Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process" methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications.
The book will be useful to two main audiences:
1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization
2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology.
Francesco Archetti is Professor Emeritus of Computer Science and full Professor of Computer Science at the Department of Informatics, Systems and Communication (DISCo), University of Milano-Bicocca, Italy. His research activities are focused on Data Analytics, Network Science, Probabilistic Modelling, Predictive Analytics, and Optimal Learning, with application to security, water management, logistics, and cyber-physical systems. He is one of the two authors of the Springer Brief Bayesian Optimization and Data Science (2019).
Antonio Candelieri is an Associate Professor for the Department of Economics, Management, and Statistics at the University of Milano-Bicocca, Italy. His research activities are focused on Machine Learning and Bayesian Optimization. He was ranked within the "Top 2% Scientists, Stanford University Ranking 2023" and received a "Paper Award 2022 Honorable Mention" from the Journal of Global Optimization (Springer). Andrea Ponti is a PhD candidate at the Department of Economics, Management, and Statistics, University of Milano-Bicocca, Italy. His research focuses on the optimization of black-box functions using advanced Bayesian methods. From an industrial perspective, he designs and develops versatile machine learning solutions, focusing on foundation models and Large Language Models (LLMs, aka what's behind ChatGPT).
Andrea Ponti is a PhD student in Data Science with a master's degree in computer science. His research focuses on the optimization of complex black-box functions using advanced Bayesian methods. Alongside his academic work, he has practical experience developing machine learning solutions in industry, especially in the areas of foundation models and large language models. His work aims to connect research and real-world applications in a meaningful way.
Preface.- Introduction.- MISO-AGP: dealing with multiple information sources via Augmented Gaussian Process.- MISO-AGP in action: selected applications.- Bayesian Optimization and Large Language Models.- References.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.