6 - 5 Results and Comparison [Seite 482]
47.6.1 - 5.1 Estimation of the CML Parameters [Seite 482]
47.6.2 - 5.2 Comparison Between Experimental and Analytical Results [Seite 484]
47.7 - 6 Conclusions [Seite 485]
47.8 - References [Seite 485]
48 - Basalt-Based FRP Composites as Strengthening of Reinforced Concrete Members: Experimental and Theoretical Insights [Seite 487]
48.1 - 1 Introduction [Seite 487]
48.2 - 2 Flexural Behaviour of BFRP-Strengthened Concrete Members: An Analytical Assessment [Seite 488]
48.3 - 3 BFRP-Concrete End-Debonding: Experimental Results [Seite 493]
48.3.1 - 3.1 Experimental Program [Seite 494]
48.3.2 - 3.2 Results [Seite 496]
48.4 - 4 BFRP-Concrete Debonding Load: Refinement Proposal of Technical Design Formulations [Seite 497]
48.5 - 5 Conclusions [Seite 499]
48.6 - References [Seite 500]
49 - Numerical Modelling of GFRP Reinforced Thin Concrete Slabs [Seite 502]
49.1 - Abstract [Seite 502]
49.2 - 1 Introduction [Seite 502]
49.3 - 2 Overview of the Experimental Results [Seite 503]
49.4 - 3 FEM Modelling [Seite 504]
49.4.1 - 3.1 Material and Interface Modelling [Seite 505]
49.4.2 - 3.2 Geometry and Boundary Conditions Modelling [Seite 507]
49.5 - 4 Results [Seite 508]
49.6 - 5 Discussion [Seite 510]
49.7 - 6 Conclusions [Seite 511]
49.8 - References [Seite 512]
50 - Optimal Epoxy Dilution for Epoxy-Coated Textile Reinforced Mortar (TRM): An Experimental Perspective [Seite 514]
50.1 - 1 Introduction [Seite 515]
50.2 - 2 Materials and Methods [Seite 516]
50.2.1 - 2.1 Materials [Seite 516]
50.2.2 - 2.2 Laminates Preparation [Seite 518]
50.2.3 - 2.3 Experimental Investigation [Seite 519]
50.3 - 3 Results and Discussion [Seite 520]
50.3.1 - 3.1 Mechanical Testing Outcomes [Seite 520]
50.3.2 - 3.2 Viscosity Measurement and SEM Analysis [Seite 522]
50.4 - 4 Conclusions [Seite 524]
50.5 - References [Seite 525]
51 - Numerical-Parametric Analysis of Debonding Phenomena in FRCM-Strengthened Masonry Elements [Seite 527]
51.1 - Abstract [Seite 527]
51.2 - 1 Introduction [Seite 528]
51.3 - 2 Mechanical Properties of Frcm [Seite 528]
51.4 - 3 Failure Modes of Frcm [Seite 530]
51.5 - 4 Interface Models Present in Literature [Seite 531]
51.6 - 5 Numerical Modeling [Seite 534]
51.7 - 6 Proposed Modeling Strategy [Seite 535]
51.8 - 7 Parametric Analisis [Seite 536]
51.9 - 8 Conclusions [Seite 539]
51.10 - References [Seite 540]
52 - Analytical Modelling of the Tensile Response of PBO-FRCM Composites [Seite 542]
52.1 - Abstract [Seite 542]
52.2 - 1 Introduction [Seite 542]
52.3 - 2 Analytical Model for Tensile Tests [Seite 543]
52.3.1 - 2.1 Analytical Simulation of Clevis-Grip Tensile Tests [Seite 545]
52.4 - 3 Experimental Results [Seite 548]
52.5 - 4 Comparison Between Analytical and Experimental Results [Seite 548]
52.6 - 5 Conclusions [Seite 549]
52.7 - References [Seite 550]
53 - An Inter-element Fracture Approach for the Analysis of Concrete Cover Separation Failure in FRP-Reinforced RC Beams [Seite 552]
53.1 - Abstract [Seite 552]
53.2 - 1 Introduction [Seite 553]
53.3 - 2 Cohesive Methodology in a 2D Finite Element Framework [Seite 554]
53.4 - 3 Description of the Numerical Model for FRP-Plated RC Beams [Seite 555]
53.5 - 4 Validation of the Diffuse Interface Model [Seite 557]
53.6 - 5 Concrete Cover Separation Analysis [Seite 559]
53.7 - 6 Conclusions [Seite 562]
53.8 - Acknowledgement [Seite 563]
53.9 - References [Seite 563]
54 - Fiber-Reinforced Brittle-Matrix Composites: Discontinuous Phenomena and Optimization of the Components [Seite 565]
54.1 - Abstract [Seite 565]
54.2 - 1 Introduction [Seite 565]
54.3 - 2 Crack Growth Stability in Fibrous Composites [Seite 566]
54.4 - 3 Brittle Matrix Structural Elements Reinforced with a Large Number of Fibers [Seite 567]
54.5 - 4 Conclusions [Seite 571]
54.6 - References [Seite 571]
55 - Bond Behavior of TRM Systems and Reinforcement of Masonry Arches: Testing and Modelling [Seite 573]
55.1 - Abstract [Seite 573]
55.2 - 1 Introduction [Seite 573]
55.3 - 2 Materials and Methods [Seite 575]
55.3.1 - 2.1 Specimens and Test Apparatus [Seite 575]
55.3.2 - 2.2 Test Results and Discussion [Seite 577]
55.4 - 3 TRM-Reinforced Masonry Arches. An Analytical Model [Seite 580]
55.4.1 - 3.1 The Four-Bar Linkage for the Definition of the Un-strengthened Arch Mechanism [Seite 580]
55.4.2 - 3.2 Definition of the Strengthened Configuration [Seite 582]
55.5 - 4 Discussion and Conclusions [Seite 583]
55.6 - References [Seite 584]
56 - Investigation of Microscopic Instabilities in Fiber-Reinforced Composite Materials by Using Multiscale Modeling Strategies [Seite 586]
56.1 - Abstract [Seite 586]
56.2 - 1 Introduction [Seite 587]
56.3 - 2 Theoretical Formulation [Seite 588]
56.4 - 3 Description of Two Alternative Multiscale Approaches for the Microscopic Stability Analysis [Seite 589]
56.4.1 - 3.1 Semi-concurrent Multiscale Approach [Seite 589]
56.4.2 - 3.2 Hybrid Hierarchical/Concurrent Multiscale Approach [Seite 590]
56.5 - 4 Numerical Results [Seite 591]
56.5.1 - 4.1 Example 1: Bending of a Cantilever Beam Reinforced with Continuous Fibers [Seite 591]
56.5.2 - 4.2 Example 2: Bending of a Simply Supported Beam Reinforced with Staggered Discontinuous Fibers [Seite 593]
56.6 - 5 Conclusions [Seite 595]
56.7 - Acknowledgments [Seite 595]
56.8 - References [Seite 596]
57 - Mechanics and Materials [Seite 598]
58 - Mechanoluminescence in Scintillators [Seite 599]
58.1 - 1 Introduction [Seite 599]
58.2 - 2 Scintillators as Continua with Microstructure [Seite 600]
58.2.1 - 2.1 Deformable Scintillators as Continua with Microstructure [Seite 600]
58.2.2 - 2.2 The Excitation Carriers Density and the Scintillation Self-power [Seite 601]
58.3 - 3 Balance Laws and Thermodynamics [Seite 603]
58.3.1 - 3.1 Balance Laws [Seite 603]
58.3.2 - 3.2 Thermodynamics [Seite 604]
58.4 - 4 Mechanoluminescence [Seite 605]
58.4.1 - 4.1 Totally Dissipative Scintillators. Constitutive Assumptions [Seite 605]
58.4.2 - 4.2 Linearized Kinematics [Seite 606]
58.5 - 5 Conclusions [Seite 607]
58.6 - References [Seite 607]
59 - Effective Constitutive Behavior of Heterogeneous Materials Comprising Bimodular Phases [Seite 609]
59.1 - 1 Introduction [Seite 609]
59.2 - 2 Materials and Methods [Seite 610]
59.2.1 - 2.1 Numerical Procedure [Seite 612]
59.3 - 3 Results [Seite 613]
59.4 - 4 Conclusions [Seite 618]
59.5 - References [Seite 618]
60 - Locally Resonant Materials for Energy Harvesting at Small Scale [Seite 620]
60.1 - 1 Introduction [Seite 620]
60.2 - 2 Problem Description [Seite 622]
60.2.1 - 2.1 Derivation of the Effective Properties for the LRM Parts [Seite 624]
60.2.2 - 2.2 Governing Equations and General Solutions of the REH Problem [Seite 626]
60.3 - 3 Transmission Analyses: Preliminary Studies [Seite 627]
60.3.1 - 3.1 Infinitely Long Barrier [Seite 627]
60.3.2 - 3.2 Tunneling Through a Single Finite Barrier [Seite 628]
60.4 - 4 REH: The Enhancing of the Cavity Mechanical Energy [Seite 628]
60.4.1 - 4.1 Average Energy Density Derivation [Seite 628]
60.4.2 - 4.2 Optimization of the Energy Enhancement [Seite 630]
60.4.3 - 4.3 Average Energy Density Inside the Homogeneous Parts [Seite 631]
60.4.4 - 4.4 Average Energy Density Inside the Barriers [Seite 631]
60.5 - 5 Example [Seite 633]
60.6 - 6 Conclusions [Seite 637]
60.7 - References [Seite 638]
61 - Mechanics of Chemo-Mechanical Stimuli Responsive Soft Polymers [Seite 641]
61.1 - Abstract [Seite 641]
61.2 - 1 Introduction [Seite 641]
61.3 - 2 Micromechanics of a Polymer Network [Seite 642]
61.4 - 3 Mechanics of Responsive Molecules [Seite 645]
61.4.1 - 3.1 Physics of Responsive Molecules [Seite 645]
61.4.2 - 3.2 Mechanics of Polymers in Presence of Swelling [Seite 646]
61.4.3 - 3.3 Mechanics of Polymers with Responsive Molecules [Seite 647]
61.5 - 4 Simulations [Seite 647]
61.5.1 - 4.1 Polymer with Spiropyran Responsive Molecules Undera Mechanical Stress [Seite 647]
61.5.2 - 4.2 Polymer with Molecules Responsive to a Chemical Stimulus [Seite 649]
61.6 - 5 Conclusions [Seite 650]
61.7 - References [Seite 650]
62 - Time-Harmonic Dynamics of Curved Beams [Seite 652]
62.1 - 1 Introduction [Seite 652]
62.2 - 2 Dynamics of a Curved Beam [Seite 653]
62.3 - 3 Dispersion Properties [Seite 655]
62.3.1 - 3.1 Normalisation [Seite 655]
62.3.2 - 3.2 Analytical Solution [Seite 656]
62.3.3 - 3.3 Frequency Regimes [Seite 656]
62.3.4 - 3.4 Propagating Modes [Seite 658]
62.4 - 4 Transmission Problem [Seite 659]
62.4.1 - 4.1 Transfer Matrix [Seite 660]
62.4.2 - 4.2 Power Flow [Seite 662]
62.4.3 - 4.3 Reflection, Transmission and Coupling [Seite 663]
62.5 - 5 Conclusion [Seite 664]
62.6 - References [Seite 665]
63 - The Effects of a Large Elastic Mismatch on the Decohesion of Thin Films from Substrates [Seite 666]
63.1 - Abstract [Seite 666]
63.2 - 1 Introduction [Seite 666]
63.3 - 2 Model [Seite 667]
63.4 - 3 Energy Release Rate and Mode Mixity Angle [Seite 669]
63.5 - 4 Results and Discussion [Seite 670]
63.6 - 5 Conclusions [Seite 672]
63.7 - Acknowledgments [Seite 673]
63.8 - References [Seite 673]
64 - Development of a Data Reduction Method for Composite Fracture Characterization Under Mode III Loadings [Seite 674]
64.1 - Abstract [Seite 674]
64.2 - 1 Introduction [Seite 674]
64.3 - 2 Method [Seite 676]
64.4 - 3 Results [Seite 682]
64.5 - 4 Conclusions [Seite 683]
64.6 - Acknowledgements [Seite 683]
64.7 - References [Seite 683]
65 - Mechanical Model of Fiber Morphogenesis in the Liver [Seite 685]
65.1 - 1 Introduction [Seite 685]
65.2 - 2 Species Diffusion in a Crystal Lattice [Seite 686]
65.2.1 - 2.1 Kinematics, Kinetics and Species Power Balance [Seite 686]
65.2.2 - 2.2 Power Balance Laws [Seite 688]
65.2.3 - 2.3 Free Energy Imbalance [Seite 688]
65.2.4 - 2.4 Free Energy Expression and Constitutive Characterization [Seite 689]
65.2.5 - 2.5 Fick's Law [Seite 690]
65.3 - 3 Cahn-Hilliard Equation [Seite 690]
65.3.1 - 3.1 Free Energy [Seite 690]
65.3.2 - 3.2 Microforce Balance Law [Seite 691]
65.3.3 - 3.3 Dissipation Inequality [Seite 691]
65.3.4 - 3.4 Balance Law Summary [Seite 692]
65.4 - 4 Allen-Cahn Equation [Seite 693]
65.4.1 - 4.1 Dissipation Inequality [Seite 693]
65.4.2 - 4.2 Balance Law Summary [Seite 694]
65.5 - 5 Active Species Diffusion [Seite 694]
65.5.1 - 5.1 Uphill Diffusion and Aggregation [Seite 694]
65.5.2 - 5.2 Active Chemical Potential Constitutive Characterization [Seite 695]
65.6 - 6 Numerical Simulations [Seite 697]
65.7 - References [Seite 701]
66 - Modeling Approach and Finite Element Analyses of a Shape Memory Epoxy-Based Material [Seite 703]
66.1 - Abstract [Seite 703]
66.2 - 1 Introduction [Seite 704]
66.3 - 2 Materials and Methods [Seite 705]
66.3.1 - 2.1 Experimental Characterization [Seite 705]
66.3.2 - 2.2 Material Modelling [Seite 706]
66.3.3 - 2.3 Star Folding Tests [Seite 709]
66.3.4 - 2.4 Star Folding Model [Seite 710]
66.4 - 3 Results [Seite 711]
66.4.1 - 3.1 Material Characterization [Seite 712]
66.4.2 - 3.2 Star Folding [Seite 715]
66.5 - 4 Conclusions [Seite 716]
66.6 - References [Seite 717]
67 - Visco-Elasto-Plastic Experimental Characterization of Flax-Based Composites [Seite 719]
67.1 - 1 Introduction [Seite 719]
67.2 - 2 Rheological Models of Viscoleastic and Viscoplastic Materials [Seite 720]
67.3 - 3 Materials and Methods [Seite 723]
67.3.1 - 3.1 Monotonic Tensile Tests [Seite 723]
67.3.2 - 3.2 Load-Unload Incremental Tests [Seite 723]
67.3.3 - 3.3 Cyclic Tests [Seite 723]
67.3.4 - 3.4 Creep [Seite 724]
67.4 - 4 Experimental Results [Seite 724]
67.5 - 5 Discussion [Seite 727]
67.6 - References [Seite 728]
68 - Discrete Homogenization Procedure for Estimating the Mechanical Properties of Nets and Pantographic Structures [Seite 730]
68.1 - 1 Introduction [Seite 730]
68.2 - 2 Homogenization of Periodic Discrete Medium [Seite 731]
68.2.1 - 2.1 1D Model - Flexural Deformation [Seite 733]
68.2.2 - 2.2 Strong Formulation [Seite 734]
68.2.3 - 2.3 Weak Formulation [Seite 736]
68.3 - 3 Discrete Homogenization for 2D Networks [Seite 738]
68.3.1 - 3.1 Case Studies [Seite 738]
68.4 - 4 Numerical Simulations [Seite 741]
68.4.1 - 4.1 Fibre Network Material with Square Cells Rigidly Connected [Seite 742]
68.4.2 - 4.2 Square Cell with Different Fibre Properties [Seite 742]
68.4.3 - 4.3 Quadriaxial Network [Seite 743]
68.5 - 5 Conclusion [Seite 745]
68.6 - References [Seite 745]
69 - Device Influence in Single Molecule Isotensional Experiments [Seite 747]
69.1 - 1 Introduction [Seite 747]
69.2 - 2 Model [Seite 749]
69.3 - 3 Mechanical Limit [Seite 751]
69.4 - 4 Temperature Effects [Seite 753]
69.5 - 5 Discussions [Seite 755]
69.6 - References [Seite 756]
70 - Poro-Mechanical Analysis of a Biomimetic Scaffold for Osteochondral Defects [Seite 758]
70.1 - Abstract [Seite 758]
70.2 - 1 Introduction [Seite 758]
70.3 - 2 Mathematical Model [Seite 759]
70.4 - 3 Results [Seite 763]
70.5 - 4 Conclusions [Seite 767]
70.6 - References [Seite 767]
71 - Deformability Analysis and Improvement in Stretchable Electronics Systems Through Finite Element Analysis [Seite 769]
71.1 - 1 Introduction [Seite 769]
71.2 - 2 Materials and Methods [Seite 771]
71.3 - 3 Results and Discussion [Seite 773]
71.4 - 4 Conclusions [Seite 776]
71.5 - References [Seite 776]
72 - On the Role of Interatomic Potentials for Carbon Nanostructures [Seite 778]
72.1 - 1 Introduction [Seite 778]
72.2 - 2 The Molecular Mechanics Model [Seite 779]
72.2.1 - 2.1 The Damped DREIDING Potential [Seite 783]
72.3 - 3 Parametrization of the Interatomic Potentials and Numerical Results [Seite 784]
72.3.1 - 3.1 SLGSs Under Periodic Conditions [Seite 784]
72.3.2 - 3.2 Critical Discussion About the Bonding Potentials [Seite 786]
72.3.3 - 3.3 Tensile Tests of SLGSs of Finite Size [Seite 789]
72.4 - 4 Conclusions [Seite 792]
72.5 - References [Seite 793]
73 - Impact of Sunlight on the Durability of Laminated Glass Panes [Seite 795]
73.1 - Abstract [Seite 795]
73.2 - 1 Introduction [Seite 795]
73.3 - 2 Mechanical Model for Thermo Viscoelasticity [Seite 797]
73.3.1 - 2.1 Creep Compliance and Relaxation Modulus [Seite 797]
73.3.2 - 2.2 Master Curve [Seite 798]
73.3.3 - 2.3 Time Temperature Superposition Principle [Seite 799]
73.4 - 3 Experimental Analysis [Seite 800]
73.5 - 4 Numerical Simulation of Tests on Blank Specimens [Seite 802]
73.6 - 5 Analysis of the Consequences of Solar Radiation [Seite 804]
73.7 - 6 Conclusions [Seite 807]
73.8 - References [Seite 808]
74 - Multiscale Analysis of Materials with Anisotropic Microstructure as Micropolar Continua [Seite 810]
74.1 - 1 Introduction [Seite 811]
74.2 - 2 Anisotropic Theory of Micropolar Elasticity [Seite 811]
74.3 - 3 Finite Element Formulation [Seite 812]
74.4 - 4 Numerical Applications [Seite 814]
74.5 - 5 Conclusions [Seite 819]
74.6 - References [Seite 819]
75 - Experimental Evaluation of Piezoelectric Energy Harvester Based on Flag-Flutter [Seite 821]
75.1 - 1 Introduction [Seite 821]
75.2 - 2 Experimental Setup [Seite 823]
75.2.1 - 2.1 Methodology [Seite 823]
75.2.2 - 2.2 Setup [Seite 823]
75.2.3 - 2.3 Results and Discussion [Seite 826]
75.3 - 3 Conclusions [Seite 829]
75.4 - References [Seite 829]
76 - Modelling and Analysis of Small-Scale Structures [Seite 831]
77 - Experimental Investigation on Structural Vibrations by a New Shaking Table [Seite 832]
77.1 - 1 Introduction [Seite 832]
77.2 - 2 Materials and Methods [Seite 834]
77.2.1 - 2.1 The Test-Rig [Seite 834]
77.2.2 - 2.2 The Mathematical Model [Seite 837]
77.3 - 3 Results [Seite 839]
77.4 - 4 Conclusions [Seite 841]
77.5 - References [Seite 841]
78 - Bending and Buckling of Timoshenko Nano-Beams in Stress-Driven Approach [Seite 845]
78.1 - 1 Introduction [Seite 845]
78.2 - 2 Non-local Timoshenko Beam Model [Seite 846]
78.3 - 3 Modified Total Potential Energy for Non-local Timoshenko Beams [Seite 847]
78.4 - 4 Numerical Solutions by the Ritz Method [Seite 850]
78.4.1 - 4.1 Cantilever Timoshenko Nano-Beam Subject to a Distributed Transverse Load [Seite 851]
78.4.2 - 4.2 Buckling Load of Timoshenko Nano-Beam [Seite 851]
78.5 - 5 Conclusions [Seite 853]
78.6 - References [Seite 854]
79 - Shear Effects in Elastic Nanobeams [Seite 855]
79.1 - 1 Introduction [Seite 855]
79.2 - 2 Problem Position [Seite 856]
79.2.1 - 2.1 Beam's Constitutive Equations [Seite 857]
79.3 - 3 The Beam Problem [Seite 858]
79.4 - 4 Strategy Solution of the Governing Beam's Equations [Seite 860]
79.4.1 - 4.1 Evaluation of the Stresses [Seite 862]
79.5 - 5 Numerical Application and Conclusions [Seite 863]
79.6 - References [Seite 866]
80 - Theoretical and Applied Biomechanics [Seite 867]
81 - Cardiac Fluid Dynamics in Prolapsed and Repaired Mitral Valve [Seite 868]
81.1 - Abstract [Seite 868]
81.2 - 1 Introduction [Seite 868]
81.3 - 2 Materials and Methods [Seite 870]
81.3.1 - 2.1 Geometries [Seite 870]
81.3.2 - 2.2 Numerical Model [Seite 873]
81.4 - 3 Results [Seite 874]
81.4.1 - 3.1 Fluid Dynamics Analysis [Seite 874]
81.5 - 4 Conclusion [Seite 877]
81.6 - References [Seite 877]
82 - A Patient-Specific Mechanical Modeling of Metastatic Femurs [Seite 879]
82.1 - 1 Introduction [Seite 880]
82.2 - 2 Materials and Methods [Seite 881]
82.2.1 - 2.1 Case Study [Seite 881]
82.2.2 - 2.2 CT-Based FE Modelling [Seite 882]
82.2.3 - 2.3 FE Analyses [Seite 884]
82.3 - 3 Results [Seite 885]
82.4 - 4 Discussion [Seite 887]
82.5 - 5 Conclusions [Seite 889]
82.6 - References [Seite 890]
83 - Exploring THz Protein Vibrations by Means of Modal Analysis: All-Atom vs Coarse-Grained Model [Seite 892]
83.1 - Abstract [Seite 892]
83.2 - 1 Introduction [Seite 892]
83.3 - 2 Methodology [Seite 894]
83.3.1 - 2.1 All-Atom Model Based on Covalent Bonds [Seite 894]
83.3.2 - 2.2 Coarse-Grained Model Based on Backbone Bonds [Seite 895]
83.3.3 - 2.3 Coarse-Grained Space Truss Model with Long-Range Interactions [Seite 896]
83.4 - 3 Results and Discussion [Seite 897]
83.5 - 4 Conclusions [Seite 898]
83.6 - References [Seite 898]
84 - Protein Conformational Changes: What Can Geometric Nonlinear Analysis Tell Us? [Seite 900]
84.1 - Abstract [Seite 900]
84.2 - 1 Introduction [Seite 900]
84.3 - 2 Methodology [Seite 902]
84.3.1 - 2.1 Protein Elastic Network Model [Seite 902]
84.3.2 - 2.2 Evaluation of the Open-to-Closed Conformational Change [Seite 903]
84.3.3 - 2.3 Equilibrium Equations in the Undeformed Structure (Linear Analysis) [Seite 904]
84.3.4 - 2.4 Equilibrium Equations in the Deformed Structure (Geometric Nonlinear Analysis) [Seite 904]
84.3.5 - 2.5 Comparison Between Linear and Nonlinear Analysis [Seite 905]
84.4 - 3 Results and Discussion [Seite 905]
84.5 - 4 Conclusions [Seite 907]
84.6 - References [Seite 908]
85 - Comparison Between Numerical and MRI Data of Ascending Aorta Hemodynamics in a Circulatory Mock Loop [Seite 909]
85.1 - 1 Introduction [Seite 910]
85.2 - 2 Problem Definition [Seite 910]
85.3 - 3 Numerical Methodology and Simulation Set-Up [Seite 911]
85.4 - 4 Experimental Set-Up [Seite 912]
85.5 - 5 Main Results [Seite 914]
85.6 - 6 Conclusions [Seite 917]
85.7 - References [Seite 917]
86 - Development of a Fully Controllable Real-Time Pump to Reproduce Left Ventricle Physiological Flow [Seite 919]
86.1 - 1 Introduction [Seite 920]
86.2 - 2 Materials and Methods [Seite 921]
86.2.1 - 2.1 Waveform Analytic Modeling [Seite 921]
86.2.2 - 2.2 Pump System HW and SW [Seite 923]
86.2.3 - 2.3 Validation Tests [Seite 923]
86.3 - 3 Results [Seite 925]
86.4 - 4 Discussion [Seite 926]
86.5 - 5 Conclusions [Seite 928]
86.6 - References [Seite 929]
87 - A Genetic Algorithm for the Estimation of Viscoelastic Parameters of Biological Samples Manipulated by Mems Tweezers [Seite 931]
87.1 - 1 Introduction [Seite 931]
87.2 - 2 Experimental Technique [Seite 933]
87.3 - 3 Mechanical Model [Seite 934]
87.4 - 4 Genetic Algorithm Implementation [Seite 937]
87.5 - 5 Simulations and Results [Seite 938]
87.6 - 6 Conclusions [Seite 940]
87.7 - References [Seite 940]
88 - A Single Integral Approach to Fractional Order Non-Linear Hereditariness [Seite 943]
88.1 - 1 Introduction [Seite 943]
88.2 - 2 The Fractional Hereditary Materials (FHM) [Seite 945]
88.3 - 3 The Non-Linear Model of Material Hereditariness [Seite 948]
88.3.1 - 3.1 The Non-Linear Creep and Relaxation Function [Seite 948]
88.3.2 - 3.2 The Single Integral Model of Fractional-Order Material Hereditariness [Seite 951]
88.3.3 - 3.3 Numerical Analysis [Seite 953]
88.4 - 4 Conclusions [Seite 954]
88.5 - References [Seite 954]
89 - Shell and Spatial Structures [Seite 956]
90 - R-Funicularity of Analytical Shells [Seite 957]
90.1 - 1 Introduction [Seite 957]
90.2 - 2 Funicular Shells [Seite 958]
90.2.1 - 2.1 Form-Finding of Compressed Shells by the Membrane Theory [Seite 959]
90.2.2 - 2.2 Funicular Shells on a Rectangular Base [Seite 959]
90.2.3 - 2.3 R-Funicularity [Seite 962]
90.3 - 3 Numerical Comparisons [Seite 963]
90.4 - 4 Conclusions [Seite 966]
90.5 - References [Seite 966]
91 - Stability Evaluation by Digital Image Correlation of a Masonry Vault Prototype Under Loading [Seite 968]
91.1 - Abstract [Seite 968]
91.2 - 1 Introduction [Seite 968]
91.3 - 2 Form Finding and HP [Seite 970]
91.4 - 3 Experimental Tests: The Physical Model [Seite 972]
91.5 - 4 Digital Image Correlation [Seite 973]
91.6 - 5 Conclusions [Seite 975]
91.7 - References [Seite 976]
92 - On the Straight-Helicoid to Spiral-Ribbon Transition in Thin Elastic Ribbons [Seite 977]
92.1 - 1 Introduction [Seite 977]
92.2 - 2 Thin Ribbons as Internally Constrained Rods [Seite 978]
92.3 - 3 The Straight Helicoidal and Spiral Ribbon States [Seite 981]
92.4 - 4 Classification of Equilibrium States [Seite 984]
92.5 - References [Seite 985]
93 - Pressure Field Correlation for Buildings with Hyperbolic Paraboloid Roofs: Results of Wind-Tunnel Tests [Seite 987]
93.1 - Abstract [Seite 987]
93.2 - 1 Introduction [Seite 987]
93.3 - 2 Wind-Tunnel Experimental Campaign [Seite 988]
93.3.1 - 2.1 The Sample Model [Seite 989]
93.3.2 - 2.2 Wind-Tunnel Pressure Coefficients [Seite 989]
93.4 - 3 Pressure Field Correlation [Seite 991]
93.4.1 - 3.1 Dependence of Pressure Coefficients on the Size of the Reference Area [Seite 991]
93.4.2 - 3.2 Effective Pressure Coefficients [Seite 991]
93.4.3 - 3.3 Results of Wind-Tunnel Tests [Seite 993]
93.5 - 4 Conclusions [Seite 997]
93.6 - Acknowledgments [Seite 997]
93.7 - References [Seite 998]
94 - Equilibrium Analysis of a Sail Vault in Livorno's Fortezza Vecchia Through a Modern Re-edition of the Stability Area Method [Seite 999]
94.1 - Abstract [Seite 999]
94.2 - 1 Introduction [Seite 999]
94.3 - 2 Structural Analysis of Sail Vaults: A Brief Overview [Seite 1002]
94.4 - 3 Geometrical and Mechanical Parameters Characterizing the Sail Vault in Fortezza Vecchia [Seite 1003]
94.5 - 4 Assessment of the Sail Vault Stability [Seite 1004]
94.5.1 - 4.1 A Modern Version of Durand-Claye's Method for Equilibrium Analysis of Sail Vaults [Seite 1004]
94.6 - 5 Conclusions [Seite 1006]
94.7 - Acknowledgments [Seite 1007]
94.8 - References [Seite 1007]
95 - Vehicle Dynamics [Seite 1009]
96 - Front Wheel Patter Instability of Motorcycles in Straight Braking Manoeuvre [Seite 1010]
96.1 - Abstract [Seite 1010]
96.2 - 1 Introduction [Seite 1010]
96.3 - 2 Minimal Model [Seite 1011]
96.3.1 - 2.1 Description of the Model [Seite 1011]
96.3.2 - 2.2 Non-linear Equations of Motion [Seite 1013]
96.3.3 - 2.3 Linearized Constitutive Equation of the Longitudinal Ground Force [Seite 1014]
96.3.4 - 2.4 Linearized Equations of Motion [Seite 1016]
96.4 - 3 Stability Analysis [Seite 1017]
96.4.1 - 3.1 Stability Maps [Seite 1017]
96.4.2 - 3.2 Comparison with a Multibody Planar Motorcycle Model [Seite 1023]
96.4.3 - 3.3 The Source of Instability [Seite 1026]
96.5 - 4 Conclusions [Seite 1028]
96.6 - References [Seite 1028]
97 - T.R.I.C.K. Real Time. A Tool for the Real-Time Onboard Tire Performance Evaluation [Seite 1029]
97.1 - Abstract [Seite 1029]
97.2 - 1 Introduction [Seite 1030]
97.3 - 2 The Algorithm [Seite 1031]
97.3.1 - 2.1 Algorithm Stages [Seite 1031]
97.3.2 - 2.2 Input Parameters [Seite 1031]
97.3.3 - 2.3 Input Signals [Seite 1031]
97.3.4 - 2.4 Signal Filtering [Seite 1032]
97.3.5 - 2.5 Model Structure [Seite 1032]
97.3.5.1 - 2.5.1 Tire Forces [Seite 1032]
97.3.5.2 - 2.5.2 Lateral Opposite Force Correction [Seite 1034]
97.3.5.3 - 2.5.3 Delta Angles and Inclination Angles [Seite 1037]
97.4 - 3 Comparison of Trick Forces with Pacejka Model [Seite 1038]
97.5 - 4 Conclusions and Further Developments [Seite 1040]
97.6 - References [Seite 1040]
98 - Preliminary Implementation of Model-Based Algorithms for Truck Tire Characterizations from Outdoor Sessions [Seite 1042]
98.1 - Abstract [Seite 1042]
98.2 - 1 Introduction [Seite 1043]
98.3 - 2 Data Acquisition Procedure [Seite 1044]
98.3.1 - 2.1 Vehicle and Instruments [Seite 1044]
98.3.2 - 2.2 Test Procedure [Seite 1045]
98.4 - 3 The Tool [Seite 1045]
98.4.1 - 3.1 Input Parameters [Seite 1045]
98.4.2 - 3.2 Input Signals [Seite 1046]
98.4.3 - 3.3 Model Structure [Seite 1046]
98.4.3.1 - 3.3.1 Tire Forces [Seite 1046]
98.4.3.2 - 3.3.2 Tangential Forces in Wheel Reference System [Seite 1048]
98.4.3.3 - 3.3.3 Slip Indices [Seite 1049]
98.5 - 4 Results Analysis and Tire-Road Interaction [Seite 1049]
98.6 - 5 Conclusions and Further Developments [Seite 1052]
98.7 - References [Seite 1053]
99 - Experimental Activity for the Analysis of Tires Tread Responses at Different Conditions with a Dynamic Dial Indicator [Seite 1054]
99.1 - Abstract [Seite 1054]
99.2 - 1 Introduction [Seite 1054]
99.3 - 2 Device and Acquired Signal Description [Seite 1055]
99.4 - 3 Testing Procedure Description [Seite 1058]
99.5 - 4 Output Signal Processing [Seite 1058]
99.6 - 5 Temperature Effect on Tire Compounds Analysis [Seite 1061]
99.7 - 6 Analysis of Further Effects on Tires Compound Behaviour [Seite 1065]
99.8 - 7 Conclusions [Seite 1067]
99.9 - Acknowledgment [Seite 1068]
99.10 - References [Seite 1068]
100 - A Physical-Analytical Model for Friction Hysteretic Contribution Estimation Between Tyre Tread and Road Asperities [Seite 1070]
100.1 - Abstract [Seite 1070]
100.2 - 1 Introduction [Seite 1071]
100.3 - 2 Theoretical Analysis [Seite 1074]
100.4 - 3 Simulations [Seite 1078]
100.5 - 4 Further Model Improvements [Seite 1080]
100.6 - 5 Conclusions [Seite 1082]
100.7 - References [Seite 1083]
101 - Torque Vectoring Control for Fully Electric SAE Cars [Seite 1084]
101.1 - Abstract [Seite 1084]
101.2 - 1 Introduction [Seite 1084]
101.3 - 2 Vehicle Model [Seite 1085]
101.4 - 3 Torque Vectoring Control [Seite 1088]
101.5 - 4 Reference Trajectory and Driver Model [Seite 1089]
101.6 - 5 Preliminary Results [Seite 1090]
101.7 - 6 Conclusions [Seite 1092]
101.8 - References [Seite 1092]
102 - On the Implementation of an Innovative Temperature-Sensitive Version of Pacejka's MF in Vehicle Dynamics Simulations [Seite 1093]
102.1 - Abstract [Seite 1093]
102.2 - 1 Introduction [Seite 1094]
102.3 - 2 Tire Analysis and Simulation Tools [Seite 1095]
102.3.1 - 2.1 TRICK [Seite 1095]
102.3.2 - 2.2 TRIP-ID [Seite 1096]
102.3.3 - 2.3 Thermal and Grip Models [Seite 1097]
102.4 - 3 MF-evo Interaction Model [Seite 1098]
102.5 - 4 Conclusions [Seite 1100]
102.6 - References [Seite 1101]
103 - Towards T.R.I.C.K. 2.0 - A Tool for the Evaluation of the Vehicle Performance Through the Use of an Advanced Sensor System [Seite 1102]
103.1 - Abstract [Seite 1102]
103.2 - 1 Introduction [Seite 1103]
103.3 - 2 Laser Sensors [Seite 1103]
103.4 - 3 Roll Angle Estimation [Seite 1104]
103.5 - 4 Aerodynamic Forces Formulation [Seite 1106]
103.5.1 - 4.1 Aerodynamic Maps [Seite 1106]
103.5.2 - 4.2 Aerodynamic Forces Calculation [Seite 1107]
103.6 - 5 Conclusion [Seite 1110]
103.7 - References [Seite 1110]
104 - On the Torque Steer Problem for Front-Wheel-Drive Electric Cars [Seite 1112]
104.1 - Abstract [Seite 1112]
104.2 - 1 Introduction [Seite 1112]
104.3 - 2 Torque Steer Theory [Seite 1114]
104.3.1 - 2.1 Case 1 [Seite 1115]
104.3.2 - 2.2 Case 2 [Seite 1116]
104.3.3 - 2.3 Case 3 [Seite 1117]
104.3.4 - 2.4 Case 4 [Seite 1119]
104.4 - 3 Analysis of the Torque Steer Effects [Seite 1120]
104.4.1 - 3.1 Suspension Kinematics and Its Effects [Seite 1121]
104.4.2 - 3.2 Torque Vectoring and Its Effects [Seite 1123]
104.4.3 - 3.3 Suspension Re-design for Torque Vectoring [Seite 1126]
104.5 - 4 Track Laps [Seite 1129]
104.6 - 5 Conclusions [Seite 1132]
104.7 - References [Seite 1133]
105 - Analysis of Multiscale Theories for Viscoelastic Rubber Friction [Seite 1134]
105.1 - Abstract [Seite 1134]
105.2 - 1 Introduction [Seite 1134]
105.3 - 2 Experimental Data [Seite 1137]
105.3.1 - 2.1 Viscoelastic Modulus [Seite 1137]
105.3.2 - 2.2 Surface Roughness Power Spectrum [Seite 1139]
105.3.3 - 2.3 Friction [Seite 1139]
105.4 - 3 Analysis of Multiscale Theories [Seite 1140]
105.5 - 4 Conclusions [Seite 1143]
105.6 - References [Seite 1144]
106 - A Preliminary Study for the Comparison of Different Pacejka Formulations Towards Vehicle Dynamics Behaviour [Seite 1145]
106.1 - Abstract [Seite 1145]
106.2 - 1 Introduction [Seite 1146]
106.3 - 2 Simulation Environment [Seite 1147]
106.4 - 3 Manoeuvers [Seite 1147]
106.5 - 4 Implementation and Results [Seite 1148]
106.6 - 5 KPI and Sensitivity Test [Seite 1151]
106.7 - 6 Conclusions [Seite 1152]
106.8 - References [Seite 1153]
107 - Novel Approaches in Computational Mechanics [Seite 1154]
108 - Large Rotation Finite Element Analysis of 3D Beams Based on Incremental Rotation Vector and Exact Strain Measures [Seite 1155]
108.1 - 1 Introduction [Seite 1155]
108.2 - 2 An Overview of 3D Rotations [Seite 1157]
108.2.1 - 2.1 Rotation Tensor [Seite 1157]
108.2.2 - 2.2 Additive Variations [Seite 1157]
108.2.3 - 2.3 Variations of Rotation and Curvature Tensors with Respect to the Rotation Vector [Seite 1158]
108.2.4 - 2.4 Kinematics of the 3D Beam Structural Model [Seite 1158]
108.3 - 3 A New Finite Element Formulation [Seite 1160]
108.3.1 - 3.1 From Incremental to Local Variables [Seite 1160]
108.3.2 - 3.2 Internal Force Vector and Tangent Stiffness Matrix in Corotational Variables [Seite 1161]
108.3.3 - 3.3 Internal Force Vector and Tangent Stiffness Matrix in Incremental Variables [Seite 1161]
108.4 - 4 Numerical Tests [Seite 1162]
108.4.1 - 4.1 Deployable Ring [Seite 1162]
108.5 - 5 Conclusions [Seite 1165]
108.6 - References [Seite 1165]
109 - MEMS Resonators: Numerical Modeling [Seite 1167]
109.1 - 1 Introduction [Seite 1167]
109.2 - 2 Double-Ended Tuning Fork Resonator [Seite 1168]
109.3 - 3 Numerical Modeling [Seite 1169]
109.4 - 4 Fabrication [Seite 1172]
109.5 - 5 Conclusions [Seite 1173]
109.6 - References [Seite 1173]
110 - A Mixed Membrane Finite Element for Masonry Structures [Seite 1175]
110.1 - 1 Introduction [Seite 1175]
110.2 - 2 Hu-Washizu Mixed Formulation [Seite 1177]
110.3 - 3 Interpolation of Unknown Fields [Seite 1178]
110.3.1 - 3.1 Displacement and Stress Interpolation [Seite 1179]
110.3.2 - 3.2 Strain Interpolation [Seite 1179]
110.4 - 4 Element State Determination [Seite 1179]
110.5 - 5 Numerical Simulations [Seite 1181]
110.6 - 6 Conclusions [Seite 1183]
110.7 - References [Seite 1183]
111 - Isogeometric Collocation Methods for the Nonlinear Dynamics of Three-Dimensional Timoshenko Beams [Seite 1187]
111.1 - 1 Introduction [Seite 1187]
111.2 - 2 Theoretical Background [Seite 1189]
111.2.1 - 2.1 The Configuration Manifold and Its Tangent Spaces [Seite 1189]
111.3 - 3 Balance Equations in Strong Form [Seite 1190]
111.4 - 4 Time and Space Discretizations [Seite 1190]
111.4.1 - 4.1 Explicit (Spatial) Newmark Scheme [Seite 1190]
111.4.2 - 4.2 Implicit (Material) Newmark Scheme [Seite 1191]
111.5 - 5 Numerical Results [Seite 1192]
111.5.1 - 5.1 Swinging Flexible Pendulum [Seite 1192]
111.5.2 - 5.2 Three-Dimensional Flying Beam [Seite 1193]
111.6 - 6 Conclusions [Seite 1195]
111.7 - References [Seite 1195]
112 - Meso-Scale Prediction of Insulating Mortar Thermal Properties [Seite 1198]
112.1 - 1 Introduction [Seite 1198]
112.2 - 2 The Mesoscale Model [Seite 1199]
112.3 - 3 Meso-Scale Simulations [Seite 1200]
112.4 - 4 Conclusions [Seite 1205]
112.5 - References [Seite 1206]
113 - Implicit G1-Conforming Plate Elements [Seite 1208]
113.1 - 1 Introduction [Seite 1208]
113.2 - 2 The CG1-Finite Element Formulation [Seite 1210]
113.2.1 - 2.1 Triangular Case: P4 and the S12 Polynomial Interpolation Spaces [Seite 1210]
113.2.2 - 2.2 Quadrilateral Case: Q3 Polynomial Interpolation Spaces [Seite 1211]
113.3 - 3 The Gregory Patches [Seite 1211]
113.3.1 - 3.1 Gregory Patches Properties [Seite 1213]
113.3.2 - 3.2 Change of Basis [Seite 1215]
113.3.3 - 3.3 Conforming Interpolation for the Displacement wh [Seite 1216]
113.3.4 - 3.4 Elimination of the Corners Discontinuities [Seite 1216]
113.3.5 - 3.5 Constrained CG1/3- and CG1/4-Formulations [Seite 1218]
113.4 - 4 Numerical Investigations [Seite 1219]
113.4.1 - 4.1 Patch Test [Seite 1219]
113.4.2 - 4.2 Simply Supported Square Plate Under Uniform Pressure [Seite 1221]
113.5 - 5 Conclusions [Seite 1223]
113.6 - References [Seite 1223]
114 - Enhanced Beam Formulations with Cross-Section Warping Under Large Displacements [Seite 1225]
114.1 - 1 Introduction [Seite 1225]
114.2 - 2 Mixed 3D Beam Finite Element [Seite 1226]
114.3 - 3 Direct 1D Beam Model [Seite 1229]
114.4 - 4 Applications and Comparisons [Seite 1230]
114.4.1 - 4.1 Computational Details for the Mixed 3D Beam FE [Seite 1231]
114.4.2 - 4.2 Results [Seite 1232]
114.5 - 5 Conclusions [Seite 1235]
114.6 - References [Seite 1236]
115 - An Orthotropic Multi-surface Elastic-Damaging-Plastic Model with Regularized XFEM Interfaces for Wood Structures [Seite 1238]
115.1 - 1 Introduction [Seite 1238]
115.2 - 2 Two-Dimensional Multi-surface Elastic-Plastic-Damaging Constitutive Model [Seite 1240]
115.2.1 - 2.1 Ductile Failure Modes [Seite 1241]
115.2.2 - 2.2 Brittle Failure Modes [Seite 1243]
115.2.3 - 2.3 The Multi-surface Failure Envelope [Seite 1244]
115.3 - 3 The Regularized Extended Finite Element Method (RE-XFEM) [Seite 1245]
115.3.1 - 3.1 Regularized Discontinuous Regime [Seite 1246]
115.3.2 - 3.2 Continuous-Discontinuous Transition [Seite 1247]
115.4 - 4 Results [Seite 1247]
115.4.1 - 4.1 Double Cantilever Beam (DCB) Tests [Seite 1247]
115.4.2 - 4.2 Embedment Tests [Seite 1249]
115.5 - 5 Conclusions [Seite 1250]
115.6 - References [Seite 1251]
116 - A Numerical Study on Explicit vs Implicit Time Integration of the Vermeer-Neher Constitutive Model [Seite 1253]
116.1 - 1 Introduction [Seite 1253]
116.2 - 2 Constitutive Relationship and Residual Definition [Seite 1254]
116.2.1 - 2.1 Residual Definition for the Local Problem [Seite 1256]
116.3 - 3 Calculation of the Overall Stiffness Matrix [Seite 1258]
116.4 - 4 Numerical Tests [Seite 1259]
116.4.1 - 4.1 Test 1: Monotonic Loading [Seite 1259]
116.4.2 - 4.2 Test 2: Loading and Unloading [Seite 1261]
116.4.3 - 4.3 Subsidence Evaluation for a Case Study [Seite 1262]
116.5 - References [Seite 1263]
117 - A Full Orthotropic Bond-Based Peridynamic Formulation for Linearly Elastic Solids [Seite 1265]
117.1 - 1 Introduction [Seite 1265]
117.2 - 2 Micropolar Peridynamics [Seite 1267]
117.2.1 - 2.1 A Full Orthotropic Model [Seite 1272]
117.3 - 3 Validation of the Micropolar Model in Elasticity [Seite 1277]
117.3.1 - 3.1 Natural Frequency Analysis [Seite 1282]
117.4 - 4 Conclusions [Seite 1285]
117.5 - References [Seite 1285]
118 - Mechanics and Geometry [Seite 1289]
119 - Mechanics of Surface Growth: Stability of 1D and 2D Treadmilling Systems [Seite 1290]
119.1 - 1 Introduction [Seite 1290]
119.2 - 2 Model [Seite 1291]
119.2.1 - 2.1 Setting [Seite 1291]
119.2.2 - 2.2 Mechanics [Seite 1292]
119.2.3 - 2.3 Diffusion [Seite 1292]
119.2.4 - 2.4 Growth [Seite 1293]
119.2.5 - 2.5 Constitutive Behaviour [Seite 1293]
119.3 - 3 Reduction to a Differential Algebraic System [Seite 1294]
119.3.1 - 3.1 Mechanics [Seite 1294]
119.3.2 - 3.2 Diffusion [Seite 1295]
119.3.3 - 3.3 Growth [Seite 1295]
119.3.4 - 3.4 Differential-Algebraic System [Seite 1296]
119.4 - 4 Treadmilling Solutions and Stability [Seite 1296]
119.4.1 - 4.1 Existence and Uniqueness of Solutions [Seite 1296]
119.4.2 - 4.2 Stability of Solutions [Seite 1297]
119.4.3 - 4.3 Lack of Solutions [Seite 1298]
119.5 - 5 Conclusions [Seite 1298]
119.6 - References [Seite 1299]
120 - Dynamics and Stability of Mechanical Systems [Seite 1300]
121 - Condition Monitoring of Wind Turbine Gearboxes Through On-site Measurement and Vibration Analysis Techniques [Seite 1301]
121.1 - 1 Introduction [Seite 1301]
121.2 - 2 The Test Case and the On-site Measurements [Seite 1303]
121.3 - 3 Analysis and Results [Seite 1306]
121.4 - 4 Conclusions [Seite 1310]
121.5 - References [Seite 1311]
122 - A Damage Identification Procedure for Steel Truss [Seite 1313]
122.1 - Abstract [Seite 1313]
122.2 - 1 Introduction [Seite 1313]
122.3 - 2 Direct Problem [Seite 1314]
122.3.1 - 2.1 Stochastic State Space Model [Seite 1317]
122.3.2 - 2.2 Stochastic Subspace Identification [Seite 1317]
122.4 - 3 Modal and Damage Identification [Seite 1319]
122.5 - 4 Conclusions [Seite 1320]
122.6 - Acknowledgments [Seite 1321]
122.7 - References [Seite 1321]
123 - Stability Analysis of Parametrically Excited Gyroscopic Systems [Seite 1322]
123.1 - Abstract [Seite 1322]
123.2 - 1 Introduction [Seite 1322]
123.3 - 2 Model and Methods [Seite 1323]
123.3.1 - 2.1 Equations of Motion [Seite 1323]
123.3.2 - 2.2 Harmonic Balance Method [Seite 1326]
123.4 - 3 Stability Analysis [Seite 1327]
123.4.1 - 3.1 Simple Shaft Without Gyroscopic and Stabilizing Damping Effects [Seite 1327]
123.4.2 - 3.2 Simple Shaft with Stabilizing Damping Effects [Seite 1328]
123.4.3 - 3.3 Simple Shaft with Gyroscopic Effects [Seite 1330]
123.4.4 - 3.4 Simple Shaft with Gyroscopic and Internal (Rotating) Damping Effects [Seite 1332]
123.4.5 - 3.5 Shaft with Additional Inertial Elements [Seite 1334]
123.5 - 4 Conclusions [Seite 1336]
123.6 - References [Seite 1337]
124 - The Relaxation Function in Viscoelasticity: Classical and Non-classical Thermodynamically Admissible Examples [Seite 1338]
124.1 - 1 Introduction [Seite 1338]
124.2 - 2 General Framework of the Problem: The Viscoelasticity Model [Seite 1339]
124.3 - 3 Non Regular Kernels [Seite 1341]
124.3.1 - 3.1 Unbounded Kernels [Seite 1341]
124.3.2 - 3.2 Weakly Regular Kernels [Seite 1342]
124.4 - 4 Conclusions and Perspectives [Seite 1342]
124.5 - References [Seite 1343]
125 - An Efficient Computational Strategy for Nonlinear Time History Analysis of Seismically Base-Isolated Structures [Seite 1346]
125.1 - 1 Introduction [Seite 1346]
125.2 - 2 Nonlinear Equilibrium Equations [Seite 1348]
125.3 - 3 Conventional Solution Strategy [Seite 1349]
125.3.1 - 3.1 Phenomenological Models [Seite 1349]
125.3.2 - 3.2 Conventional Time Integration Method [Seite 1350]
125.4 - 4 Proposed Solution Strategy [Seite 1351]
125.4.1 - 4.1 Proposed Phenomenological Model [Seite 1352]
125.4.2 - 4.2 Proposed Explicit Time Integration Method [Seite 1353]
125.5 - 5 Numerical Experiments [Seite 1354]
125.5.1 - 5.1 Base-Isolated Structure Properties [Seite 1355]
125.5.2 - 5.2 Applied Earthquake Excitation [Seite 1355]
125.5.3 - 5.3 Hysteretic Models Parameters [Seite 1355]
125.5.4 - 5.4 Numerical Results [Seite 1355]
125.6 - 6 Conclusions [Seite 1357]
125.7 - References [Seite 1358]
126 - Rubber-Layer Roller Bearings (RLRB) for Base Isolation: The Non-linear Dynamic Behavior [Seite 1360]
126.1 - Abstract [Seite 1360]
126.2 - 1 Introduction [Seite 1360]
126.3 - 2 Formulation [Seite 1362]
126.4 - 3 Results [Seite 1364]
126.4.1 - 3.1 Sinusoidal Excitation [Seite 1366]
126.4.2 - 3.2 Seismic Excitation [Seite 1367]
126.5 - 4 Conclusions [Seite 1368]
126.6 - References [Seite 1368]
127 - A Closed Form Solution for the Buckling Analysis of Orthotropic Reddy Plate and Prismatic Plate Structures [Seite 1370]
127.1 - Abstract [Seite 1370]
127.2 - 1 Introduction [Seite 1370]
127.3 - 2 Problem Formulation [Seite 1371]
127.4 - 3 Levy-Type Model [Seite 1374]
127.5 - 4 Examples [Seite 1377]
127.5.1 - 4.1 Flat Plates [Seite 1377]
127.5.2 - 4.2 Stiffened Plates [Seite 1378]
127.6 - 5 Conclusions [Seite 1380]
127.7 - References [Seite 1381]
128 - Non-linear Dynamic Analysis for Collapse Probability Assessment of Historic Masonry Towers [Seite 1382]
128.1 - Abstract [Seite 1382]
128.2 - 1 Introduction [Seite 1382]
128.3 - 2 Masonry Tower Case Study [Seite 1383]
128.4 - 3 Dynamic Tests and Model Updating [Seite 1384]
128.4.1 - 3.1 Experimental Tests and Data Analysis [Seite 1384]
128.4.2 - 3.2 Finite Element Model [Seite 1386]
128.4.3 - 3.3 Genetic Algorithm Model Updating [Seite 1387]
128.5 - 4 Probabilistic Framework [Seite 1388]
128.5.1 - 4.1 Nonlinear Modelling of Masonry [Seite 1388]
128.5.2 - 4.2 Nonlinear Time-History Analyses and Seismic Vulnerability [Seite 1389]
128.6 - 5 Concluding Remarks [Seite 1391]
128.7 - References [Seite 1391]
129 - On the Influence of Drag Force Modeling in Long-Span Suspension Bridge Flutter Analysis [Seite 1393]
129.1 - Abstract [Seite 1393]
129.2 - 1 Introduction [Seite 1393]
129.3 - 2 Aerodynamic Actions and Flutter Analysis Methods [Seite 1394]
129.3.1 - 2.1 Aerodynamic Action Modeling [Seite 1394]
129.3.2 - 2.2 Finite Element Flutter Analysis [Seite 1395]
129.3.3 - 2.3 Semi-analytic Continuum Model for Flutter Analysis with Drag-Induced Second-Order Effects [Seite 1395]
129.4 - 3 Case Study and Results [Seite 1397]
129.5 - 4 Final Remarks and Conclusions [Seite 1401]
129.6 - References [Seite 1401]
130 - Experimental Study on Large Amplitude Vibrations of a Circular Cylindrical Shell Subjected to Thermal Gradients [Seite 1403]
130.1 - Abstract [Seite 1403]
130.2 - 1 Introduction [Seite 1403]
130.3 - 2 Test Setup Description [Seite 1404]
130.4 - 3 Experimental Results [Seite 1405]
130.5 - 4 Conclusions [Seite 1409]
130.6 - References [Seite 1409]
131 - Vibrations of Circular Cylindrical Shells Under Random Excitation and Thermal Gradients [Seite 1411]
131.1 - Abstract [Seite 1411]
131.2 - 1 Introduction [Seite 1411]
131.3 - 2 Setup [Seite 1413]
131.4 - 3 Test Procedure and Methods [Seite 1415]
131.5 - 4 Results [Seite 1416]
131.6 - 5 Conclusions [Seite 1420]
131.7 - References [Seite 1420]
132 - A Simple Model for Predicting the Nonlinear Dynamic Behavior of Elastic Systems Subjected to Friction [Seite 1421]
132.1 - Abstract [Seite 1421]
132.2 - 1 Introduction [Seite 1422]
132.3 - 2 Mechanical Model [Seite 1422]
132.4 - 3 Sticking and Sliding [Seite 1424]
132.4.1 - 3.1 The Sticking Phase [Seite 1424]
132.4.2 - 3.2 The Sliding Phase [Seite 1425]
132.5 - 4 Limit Cycles [Seite 1426]
132.5.1 - 4.1 Sticking Limit Cycles [Seite 1426]
132.5.2 - 4.2 Sliding Limit Cycles [Seite 1426]
132.5.3 - 4.3 System Parameters and Long-Term Responses [Seite 1427]
132.6 - 5 Application [Seite 1428]
132.6.1 - 5.1 Simulation Cases [Seite 1428]
132.7 - 6 Conclusions [Seite 1430]
132.8 - References [Seite 1431]
133 - Substructuring Using NNMs of Nonlinear Connecting Elements [Seite 1432]
133.1 - 1 Introduction [Seite 1432]
133.2 - 2 Theoretical Background [Seite 1433]
133.2.1 - 2.1 Substructuring [Seite 1433]
133.2.2 - 2.2 Nonlinear Normal Modes [Seite 1435]
133.2.3 - 2.3 Modal Coupling Using NNMs [Seite 1437]
133.3 - 3 Applications [Seite 1440]
133.3.1 - 3.1 5-DOFs System with Hardening Spring [Seite 1440]
133.3.2 - 3.2 2-DOFs System with Softening Spring [Seite 1443]
133.4 - 4 Concluding Remarks [Seite 1445]
133.5 - References [Seite 1446]
134 - Design of a Membrane Structure Subjected to Blast Load [Seite 1447]
134.1 - 1 Introduction [Seite 1447]
134.2 - 2 Description of the Case Study [Seite 1448]
134.3 - 3 Structures Subjected to External Blasts [Seite 1449]
134.3.1 - 3.1 Technical Recommendations [Seite 1449]
134.3.2 - 3.2 Design Procedures [Seite 1449]
134.4 - 4 Determination of Loads [Seite 1450]
134.4.1 - 4.1 Loads over Tent's Walls [Seite 1452]
134.4.2 - 4.2 Load Cases [Seite 1455]
134.5 - 5 Numerical Model [Seite 1457]
134.5.1 - 5.1 Results [Seite 1458]
134.6 - 6 Conclusions [Seite 1462]
134.7 - References [Seite 1463]
135 - Dynamic Substructuring with Time Variant Interface Due to Sliding Friction [Seite 1465]
135.1 - 1 Introduction [Seite 1465]
135.2 - 2 Theoretical Background [Seite 1466]
135.2.1 - 2.1 Substructuring [Seite 1466]
135.2.2 - 2.2 Solution Approach in Time Domain [Seite 1468]
135.2.3 - 2.3 Time Dependent Frequency Response Function [Seite 1470]
135.3 - 3 Beam on Beam System and Numerical Results [Seite 1471]
135.3.1 - 3.1 Numerical Model [Seite 1471]
135.3.2 - 3.2 Simplified Contact Algorithm [Seite 1473]
135.3.3 - 3.3 Time Domain Results Using Primal and Dual Assembly [Seite 1475]
135.3.4 - 3.4 Time Dependent FRF Using Dual Assembly [Seite 1478]
135.4 - 4 Conclusions [Seite 1478]
135.5 - References [Seite 1479]
136 - Homogenization of a Heat Conduction Problem with a Total Flux Boundary Condition [Seite 1481]
136.1 - 1 Introduction [Seite 1481]
136.2 - 2 The Microscopic Problem [Seite 1482]
136.2.1 - 2.1 Geometrical Setting [Seite 1482]
136.2.2 - 2.2 Position of the Problem [Seite 1483]
136.3 - 3 Time-Depending Unfolding Operator [Seite 1485]
136.4 - 4 Homogenization [Seite 1487]
136.5 - References [Seite 1492]
137 - Experimental and Numerical Response Analysis of a Unilaterally Constrained SDOF System Under Harmonic Base Excitation [Seite 1494]
137.1 - Abstract [Seite 1494]
137.2 - 1 Introduction [Seite 1494]
137.3 - 2 Experimental Tests [Seite 1496]
137.4 - 3 Numerical Model [Seite 1497]
137.5 - 4 Results [Seite 1498]
137.6 - 5 Conclusions and Future Developments [Seite 1501]
137.7 - References [Seite 1502]
138 - Optimal Sensors Placement for Damage Detection of Beam Structures [Seite 1504]
138.1 - 1 Introduction [Seite 1504]
138.2 - 2 Proposed Method [Seite 1505]
138.2.1 - 2.1 Beam Formulation [Seite 1505]
138.2.2 - 2.2 Optimal Sensors Placement [Seite 1508]
138.3 - 3 Case Study [Seite 1511]
138.4 - 4 Conclusions [Seite 1516]
138.5 - References [Seite 1517]
139 - Shake Table Testing of a Tuned Mass Damper Inerter (TMDI)-Equipped Structure and Nonlinear Dynamic Modeling Under Harmonic Excitations [Seite 1518]
139.1 - Abstract [Seite 1518]
139.2 - 1 Introduction [Seite 1518]
139.3 - 2 Physical Model, Shaking Table Setup, and Instrumentation [Seite 1519]
139.4 - 3 Frequency Domain Experimental Response Characterization [Seite 1521]
139.5 - 4 Nonlinear Numerical Modeling and Assessment [Seite 1522]
139.6 - 5 Conclusions [Seite 1525]
139.7 - References [Seite 1526]
140 - An Appraisal of Modelling Strategies for Assessing Aeolian Vibrations of Transmission Lines [Seite 1528]
140.1 - 1 Introduction [Seite 1528]
140.2 - 2 The Energy Balance Method [Seite 1529]
140.2.1 - 2.1 Wind Power Input [Seite 1530]
140.2.2 - 2.2 Cable Self-damping [Seite 1530]
140.2.3 - 2.3 Power Dissipation Due to Additional Dampers [Seite 1531]
140.3 - 3 Dynamic Response of Overhead Power Lines [Seite 1533]
140.3.1 - 3.1 Impedance Matrix [Seite 1533]
140.3.2 - 3.2 Semi-analytical Procedure for the Evaluation of the Line Modal Properties [Seite 1535]
140.4 - 4 Applications [Seite 1536]
140.5 - 5 Conclusions [Seite 1539]
140.6 - References [Seite 1539]
141 - On the Modelling of the Hysteretic Behaviour of Wire Rope Isolators [Seite 1541]
141.1 - 1 Introduction [Seite 1541]
141.2 - 2 Black Box Approaches for WRIs [Seite 1542]
141.3 - 3 Mechanical Model of WRIs [Seite 1543]
141.3.1 - 3.1 Moment-Curvature Law for the Rope Cross-Section [Seite 1544]
141.3.2 - 3.2 The Corotational Beam Element [Seite 1545]
141.4 - 4 Numerical Applications [Seite 1546]
141.5 - 5 Conclusions [Seite 1547]
141.6 - References [Seite 1547]
142 - Optical Flow Dynamic Measurements with High-Speed Camera on a Small-Scale Steel Frame Structure [Seite 1549]
142.1 - Abstract [Seite 1549]
142.2 - 1 Introduction [Seite 1549]
142.3 - 2 Particle Tracking Algorithm [Seite 1550]
142.4 - 3 Experiments [Seite 1551]
142.4.1 - 3.1 Experimental Setup [Seite 1551]
142.4.2 - 3.2 Results [Seite 1554]
142.5 - 4 Conclusions [Seite 1560]
142.6 - Acknowledgments [Seite 1560]
142.7 - References [Seite 1560]
143 - Stochastic Mechanics and Probability in Engineering [Seite 1562]
144 - Stochastic Seismic Assessment of Bridge Networks by Matrix Based System Reliability Method [Seite 1563]
144.1 - Abstract [Seite 1563]
144.2 - 1 Introduction [Seite 1563]
144.3 - 2 MSR-Based Prioritization Strategy [Seite 1564]
144.3.1 - 2.1 Formulation of System Reliability [Seite 1564]
144.3.2 - 2.2 Construction of the Probability Vector [Seite 1565]
144.3.3 - 2.3 Construction of the Probability Event Vector [Seite 1565]
144.4 - 3 Reliability of the Network [Seite 1566]
144.5 - 4 Case Study [Seite 1566]
144.5.1 - 4.1 Problem Statement [Seite 1566]
144.5.2 - 4.2 Probability of Disconnection Between Cities [Seite 1568]
144.5.3 - 4.3 Probability of Disconnection of Paths Under Seismic Risk [Seite 1569]
144.6 - 5 Conclusions [Seite 1569]
144.7 - Acknowledgments [Seite 1569]
144.8 - References [Seite 1569]
145 - Influence of User-Defined Parameters Using Stochastic Subspace Identification (SSI) [Seite 1571]
145.1 - Abstract [Seite 1571]
145.2 - 1 Introduction [Seite 1571]
145.3 - 2 Data-Driven Stochastic Subspace Identification Method [Seite 1573]
145.4 - 3 Case Study: Reinforced Concrete Building in Alcamo [Seite 1576]
145.4.1 - 3.1 Data Acquisition and Measurement Setup [Seite 1576]
145.4.2 - 3.2 Identification of the Modal Parameters [Seite 1577]
145.4.3 - 3.3 Influence of the Number of Block Rows i in Hankel Matrix and of the Length of the Signal on the SSI Method [Seite 1578]
145.4.4 - 3.4 Comparison Between SSI Method and EFDD Method [Seite 1580]
145.5 - 4 Conclusions [Seite 1583]
145.6 - Acknowledgment [Seite 1584]
145.7 - References [Seite 1584]
146 - Analysis of Truss-Like Cracked Structures with Uncertain-but-Bounded Depths [Seite 1587]
146.1 - Abstract [Seite 1587]
146.2 - 1 Introduction [Seite 1587]
146.3 - 2 Formulation of the Problem [Seite 1588]
146.3.1 - 2.1 Damaged Member with Uncertain-but-Bounded Crack Depth [Seite 1588]
146.3.2 - 2.2 Governing Equation for a Truss Structure with Cracked Members [Seite 1589]
146.4 - 3 Response Bounds [Seite 1590]
146.5 - 4 Numerical Application [Seite 1592]
146.6 - 5 Conclusions [Seite 1593]
146.7 - References [Seite 1594]
147 - Vibration Based Bayesian Inference for Finite Element Model Parameters Estimation and Damage Detection [Seite 1595]
147.1 - 1 Introduction [Seite 1596]
147.2 - 2 Bayesian Inference for the Estimation of FE Model Parameters Using Noisy Modal Data [Seite 1597]
147.2.1 - 2.1 General Formulation of the Probabilistic Model [Seite 1597]
147.2.2 - 2.2 Bayesian Updating Framework Using Noisy Modal Data [Seite 1597]
147.2.3 - 2.3 Likelihood Function [Seite 1598]
147.2.4 - 2.4 Prior Distribution [Seite 1599]
147.2.5 - 2.5 Posterior Distribution [Seite 1600]
147.3 - 3 Numerical Example: Damage Detection on a Cable Stayed Footbridge [Seite 1601]
147.3.1 - 3.1 Numerical Model, Ambient Vibration Tests and Bayesian Updating of the Cable Stayed Footbridge [Seite 1601]
147.3.2 - 3.2 Uncertainty Analysis of System Identification Results Obtained for the Cable Stayed Footbridge [Seite 1603]
147.3.3 - 3.3 Effects of Cable Damage on the Eigenproperties [Seite 1604]
147.3.4 - 3.4 Bayesian Damage Detection [Seite 1607]
147.4 - 4 Conclusion [Seite 1608]
147.5 - References [Seite 1609]
148 - An Innovative Ambient Identification Method [Seite 1612]
148.1 - Abstract [Seite 1612]
148.2 - 1 Introduction [Seite 1612]
148.3 - 2 Identification Algorithm [Seite 1614]
148.4 - 3 Numerical Analysis on a 3DOF System [Seite 1620]
148.5 - 4 Conclusions [Seite 1626]
148.6 - References [Seite 1627]
149 - Speeding up the Stochastic Linearisation for Systems Controlled by Non-linear Passive Devices [Seite 1629]
149.1 - 1 Introduction [Seite 1630]
149.2 - 2 Stochastic Linearisation for Passive Control Devices [Seite 1631]
149.2.1 - 2.1 System Controlled with Fluid Viscous Dampers [Seite 1632]
149.2.2 - 2.2 System Controlled by Multi-NES [Seite 1633]
149.2.3 - 2.3 Systems Controlled by Multiple TLCDs [Seite 1634]
149.3 - 3 Analytical Evaluation of Response Statistics [Seite 1635]
149.4 - 4 Numerical Applications [Seite 1640]
149.5 - 5 Conclusions [Seite 1643]
149.6 - References [Seite 1646]
150 - Comparison of Surrogate Models for Handling Uncertainties in SHM of Historic Buildings [Seite 1649]
150.1 - 1 Introduction [Seite 1649]
150.2 - 2 Theoretical Background: Surrogate Modelling [Seite 1650]
150.2.1 - 2.1 Response Surface Method (RSM) [Seite 1650]
150.2.2 - 2.2 Kriging Model [Seite 1651]
150.2.3 - 2.3 Random Sampling High-Dimensional Model Representation (RS-HDMR) [Seite 1651]
150.3 - 3 Surrogate-Based Continuous Assessment of Historic Structures [Seite 1652]
150.4 - 4 Validation Case Study and Discussion [Seite 1653]
150.4.1 - 4.1 Finite Element Modelling [Seite 1654]
150.4.2 - 4.2 Comparison of Surrogate Models [Seite 1655]
150.4.3 - 4.3 Surrogate-Based Continuous Structural Assessment of the Sciri Tower [Seite 1658]
150.5 - 5 Conclusions [Seite 1660]
150.6 - References [Seite 1660]
151 - Is It True that the Higher the Number of Plies is, the Safer is a Brittle Laminate? [Seite 1662]
151.1 - Abstract [Seite 1662]
151.2 - 1 Introduction [Seite 1662]
151.3 - 2 Probabilistic Models of the Strength [Seite 1664]
151.4 - 3 Failure Probability of Brittle Laminates [Seite 1665]
151.4.1 - 3.1 Case Studies [Seite 1665]
151.4.2 - 3.2 "Failure Modes" Approach [Seite 1666]
151.4.3 - 3.3 Materials with Volume Size Effect (VSE) [Seite 1666]
151.4.4 - 3.4 Materials with Area Size Effect (ASE) [Seite 1668]
151.4.5 - 3.5 Materials with no Size Effect (NSE) [Seite 1671]
151.5 - 4 Conclusions [Seite 1672]
151.6 - References [Seite 1672]
152 - Stress-Driven Approach for Stochastic Analysis of Noisy Nonlocal Beam [Seite 1674]
152.1 - 1 Introduction [Seite 1674]
152.2 - 2 Nonlocal Models in Bending Problem [Seite 1675]
152.2.1 - 2.1 Eringen's Model [Seite 1675]
152.2.2 - 2.2 Stress-Driven Formulation [Seite 1676]
152.3 - 3 Bending Vibrations of Beam with Stress-Driven Nonlocality [Seite 1678]
152.3.1 - 3.1 Free Vibrations of Undamped Nonlocal Beam [Seite 1680]
152.3.2 - 3.2 Forced Vibrations of Damped Nonlocal Beam [Seite 1682]
152.4 - 4 Stochastic Response of Nonlocal Damped Beam [Seite 1683]
152.4.1 - 4.1 Steady-State Response [Seite 1684]
152.5 - 5 Numerical Applications [Seite 1685]
152.6 - 6 Conclusions [Seite 1688]
152.7 - References [Seite 1688]
153 - Laplace's Method of Integration in the Path Integral Approach for the Probabilistic Response of Nonlinear Systems [Seite 1691]
153.1 - Abstract [Seite 1691]
153.2 - 1 Introduction [Seite 1691]
153.3 - 2 The Laplace's Method of Integration [Seite 1692]
153.4 - 3 Application of the Laplace's Method for the Pathi Integral Approach [Seite 1693]
153.5 - 4 Numerical Applications [Seite 1696]
153.6 - 5 Conclusions [Seite 1697]
153.7 - References [Seite 1698]
154 - Estimation of Masonry Texture and Mechanical Characteristics by Means of Thermographic Images [Seite 1700]
154.1 - 1 Introduction [Seite 1700]
154.2 - 2 Thermography [Seite 1701]
154.3 - 3 Homogenization [Seite 1702]
154.4 - 4 Texture Identification [Seite 1703]
154.5 - 5 Effect of Uncertainties [Seite 1704]
154.6 - 6 Conclusions [Seite 1705]
154.7 - References [Seite 1705]
155 - Fractional Viscoelasticity Under Combined Stress and Temperature Variations [Seite 1707]
155.1 - 1 Introduction [Seite 1707]
155.2 - 2 Preliminary Concepts and Definitions [Seite 1708]
155.3 - 3 Step Material Parameters Variation with Temperature [Seite 1710]
155.4 - 4 Numerical Applications [Seite 1713]
155.4.1 - 4.1 Analysis with Deterministic History of Stress [Seite 1713]
155.4.2 - 4.2 Analysis with Stochastic History of Stress [Seite 1717]
155.5 - 5 Conclusions [Seite 1719]
155.6 - References [Seite 1719]
156 - Explicit Assessment of the Forced Vibration of Multi-cracked Beams with Uncertain Damage Intensity [Seite 1722]
156.1 - Abstract [Seite 1722]
156.2 - 1 Introduction [Seite 1722]
156.3 - 2 The Governing Equations of the Forced Vibration of Multi-cracked Beams [Seite 1724]
156.4 - 3 Explicit Approximated Approach [Seite 1726]
156.5 - 4 Applications [Seite 1729]
156.6 - 5 Conclusions [Seite 1731]
156.7 - Acknowledgement [Seite 1732]
156.8 - References [Seite 1732]
157 - Recent Advances and Challenges in Structural Mechanics and Engineering [Seite 1733]
158 - Koiter Method and Solid Shell Finite Elements for Postbuckling Optimisation of Variable Angle Tow Composite Structures [Seite 1734]
158.1 - 1 Introduction [Seite 1734]
158.2 - 2 Optimisation of a Composite VAT Wingbox [Seite 1736]
158.2.1 - 2.1 VAT Wingbox [Seite 1737]
158.2.2 - 2.2 Optimisation Strategy [Seite 1738]
158.2.3 - 2.3 Optimisation Algorithms [Seite 1739]
158.3 - 3 Numerical Results [Seite 1739]
158.3.1 - 3.1 Optimisation [Seite 1739]
158.4 - 4 Conclusions [Seite 1743]
158.5 - References [Seite 1743]
159 - Equilibrium of the von Mises Truss in Nonlinear Elasticity [Seite 1746]
159.1 - 1 Introduction [Seite 1746]
159.2 - 2 Preliminary Notions [Seite 1747]
159.3 - 3 Formulation of the Boundary-Value Problem [Seite 1749]
159.4 - 4 Global Equilibrium and Stability [Seite 1751]
159.5 - 5 Equilibrium Paths for the Case of Mooney-Rivlin Material [Seite 1752]
159.6 - 6 Conclusions [Seite 1754]
159.7 - References [Seite 1755]
160 - Modeling of Carbon and Polyester Elastomeric Isolators in Unbounded Configuration by Using an Efficient Uniaxial Hysteretic Model [Seite 1756]
160.1 - Abstract [Seite 1756]
160.2 - 1 Introduction [Seite 1756]
160.3 - 2 Experimental Program [Seite 1757]
160.3.1 - 2.1 Test Protocols [Seite 1758]
160.3.2 - 2.2 Experimental Results [Seite 1760]
160.4 - 3 Numerical Model [Seite 1760]
160.4.1 - 3.1 Parameter Calibration [Seite 1762]
160.4.2 - 3.2 Comparison [Seite 1763]
160.5 - 4 Conclusions [Seite 1764]
160.6 - References [Seite 1765]
161 - Energetic and Geometric Criteria for Defining Shear-Deformable Beam Models [Seite 1766]
161.1 - 1 Introduction [Seite 1766]
161.2 - 2 Overview of Saint Venant's Solid Model [Seite 1768]
161.3 - 3 Derivation of the Shear-Deformable Beam Model [Seite 1769]
161.3.1 - 3.1 Energetic Derivation of the 1D Beam Model [Seite 1770]
161.3.2 - 3.2 Geometric Derivation of the 1D Beam Model [Seite 1771]
161.3.3 - 3.3 Equivalence of the Energetic and Geometric Approach [Seite 1774]
161.4 - 4 Conclusions [Seite 1774]
161.5 - References [Seite 1775]
162 - Use, Effectiveness and Long Term Reliability of MR Dampers for Seismic Protection of Framed Structures [Seite 1776]
162.1 - Abstract [Seite 1776]
162.2 - 1 Introduction [Seite 1776]
162.3 - 2 Experimental Issues in Testing a SA MR Control System [Seite 1778]
162.4 - 3 Effectiveness of a SA MR Control System Through an Experimental Activity [Seite 1780]
162.4.1 - 3.1 Experimental Activity [Seite 1780]
162.4.2 - 3.2 Control Logics [Seite 1781]
162.4.3 - 3.3 Main Results [Seite 1782]
162.5 - 4 Ageing Effects on Long Term Reliability of MR Dampers [Seite 1783]
162.6 - 5 Conclusions [Seite 1785]
162.7 - References [Seite 1786]
163 - Curved and Twisted Beam Models for Aeroelastic Analysis of Wind Turbine Blades in Large Displacement [Seite 1788]
163.1 - Abstract [Seite 1788]
163.2 - 1 Introduction [Seite 1788]
163.3 - 2 Blades Modeling: Approaches Overview [Seite 1789]
163.4 - 3 Beam-Like Structures: Mechanical Modeling [Seite 1790]
163.4.1 - 3.1 Beam-Like Model 1 (BLM1) [Seite 1790]
163.4.2 - 3.2 Beam-Like Model 2 (BLM2) [Seite 1794]
163.4.3 - 3.3 Warping Displacements in BLM2 [Seite 1797]
163.5 - 4 Examples and Results [Seite 1798]
163.6 - 5 Conclusions [Seite 1799]
163.7 - References [Seite 1799]
164 - The Non-smooth Dynamics of Multiple Leaf Masonry Walls of the Arquata Del Tronto Fortress [Seite 1801]
164.1 - Abstract [Seite 1801]
164.2 - 1 Introduction [Seite 1801]
164.3 - 2 Historical Developments of the Medieval Fortress [Seite 1803]
164.3.1 - 2.1 Damage of the Arquata del Tronto Fortress After the Central Italy Earthquakes of 2016 [Seite 1805]
164.4 - 3 The Non-Smooth Contact Dynamics Method [Seite 1805]
164.5 - 4 Numerical Results [Seite 1808]
164.6 - 5 Conclusions [Seite 1809]
164.7 - References [Seite 1809]
165 - A Simplified Beam-Like Model for the Dynamic Analysis of Multi-storey Buildings [Seite 1811]
165.1 - Abstract [Seite 1811]
165.2 - 1 Introduction [Seite 1811]
165.3 - 2 The Considered Beam-Like Model [Seite 1812]
165.3.1 - 2.1 The Rayleigh Ritz Discretization of the Non-uniform Equivalent Beam [Seite 1813]
165.4 - 3 Validation of the Proposed Model [Seite 1815]
165.5 - 4 Conclusions [Seite 1820]
165.6 - References [Seite 1820]
166 - Dynamic Identification and Damage Detection on Masonry Buildings Using Shaking Table Tests [Seite 1822]
166.1 - 1 Introduction [Seite 1823]
166.2 - 2 Models Description [Seite 1824]
166.3 - 3 Experimental Tests and Sensors Layout [Seite 1825]
166.4 - 4 Estimation of Modal Parameters [Seite 1827]
166.4.1 - 4.1 Unreinforced Masonry Building Models [Seite 1827]
166.4.2 - 4.2 Confined Masonry Building Models [Seite 1831]
166.5 - 5 Damage Detection [Seite 1833]
166.5.1 - 5.1 Unreinforced Masonry Building Models [Seite 1834]
166.5.2 - 5.2 Confined Masonry Building Models [Seite 1835]
166.6 - 6 Conclusion [Seite 1837]
166.7 - References [Seite 1838]
167 - Effects of In- and Out-of-Plane Nonlinear Modelling of Masonry Infills on the Seismic Response of R.C. Framed Buildings [Seite 1841]
167.1 - Abstract [Seite 1841]
167.2 - 1 Introduction [Seite 1841]
167.3 - 2 Layout and Simulated Design of the Case Study [Seite 1843]
167.4 - 3 Layout and Nonlinear Modelling of Masonry Infills [Seite 1846]
167.5 - 4 Numerical Results [Seite 1850]
167.6 - 5 Conclusions [Seite 1858]
167.7 - Acknowledgements [Seite 1858]
167.8 - References [Seite 1858]
168 - Proposal of Design Tools for a Shear Link Damper in Seismic Control of Frame Structures [Seite 1860]
168.1 - Abstract [Seite 1860]
168.2 - 1 Introduction [Seite 1860]
168.3 - 2 A Design Tool for Structures Equipped with Hysteretic Dampers [Seite 1862]
168.4 - 3 Preliminary SL Sizing: Proposal of Design Charts [Seite 1864]
168.5 - 4 Evaluation of SL Mechanical Properties [Seite 1866]
168.6 - 5 Conclusions [Seite 1867]
168.7 - References [Seite 1867]
169 - Hydrothermal Ageing of Natural Fibre Polymer Composites [Seite 1870]
170 - Experimentation on Lime Mortars Reinforced with Jute Fibres: Mixture Workability and Mechanical Strengths [Seite 1871]
170.1 - Abstract [Seite 1871]
170.2 - 1 Introduction [Seite 1871]
170.3 - 2 The Experimental Campaign [Seite 1872]
170.3.1 - 2.1 Targets [Seite 1872]
170.3.2 - 2.2 Materials [Seite 1873]
170.3.3 - 2.3 Test Equipment [Seite 1874]
170.4 - 3 The Obtained Results [Seite 1875]
170.4.1 - 3.1 Water Absorption of Jute Fibres [Seite 1875]
170.4.2 - 3.2 Maximum Water Percentage in the Lime Mortar [Seite 1875]
170.4.3 - 3.3 Water Percentage in the Fibre-Reinforced Mixture [Seite 1875]
170.4.4 - 3.4 Optimal Percentage of Fibres [Seite 1876]
170.4.5 - 3.5 Mechanical Tests [Seite 1878]
170.5 - 4 Conclusions [Seite 1880]
170.6 - Acknowledgements [Seite 1881]
170.7 - References [Seite 1881]
171 - Masonry Constructions: from Material to Structures, Modelling and Analysis Approaches [Seite 1883]
172 - Micromodels for the In-Plane Failure Analysis of Masonry Walls with Friction: Limit Analysis and DEM-FEM/DEM Approaches [Seite 1884]
172.1 - 1 Introduction [Seite 1884]
172.2 - 2 Adopted Micromodels [Seite 1886]
172.2.1 - 2.1 Rigid Block Model for Limit Analysis [Seite 1886]
172.2.2 - 2.2 DEM and FEM/DEM [Seite 1888]
172.3 - 3 Numerical Results [Seite 1889]
172.4 - 4 Final Remarks [Seite 1893]
172.5 - References [Seite 1894]
173 - Roman Masonry Stairways. Geometry, Construction and Stability [Seite 1897]
173.1 - Abstract [Seite 1897]
173.2 - 1 Introduction [Seite 1898]
173.3 - 2 The Theoretical Framework [Seite 1898]
173.3.1 - 2.1 Assumption on the Material [Seite 1898]
173.3.2 - 2.2 An Equilibrium Model [Seite 1899]
173.4 - 3 Structural Analysis. Application to the Case Study [Seite 1901]
173.4.1 - 3.1 Geometry and Constructive Features [Seite 1902]
173.4.2 - 3.2 The Equilibrium Solution [Seite 1903]
173.5 - 4 Conclusions [Seite 1908]
173.6 - Acknowledgments [Seite 1909]
173.7 - References [Seite 1909]
174 - On Unilateral Contact Between Rigid Masonry Blocks [Seite 1911]
174.1 - Abstract [Seite 1911]
174.2 - 1 Introduction [Seite 1911]
174.3 - 2 Variational Formulations [Seite 1913]
174.3.1 - 2.1 Definitions [Seite 1913]
174.3.2 - 2.2 Primal Formulation [Seite 1914]
174.3.3 - 2.3 Dual Boundary Formulation [Seite 1915]
174.4 - 3 Discretization [Seite 1916]
174.4.1 - 3.1 Primal LP Problem [Seite 1916]
174.4.2 - 3.2 Dual LP Problem [Seite 1917]
174.5 - 4 Conclusions [Seite 1917]
174.6 - References [Seite 1918]
175 - Thrust Membrane Analysis of the Domes of the Baia Thermal Baths [Seite 1919]
175.1 - 1 Introduction [Seite 1919]
175.2 - 2 Extension of the TNA to Include Membrane Elements [Seite 1920]
175.2.1 - 2.1 Branch Elements [Seite 1921]
175.2.2 - 2.2 Triangular Membrane Element [Seite 1922]
175.3 - 3 The Domes of the Baia Thermal Baths: The Temple of Mercury [Seite 1923]
175.3.1 - 3.1 Geometric, Batigraphic and Photogrammetric Survey of the Dome of Mercury [Seite 1924]
175.3.2 - 3.2 Thrust Membrane Analysis of the Dome of Mercury [Seite 1925]
175.4 - 4 Conclusions [Seite 1927]
175.5 - References [Seite 1928]
176 - Collapse of Non-symmetric Masonry Arches with Coulomb Friction: Monasterio's Approach and Equilibrium Analysis [Seite 1929]
176.1 - Abstract [Seite 1929]
176.2 - 1 Introduction [Seite 1929]
176.3 - 2 Monasterio's Approach [Seite 1930]
176.3.1 - 2.1 The Pure Sliding Collapse Mode [Seite 1931]
176.3.2 - 2.2 The Rotational and Mixed Collapse Modes [Seite 1932]
176.4 - 3 Lower Bound Approach for Non-symmetric Arches [Seite 1934]
176.5 - 4 A Comparison Between Kinematic and Static Approaches [Seite 1936]
176.6 - 5 Conclusions [Seite 1938]
176.7 - Acknowledgments [Seite 1938]
176.8 - References [Seite 1938]
177 - Corotational Beam-Interface Model for Stability Analysis of Reinforced Masonry Walls [Seite 1940]
177.1 - 1 Introduction [Seite 1940]
177.2 - 2 Beam-Interface Micromechanical 2D Modeling [Seite 1942]
177.3 - 3 Interface Element Formulation [Seite 1944]
177.3.1 - 3.1 Corotational Approach [Seite 1945]
177.3.2 - 3.2 Material and Generalized Constitutive Relationship [Seite 1947]
177.4 - 4 Numerical Applications [Seite 1949]
177.5 - 5 Conclusions [Seite 1953]
177.6 - References [Seite 1953]
178 - Metamodels in Computational Mechanics for Bayesian FEM Updating of Ancient High-Rise Masonry Structures [Seite 1955]
178.1 - Abstract [Seite 1955]
178.2 - 1 Introduction [Seite 1956]
178.3 - 2 The Bayesian Paradigm [Seite 1957]
178.4 - 3 The Metamodeling Concept [Seite 1957]
178.5 - 4 The Computational Environment [Seite 1958]
178.5.1 - 4.1 The Code_Aster Solver and the Salome_Meca Platform [Seite 1959]
178.5.2 - 4.2 The OpenTURNS Environment [Seite 1960]
178.5.3 - 4.3 The Python Libraries and Wrapping [Seite 1960]
178.6 - 5 The Updating Procedure [Seite 1960]
178.6.1 - 5.1 The Case Study [Seite 1960]
178.6.2 - 5.2 The FE-Model [Seite 1961]
178.6.3 - 5.3 The Results Sampling [Seite 1962]
178.6.4 - 5.4 The Metamodel Creation [Seite 1964]
178.6.5 - 5.5 The Bayesian Model Updating [Seite 1966]
178.7 - 6 Conclusions [Seite 1970]
178.8 - References [Seite 1970]
179 - Settlement Induced Crack Pattern Prediction Through the Jointed Masonry Model [Seite 1972]
179.1 - 1 Introduction [Seite 1973]
179.2 - 2 Constitutive Model [Seite 1974]
179.3 - 3 Benchmark Case-Studies [Seite 1976]
179.3.1 - 3.1 Dry Masonry Plane Façade [Seite 1976]
179.3.2 - 3.2 Dry Masonry Three-Dimensional Masonry Building [Seite 1977]
179.4 - 4 Analysis of a Real Case-Study [Seite 1978]
179.5 - 5 Conclusions [Seite 1980]
179.6 - References [Seite 1980]
180 - Impacts Analysis in the Rocking of Masonry Circular Arches [Seite 1982]
180.1 - Abstract [Seite 1982]
180.2 - 1 Introduction [Seite 1982]
180.3 - 2 The Circular Masonry Arch and the Valuation of the Incipient Rocking Acceleration [Seite 1984]
180.4 - 3 First Stage of Rocking [Seite 1989]
180.5 - 4 The Impact [Seite 1992]
180.5.1 - 4.1 An Assessment on the Controversial Commonly Assumed Model [Seite 1992]
180.5.2 - 4.2 The Alternative Model of the Impact [Seite 1994]
180.6 - 5 The Forced Motion [Seite 1998]
180.7 - 6 A Numerical Investigation [Seite 2002]
180.8 - 7 Conclusions [Seite 2004]
180.9 - References [Seite 2004]
181 - Equivalent Frame Modelling of an Unreinforced Masonry Building in Finite Element Environment [Seite 2007]
181.1 - Abstract [Seite 2007]
181.2 - 1 Introduction [Seite 2008]
181.2.1 - 1.1 Equivalent Frame Modelling of Unreinforced Masonry Walls [Seite 2008]
181.2.2 - 1.2 EF Modelling State of Art [Seite 2010]
181.3 - 2 The Case Study [Seite 2010]
181.3.1 - 2.1 Creation of the Equivalent Frame Model [Seite 2012]
181.3.2 - 2.2 The Equivalent Frame Model in FEM Environment [Seite 2013]
181.3.3 - 2.3 Considerations on the EF Modelling Method [Seite 2015]
181.4 - 3 Results of Overall Analyses [Seite 2017]
181.4.1 - 3.1 The Modal Analysis [Seite 2017]
181.4.2 - 3.2 The Pushover Analysis [Seite 2018]
181.5 - 4 Discussion of Results [Seite 2018]
181.6 - 5 Conclusions [Seite 2020]
181.7 - References [Seite 2021]
182 - A Hysteretic Model with Damage Based on Bouc-Wen Formulation [Seite 2023]
182.1 - 1 Introduction [Seite 2024]
182.2 - 2 Bouc-Wen Hysteresis Model with Damage [Seite 2025]
182.3 - 3 Force-Dased Beam Finite Element [Seite 2027]
182.4 - 4 Analyses [Seite 2029]
182.5 - 5 Conclusions [Seite 2031]
182.6 - References [Seite 2032]
183 - Frictional Behaviour of Masonry Interfaces: Experimental Investigation on Two Dry-Jointed Tuff Blocks [Seite 2033]
183.1 - 1 Introduction [Seite 2033]
183.2 - 2 Testing Procedure [Seite 2035]
183.2.1 - 2.1 Test Set-Up [Seite 2036]
183.2.2 - 2.2 Testing Program [Seite 2037]
183.3 - 3 Experimental Results [Seite 2038]
183.3.1 - 3.1 Pure Shear [Seite 2038]
183.3.2 - 3.2 Torsion-Shear Interaction [Seite 2040]
183.3.3 - 3.3 Torsion-Shear-Bending Interaction [Seite 2042]
183.4 - 4 Comparison with Standard Numerical Model [Seite 2043]
183.5 - 5 Discussion [Seite 2045]
183.6 - 6 Conclusions [Seite 2046]
183.7 - References [Seite 2047]
184 - Analysis of Masonry Pointed Arches on Moving Supports: A Numeric Predictive Model and Experimental Evaluations [Seite 2049]
184.1 - Abstract [Seite 2049]
184.2 - 1 Introduction [Seite 2049]
184.3 - 2 Numerical Procedure [Seite 2051]
184.3.1 - 2.1 Searching for the Three Hinge Positions [Seite 2052]
184.3.2 - 2.2 Kinematic and Equilibrium Tests [Seite 2053]
184.3.3 - 2.3 Limit Displacement of the Moving Support [Seite 2055]
184.4 - 3 Experimental Tests vs. Numerical Predictions [Seite 2056]
184.5 - 4 Comparison with Circular Arches [Seite 2065]
184.6 - 5 Conclusions [Seite 2067]
184.7 - Acknowledgements [Seite 2068]
184.8 - References [Seite 2068]
185 - The Role of Shape Irregularities on the Lateral Loads Bearing Capacity of Circular Masonry Arches [Seite 2070]
185.1 - 1 Introduction [Seite 2070]
185.2 - 2 Geometrical Modelling of the Masonry Arch with Irregular Shape [Seite 2072]
185.2.1 - 2.1 Work Hypotheses [Seite 2072]
185.2.2 - 2.2 The Random Shape of the Polycentric Arch [Seite 2072]
185.3 - 3 Limit Equilibrium Approach [Seite 2075]
185.4 - 4 Analysis of the Results [Seite 2077]
185.5 - 5 Conclusion [Seite 2080]
185.6 - References [Seite 2081]
186 - Static Analysis of a Double-Cap Masonry Dome [Seite 2083]
186.1 - 1 Introduction [Seite 2083]
186.2 - 2 Brief Detail About the Dome of St. Januarius [Seite 2085]
186.3 - 3 Preliminary Analysis Based on Graphical Statics [Seite 2086]
186.4 - 4 Membrane Approach to the Equilibrium [Seite 2088]
186.4.1 - 4.1 Sketch of the Algorithm [Seite 2089]
186.5 - 5 Rigid Block Limit Analysis [Seite 2090]
186.6 - 6 Conclusions [Seite 2092]
186.7 - References [Seite 2093]
187 - Equilibrium of Masonry Sail Vaults: The Case Study of a Subterranean Vault by Antonio da Sangallo the Elder in the "Fortezza Vecchia" in Livorno [Seite 2095]
187.1 - Abstract [Seite 2095]
187.2 - 1 Introduction [Seite 2095]
187.3 - 2 Analytical Representation of the Vault Intrados Surface [Seite 2097]
187.4 - 3 Statically Admissible Stress Fields for the Masonry Sail Vault [Seite 2099]
187.4.1 - 3.1 Statically Admissible Stress Fields that Maximize the Geometrical Safety Factor [Seite 2100]
187.4.2 - 3.2 Statically Admissible Stress Fields that Maximize the Mechanical Safety Factor [Seite 2102]
187.4.3 - 3.3 Evaluating the Thrust on the Lateral Walls [Seite 2102]
187.5 - 4 Conclusions [Seite 2103]
187.6 - Acknowledgments [Seite 2103]
187.7 - References [Seite 2104]
188 - Experimental Behaviour of Historic Masonry Walls Under Compression and Shear Loading [Seite 2105]
188.1 - Abstract [Seite 2105]
188.2 - 1 Introduction [Seite 2105]
188.3 - 2 Results of Experimental Shear Tests on Brickwork Walls [Seite 2106]
188.4 - 3 Experimental Shear Tests on Strengthened Walls [Seite 2109]
188.4.1 - 3.1 Strengthened Wall with Diagonal GFRP Strips [Seite 2109]
188.4.2 - 3.2 Strengthened Wall with GFRP Strips Parallel to Shear Load [Seite 2110]
188.5 - 4 Discussion on the Strengthening with GFRP Strip [Seite 2112]
188.6 - 5 Conclusions [Seite 2112]
188.7 - Acknowledgement [Seite 2113]
188.8 - References [Seite 2113]
189 - Experimental Tests and Numerical Modelling of Traffic-Induced Vibrations [Seite 2115]
189.1 - Abstract [Seite 2115]
189.2 - 1 Introduction [Seite 2115]
189.3 - 2 Data Acquisition Phase [Seite 2117]
189.3.1 - 2.1 Data Acquisition Equipment [Seite 2117]
189.3.2 - 2.2 Historical Buildings Under Monitoring [Seite 2118]
189.4 - 3 Vibration Data Processing [Seite 2120]
189.4.1 - 3.1 Event Extraction [Seite 2120]
189.4.2 - 3.2 Event Filtering and Analysis [Seite 2121]
189.5 - 4 Results [Seite 2122]
189.6 - 5 Conclusions [Seite 2123]
189.7 - References [Seite 2124]
190 - Upper Bound Limit Analysis of Quasi-Periodic Masonry by Means of Discontinuity Layout Optimization (DLO) [Seite 2125]
190.1 - 1 Introduction [Seite 2125]
190.2 - 2 Discontinuity Layout Optimization [Seite 2126]
190.3 - 3 Model for Masonry [Seite 2128]
190.4 - 4 Results [Seite 2129]
190.4.1 - 4.1 Periodic Masonry [Seite 2129]
190.4.2 - 4.2 Quasi-periodic Masonry [Seite 2130]
190.4.3 - 4.3 Chaotic Masonry [Seite 2130]
190.5 - 5 Conclusions [Seite 2133]
190.6 - References [Seite 2133]
191 - An Experimental Study on the Effectiveness of CFRP Reinforcements Applied to Curved Masonry Pillars [Seite 2135]
191.1 - Abstract [Seite 2135]
191.2 - 1 Introduction [Seite 2135]
191.3 - 2 Experimental Program, Specimens and Materials [Seite 2136]
191.4 - 3 Test Setup [Seite 2139]
191.5 - 4 Experimental Results and Comparisons [Seite 2140]
191.6 - 5 Conclusions [Seite 2146]
191.7 - References [Seite 2147]
192 - Numerical Analysis of the Bond Behavior of FRP Applied to Masonry Curved Substrates with Anchor Spikes [Seite 2150]
192.1 - Abstract [Seite 2150]
192.2 - 1 Introduction [Seite 2150]
192.3 - 2 Spring-Model Approach [Seite 2151]
192.4 - 3 Tri-Dimensional Micro-modelling FE Approach [Seite 2154]
192.5 - 4 Accounted Cases for the Validation of Modeling Approaches [Seite 2155]
192.6 - 5 Numerical Analyses and Results: Spring-Model [Seite 2157]
192.7 - 6 Numerical Analyses and Results: FE-Model [Seite 2157]
192.8 - 7 Conclusions [Seite 2159]
192.9 - References [Seite 2160]
193 - Statics of Buttressed Masonry Arches in Light of Traditional Design Rules [Seite 2163]
193.1 - Abstract [Seite 2163]
193.2 - 1 Introduction [Seite 2163]
193.3 - 2 Design Rules for Masonry Arches [Seite 2164]
193.3.1 - 2.1 First Generation of Empirical Rules: From Leonardo's Geometrical Construction to the Limitations in Terms of T/R [Seite 2165]
193.3.2 - 2.2 Second Generation of Empirical Rules: Minimum Arch Thickness t Provided in Terms Span L [Seite 2166]
193.3.3 - 2.3 Third Generation of Empirical Rules: The Rediscovery of the Simplified Limitations in Terms of t/R [Seite 2167]
193.3.4 - 2.4 Comparison Among the Three Generations of Design Rules for Arch Thickness [Seite 2167]
193.4 - 3 Design Rules for Masonry Buttresses [Seite 2169]
193.4.1 - 3.1 The Ancient Rules of Alberti and the Geometrical Method of Derand [Seite 2170]
193.4.2 - 3.2 The Equilibrium Based Methods of Belidor and Mascheroni [Seite 2171]
193.4.3 - 3.3 Handbook Rules of 19th Century [Seite 2173]
193.4.4 - 3.4 Comparison Among the Design Rules for Buttress [Seite 2173]
193.5 - 4 Conclusions [Seite 2175]
193.6 - References [Seite 2176]
194 - Theoretical, Numerical and Physical Modelling in Geomechanics [Seite 2178]
195 - Developing and Testing Multiphase MPM Approaches for the Stability of Dams and River Embankments [Seite 2179]
195.1 - Abstract [Seite 2179]
195.2 - 1 Introduction [Seite 2179]
195.3 - 2 Multiphase Material Point Method [Seite 2181]
195.3.1 - 2.1 Two-Phase Double-Point Formulation [Seite 2182]
195.3.2 - 2.2 Two-Phase Single-Point Formulation with Suction Effect [Seite 2183]
195.4 - 3 Simulation of Rapid Drowdown [Seite 2185]
195.4.1 - 3.1 Setup of the Numerical Model [Seite 2187]
195.4.2 - 3.2 Results [Seite 2188]
195.5 - 4 Simulation of Infiltration Problem [Seite 2190]
195.5.1 - 4.1 Setup of the Numerical Model [Seite 2190]
195.5.2 - 4.2 Results [Seite 2191]
195.6 - 5 Conclusions [Seite 2193]
195.7 - References [Seite 2193]
196 - Author Index [Seite 2196]