1 - Mechatronics 2017 - Preface [Seite 6]
2 - Contents [Seite 7]
3 - Mechatronics [Seite 15]
4 - A Compact Device for Urine Collection and Transport in Porous Media [Seite 16]
4.1 - Abstract [Seite 16]
4.2 - 1 Introduction [Seite 16]
4.3 - 2 Materials and Methods [Seite 17]
4.3.1 - 2.1 Equations [Seite 17]
4.3.2 - 2.2 Methods [Seite 18]
4.3.3 - 2.3 Experimenal Setup [Seite 20]
4.4 - 3 Results and Discussion [Seite 20]
4.4.1 - 3.1 Covered and Uncovered Capillary Flow [Seite 20]
4.4.2 - 3.2 Vertical Capillary Flow in Folded Filter Paper [Seite 21]
4.4.3 - 3.3 Horizontal Capillary Flow [Seite 22]
4.5 - 4 Conclusion [Seite 22]
4.6 - 5 Future Work [Seite 23]
4.7 - Acknowledgement [Seite 23]
4.8 - References [Seite 23]
5 - Innovation of Pressing with TRIZ Methodology [Seite 24]
5.1 - Abstract [Seite 24]
5.2 - 1 Introduction [Seite 24]
5.3 - 2 Map of the Problem - RCA Diagram [Seite 25]
5.4 - 3 Contradictions and Possible Solutions [Seite 26]
5.4.1 - 3.1 Inventive Tasks as Technical and Physical Contradictions - TC1 and PC1 [Seite 26]
5.4.2 - 3.2 Inventive Tasks as Another Contradictions to Be Solved [Seite 28]
5.5 - 4 Implementation of Found Inventions into Innovation [Seite 29]
5.6 - 5 Conclusion [Seite 31]
5.7 - Acknowledgements [Seite 31]
5.8 - References [Seite 31]
6 - Evaluation of Postural Stability During Quiet Standing Using MatLab Software and Promising Parameters [Seite 32]
6.1 - Abstract [Seite 32]
6.2 - 1 Introduction [Seite 32]
6.3 - 2 Methods [Seite 33]
6.3.1 - 2.1 Measurement Procedure and Measurement Equipment [Seite 33]
6.3.2 - 2.2 Methods of Data Pre-processing and Processing [Seite 34]
6.3.3 - 2.3 Time Domain Analysis Methods [Seite 35]
6.3.4 - 2.4 Frequency Domain Analysis Methods [Seite 35]
6.3.5 - 2.5 Analysis of Relationship Between Measured Variables [Seite 35]
6.3.6 - 2.6 Nonlinear Methods [Seite 37]
6.4 - 3 Application and Results [Seite 38]
6.5 - 4 Discussion and Conclusion [Seite 38]
6.6 - Acknowledgements [Seite 38]
6.7 - References [Seite 39]
7 - Comparison of Deformation and Stress States of the Total Trapeziometacarpal Replacement [Seite 40]
7.1 - Abstract [Seite 40]
7.2 - 1 Introduction [Seite 40]
7.3 - 2 Computational Model [Seite 41]
7.3.1 - 2.1 Model of Geometry [Seite 41]
7.3.2 - 2.2 Model of Material [Seite 41]
7.3.3 - 2.3 Boundary Conditions and Contacts [Seite 42]
7.4 - 3 Results [Seite 43]
7.5 - 4 Conclusion [Seite 45]
7.6 - References [Seite 45]
8 - Analysis of Single-Phase Voltage-Source Active Rectifier Under PWM [Seite 47]
8.1 - Abstract [Seite 47]
8.2 - 1 Introduction [Seite 47]
8.3 - 2 Single-Phase Voltage-Source Active Rectifier [Seite 48]
8.3.1 - 2.1 Simulation Model [Seite 48]
8.3.2 - 2.2 PWM Strategy [Seite 49]
8.4 - 3 Simulation Results [Seite 50]
8.5 - 4 Discussion [Seite 54]
8.6 - Acknowledgement [Seite 55]
8.7 - References [Seite 55]
9 - Minimization of Equivalent Series Resistance of Coupling Coils for Wireless Power Transfer Applications [Seite 56]
9.1 - Abstract [Seite 56]
9.2 - 1 Introduction [Seite 56]
9.3 - 2 Equivalent Series Resistance Calculation [Seite 57]
9.4 - 3 Optimal Cable Design [Seite 60]
9.5 - 4 Conclusions [Seite 61]
9.6 - Acknowledgement [Seite 62]
9.7 - References [Seite 62]
10 - Optimal Efficiency and Power Control of High Efficient Wireless Power Transfer System [Seite 63]
10.1 - Abstract [Seite 63]
10.2 - 1 Introduction [Seite 63]
10.3 - 2 Basic Description of Regulation Technique Description [Seite 64]
10.4 - 3 Regulation Principle [Seite 65]
10.5 - 4 Simulation Model and Implementation Example [Seite 67]
10.6 - 5 Measuring on Prototype [Seite 68]
10.7 - 6 Conclusions [Seite 69]
10.8 - Acknowledgement [Seite 70]
10.9 - References [Seite 70]
11 - Design of Consecutive Compensator for Servo System with Signal Uncertainty [Seite 71]
11.1 - Abstract [Seite 71]
11.2 - 1 Introduction [Seite 71]
11.3 - 2 Formation of a Polynomial Dynamic Model of System Based on Besekersky Approach [Seite 72]
11.4 - 3 Main Result. Algorithm of System Synthesis on the Basis of Besekersky Approach [Seite 75]
11.5 - 4 Conclusion [Seite 76]
11.6 - Acknowledgements [Seite 77]
11.7 - References [Seite 77]
12 - Multi-criteria Decision-Making Problems in Cutting Tool Wear Evaluation [Seite 78]
12.1 - Abstract [Seite 78]
12.2 - 1 Introduction [Seite 78]
12.3 - 2 Selected Multi-criteria Decision Aid Methods [Seite 79]
12.3.1 - 2.1 Multi-criteria Analysis [Seite 79]
12.3.2 - 2.2 Selected Multi-criteria Decision Aid Methods [Seite 80]
12.4 - 3 Selected Operating Problems [Seite 81]
12.4.1 - 3.1 Shoulder Milling Cutter Wear Analysis [Seite 82]
12.5 - 4 Tool Wear Estimation with AHP [Seite 82]
12.6 - 5 Summary [Seite 83]
12.7 - References [Seite 84]
13 - The Novel Device for Irreversible Electroporation: Thermographic Comparison with Radiofrequency Ablation [Seite 85]
13.1 - Abstract [Seite 85]
13.2 - 1 Introduction [Seite 85]
13.3 - 2 Electroporation [Seite 85]
13.3.1 - 2.1 Plasma Membrane [Seite 86]
13.3.2 - 2.2 Electrical Properties of Cells and Tissues [Seite 87]
13.3.3 - 2.3 Reversible Electroporation [Seite 88]
13.3.4 - 2.4 Irreversible Electroporation [Seite 88]
13.4 - 3 Radiofrequency Ablation [Seite 89]
13.5 - 4 Thermographic Comparison of IRE and RFA [Seite 90]
13.6 - 5 Results and Discussion [Seite 90]
13.7 - 6 Conclusion [Seite 92]
13.8 - Acknowledgements [Seite 92]
13.9 - References [Seite 92]
14 - High-Voltage Pulse Source for Cell Electroporation [Seite 93]
14.1 - Abstract [Seite 93]
14.2 - 1 Introduction [Seite 93]
14.3 - 2 Initial Analysis of Commercially Available Device [Seite 94]
14.3.1 - 2.1 Analysis of Internal Structure of NanoKnife Device [Seite 94]
14.3.2 - 2.2 Practical Verification of NanoKnife Output Parameters [Seite 95]
14.4 - 3 Design of BUT Electroporating Generator [Seite 95]
14.4.1 - 3.1 Definition of Required Output Parameters [Seite 95]
14.4.2 - 3.2 Internal Structure of BUT Generator [Seite 95]
14.4.3 - 3.3 Design of Pulse Transformer [Seite 96]
14.4.4 - 3.4 Construction of Converter Power Stage [Seite 97]
14.4.5 - 3.5 Operating Safety Issues [Seite 97]
14.4.6 - 3.6 Operating Tests [Seite 98]
14.5 - 4 Conclusion [Seite 99]
14.6 - Acknowledgement [Seite 99]
14.7 - References [Seite 99]
15 - Valve for Testing Rocket Engines [Seite 100]
15.1 - Abstract [Seite 100]
15.2 - 1 Introduction [Seite 100]
15.3 - 2 Structure of the Valve [Seite 101]
15.4 - 3 Selection of the Drive [Seite 103]
15.5 - 4 Simulation Study [Seite 104]
15.6 - 5 Summary and Conclusions [Seite 106]
15.7 - References [Seite 107]
16 - System Approach to the Mass Production Improvement [Seite 108]
16.1 - Abstract [Seite 108]
16.2 - 1 Introduction [Seite 108]
16.3 - 2 Features of Mass Production and Ways to Increase Its Efficiency [Seite 109]
16.3.1 - 2.1 Production Systems and the Theory of Constraints [Seite 109]
16.3.2 - 2.2 Lean Manufacturing: Advantages and Problems [Seite 110]
16.4 - 3 Results and Discussion: Simulation Models to Manage Mass Production and Human Resources [Seite 111]
16.4.1 - 3.1 Optimization of Technological Processes on the Assembly Line [Seite 111]
16.4.2 - 3.2 Ergonomics of the Workplace: The Impact on the Efficiency of Processes [Seite 112]
16.5 - 4 Conclusions [Seite 114]
16.6 - References [Seite 115]
17 - An Automatic PCI Assignment Framework for Femtocells in LTE Networks [Seite 116]
17.1 - Abstract [Seite 116]
17.2 - 1 Introduction [Seite 116]
17.3 - 2 Related Works [Seite 117]
17.4 - 3 Centralized PCI Assignment Mechanism [Seite 118]
17.5 - 4 Conclusions [Seite 122]
17.6 - Acknowledgement [Seite 122]
17.7 - References [Seite 122]
18 - Classical Interpretation of Ultra-Low Intensity Optical Heterodyning as a Pragmatic Approach to Phot ... [Seite 124]
18.1 - Abstract [Seite 124]
18.2 - 1 Introduction [Seite 124]
18.3 - 2 Experiment [Seite 127]
18.4 - 3 Interpretation of the Experimental Results [Seite 128]
18.5 - 4 Conclusions [Seite 130]
18.6 - References [Seite 131]
19 - Numerical Integrator System for Drift Compensated Fluxmeter [Seite 132]
19.1 - Abstract [Seite 132]
19.2 - 1 Introduction [Seite 132]
19.3 - 2 General Idea and Project of Program [Seite 133]
19.3.1 - 2.1 Input Signal Analysis [Seite 134]
19.3.2 - 2.2 Output Signal Analysis [Seite 134]
19.4 - 3 Software Implementation and Simulations [Seite 134]
19.5 - 4 Hardware Implementation and Experiments [Seite 136]
19.6 - 5 Conclusions [Seite 138]
19.7 - Acknowledgements [Seite 138]
19.8 - References [Seite 138]
20 - Investigation of Magnetic Properties of Amorphous Fe-Based Alloy Magnetized in Rayleigh Region [Seite 139]
20.1 - Abstract [Seite 139]
20.2 - 1 Introduction [Seite 139]
20.3 - 2 Object of Investigation [Seite 140]
20.4 - 3 Measurement System [Seite 141]
20.5 - 4 Experimental Results [Seite 141]
20.6 - 5 Conclusions [Seite 144]
20.7 - Acknowledgements [Seite 144]
20.8 - References [Seite 145]
21 - Cutting Insert Wear Analysis Using Industry 4.0 [Seite 146]
21.1 - Abstract [Seite 146]
21.2 - 1 Introduction [Seite 146]
21.3 - 2 Technology of Ball Screw Production [Seite 147]
21.3.1 - 2.1 Virtual Reality [Seite 148]
21.4 - 3 Experimental Setup [Seite 149]
21.4.1 - 3.1 Machine and Tool for Manufacturing [Seite 149]
21.4.2 - 3.2 Material of Ball Screw [Seite 149]
21.5 - 4 Wear Analysis [Seite 150]
21.6 - 5 Visualization of Wear in Virtual Reality [Seite 151]
21.7 - 6 Conclusion and Discussion [Seite 152]
21.8 - Acknowledgment [Seite 152]
21.9 - References [Seite 153]
22 - Analysis of Machinability of Pure-Cobalt Disc for Magnetron Deposition Using WEDM [Seite 154]
22.1 - Abstract [Seite 154]
22.2 - 1 Introduction [Seite 154]
22.3 - 2 Experimental Setup and Material [Seite 156]
22.4 - 3 Analysis of Machined Surface [Seite 156]
22.4.1 - 3.1 Experimental Methods [Seite 156]
22.4.2 - 3.2 Analysis of Morphology of Sample Surface [Seite 157]
22.4.3 - 3.3 EDX Analysis of Chemical Composition [Seite 157]
22.4.4 - 3.4 Topography of Machined Surface [Seite 158]
22.5 - 4 Conclusion and Discussion [Seite 160]
22.6 - Acknowledgment [Seite 160]
22.7 - References [Seite 160]
23 - Using Industry 4.0 Technologies for Teaching and Learning in Education Process [Seite 162]
23.1 - Abstract [Seite 162]
23.2 - 1 Introduction [Seite 162]
23.3 - 2 Concept of Industry 4.0 and IoT [Seite 163]
23.4 - 3 Modernization of the Asynchronous Motor Testbed [Seite 164]
23.5 - 4 Conclusion [Seite 168]
23.6 - Acknowledgements [Seite 168]
23.7 - References [Seite 168]
24 - Mth Root Mth Power SNR MPSK Estimator [Seite 170]
24.1 - Abstract [Seite 170]
24.2 - 1 Introduction [Seite 170]
24.3 - 2 Signal Model [Seite 171]
24.4 - 3 Mth Root Mth Power Algorithm [Seite 172]
24.5 - 4 Hardware Implementation and Results [Seite 175]
24.6 - 5 Performance Limitations [Seite 175]
24.7 - 6 Conclusion [Seite 177]
24.8 - References [Seite 177]
25 - Electrical Machines [Seite 179]
26 - Increasing the Efficiency of Induction Generator in Small Hydro Power Plant for Varying River Flow Rate [Seite 180]
26.1 - Abstract [Seite 180]
26.2 - 1 Introduction [Seite 180]
26.3 - 2 Varying River Flow Rate [Seite 181]
26.4 - 3 Efficiency of Induction Generator for Various Power [Seite 183]
26.4.1 - 3.1 Power Losses in Induction Machine [Seite 183]
26.4.2 - 3.2 Efficiency of Induction Generator for Changing Voltage and Power [Seite 183]
26.4.3 - 3.3 Experimental Verification of Analytical Efficiency [Seite 185]
26.5 - 4 Improvement of Efficiency by Voltage Change [Seite 185]
26.5.1 - 4.1 Power Saving in One Year Period [Seite 186]
26.6 - 5 Realization of Voltage Changing [Seite 186]
26.7 - 6 Conclusion [Seite 187]
26.8 - Acknowledgement [Seite 187]
26.9 - References [Seite 187]
27 - Volume Minimization of Power Pulse Transformer for a Two-Switch Forward Converter [Seite 188]
27.1 - Abstract [Seite 188]
27.2 - 1 Introduction [Seite 188]
27.3 - 2 Goal of the Transformer Optimization, Definition of Conditions [Seite 189]
27.4 - 3 Analytical Solution of the Optimization [Seite 191]
27.5 - 4 Results for a Forward Converter with Output Parameters of 60 V/1 KW [Seite 193]
27.6 - 5 Conclusions [Seite 195]
27.7 - Acknowledgement [Seite 195]
27.8 - References [Seite 195]
28 - Efficiency Mapping of a Small Permanent Magnet Synchronous Motor [Seite 196]
28.1 - Abstract [Seite 196]
28.2 - 1 Introduction [Seite 196]
28.3 - 2 Used Methods [Seite 198]
28.3.1 - 2.1 Problem Formulation [Seite 198]
28.3.2 - 2.2 Used Material [Seite 199]
28.4 - 3 Theoretical Calculations [Seite 200]
28.5 - 4 Results [Seite 201]
28.5.1 - 4.1 Results Discussion [Seite 203]
28.6 - 5 Conclusions [Seite 203]
28.7 - Acknowledgement [Seite 203]
28.8 - References [Seite 203]
29 - Dynamic Model of Wye Connected Induction Machine [Seite 205]
29.1 - 1 Introduction [Seite 205]
29.2 - 2 Dynamic Model of Induction Motor [Seite 206]
29.2.1 - 2.1 Standard Dynamic Model [Seite 206]
29.2.2 - 2.2 Dynamic Model with Line-to-Line Voltages [Seite 208]
29.2.3 - 2.3 Space Vector Transformation and Dynamic Model [Seite 209]
29.3 - 3 Conclusions [Seite 211]
29.4 - References [Seite 211]
30 - Induction Machine Models and Equivalent Circuits Based on Hybrid Parameters of Two-Port Network [Seite 213]
30.1 - Abstract [Seite 213]
30.2 - 1 Introduction [Seite 213]
30.3 - 2 Transformer Equivalent Circuit Based on Two-Port Network Parameters [Seite 214]
30.4 - 3 IM Model Based on Two-Port Network Theory [Seite 216]
30.5 - 4 Conclusion [Seite 220]
30.6 - Acknowledgements [Seite 220]
30.7 - References [Seite 220]
31 - Push-Pull Converter Transformer Maximum Efficiency Optimization [Seite 222]
31.1 - Abstract [Seite 222]
31.2 - 1 Introduction [Seite 222]
31.3 - 2 Definition of Parameters [Seite 224]
31.3.1 - 2.1 Input Parameters [Seite 224]
31.3.2 - 2.2 Output Parameters [Seite 224]
31.4 - 3 Simplifications [Seite 224]
31.5 - 4 Optimization Procedure [Seite 225]
31.5.1 - 4.1 Winding Losses [Seite 225]
31.5.2 - 4.2 Core Losses [Seite 226]
31.5.3 - 4.3 Finding the Minimum Losses Point [Seite 226]
31.6 - 5 Transformer Design Procedure [Seite 227]
31.7 - 6 Design Example [Seite 228]
31.8 - 7 Conclusion [Seite 228]
31.9 - Acknowledgement [Seite 229]
31.10 - References [Seite 229]
32 - Synchronous Machine Model Including Damper [Seite 230]
32.1 - Abstract [Seite 230]
32.2 - 1 Introduction [Seite 230]
32.3 - 2 The Types of Damper [Seite 230]
32.4 - 3 Short Circuit Types [Seite 231]
32.5 - 4 Mathematical Model [Seite 232]
32.6 - 5 Examples of the Time Dependencies During the LN Type of Short-Circuit, Longitudinal Damper [Seite 234]
32.7 - 6 Verification Measurement [Seite 235]
32.8 - 7 Results Comparison for Various Damper Types [Seite 236]
32.9 - 8 Conclusion [Seite 237]
32.10 - Acknowledgements [Seite 237]
32.11 - References [Seite 237]
33 - Reduction of Pulsating Torque of the Synchronous Motor Using Magnetic Wedges [Seite 238]
33.1 - Abstract [Seite 238]
33.2 - 1 Introduction [Seite 238]
33.3 - 2 Analyzed Machine Description [Seite 239]
33.4 - 3 Finite Element Analyses [Seite 240]
33.4.1 - 3.1 Model Case A1 [Seite 241]
33.4.2 - 3.2 Model Case B1 [Seite 242]
33.4.3 - 3.3 Model Case A2 [Seite 243]
33.4.4 - 3.4 Model Case B2 [Seite 244]
33.5 - 4 Conclusion [Seite 245]
33.6 - Acknowledgements [Seite 245]
33.7 - References [Seite 245]
34 - Calculation of a Lap Winding Coil Geometry [Seite 247]
34.1 - Abstract [Seite 247]
34.2 - 1 Introduction [Seite 247]
34.3 - 2 General Description of Winding Coil Geometry [Seite 248]
34.4 - 3 Mathematical Description of the Coil Shape [Seite 249]
34.4.1 - 3.1 Segment 1 - The Linear Outcome from the Slot [Seite 249]
34.4.2 - 3.2 Segment 2 - The Coil Curvature [Seite 250]
34.4.3 - 3.3 Segment 3 - the Coil Involute [Seite 251]
34.4.4 - 3.4 Segment 4 - the Coil Curvature [Seite 252]
34.4.5 - 3.5 Segment 5 - the Coil Loop [Seite 253]
34.4.6 - 3.6 Segment 6 - the Coil Curvature [Seite 254]
34.4.7 - 3.7 Segment 7 - the Coil Involute [Seite 254]
34.4.8 - 3.8 Segment 8 - the Coil Curvature [Seite 255]
34.4.9 - 3.9 Segments 9 and 10 - Linear Return to the Slot and Slot Part [Seite 255]
34.4.10 - 3.10 Comparison with Manufactured Coils [Seite 256]
34.5 - 4 Conclusion [Seite 258]
34.6 - Acknowledgement [Seite 258]
34.7 - References [Seite 258]
35 - Equivalent Magnetic Circuit Method Usage in the Synchronous Reluctance Machine Rotor Design [Seite 259]
35.1 - Abstract [Seite 259]
35.2 - 1 Introduction [Seite 259]
35.3 - 2 Synchronous Reluctance Machine Structure [Seite 260]
35.3.1 - 2.1 Synchronous Reluctance Machines Rotors [Seite 260]
35.4 - 3 Inner Flux Barriers Rotor Calculation [Seite 261]
35.4.1 - 3.1 Analytical Calculations [Seite 262]
35.4.2 - 3.2 Simple Equivalent Magnetic Circuit Calculation [Seite 262]
35.4.3 - 3.3 Rotor Ribs Addition [Seite 265]
35.5 - 4 Conclusion [Seite 266]
35.6 - Acknowledgement [Seite 266]
35.7 - References [Seite 266]
36 - Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid D ... [Seite 268]
36.1 - Abstract [Seite 268]
36.2 - 1 Introduction [Seite 268]
36.2.1 - 1.1 Turbo Generator Cooling System [Seite 268]
36.2.2 - 1.2 Branch Effect [Seite 269]
36.3 - 2 Analysis [Seite 270]
36.4 - 3 Results [Seite 271]
36.5 - 4 Conclusion [Seite 274]
36.6 - Acknowledgment [Seite 275]
36.7 - References [Seite 275]
37 - High-Speed Electrical Machines: Review of Concepts and Currently Used Solutions with Synchronous Mac ... [Seite 276]
37.1 - Abstract [Seite 276]
37.2 - 1 Introduction [Seite 276]
37.3 - 2 High-Speed Machines with PM [Seite 276]
37.3.1 - 2.1 High-Speed Machines with PM - Traction Application [Seite 276]
37.3.2 - 2.2 High-Speed Machines with PM - Other Application [Seite 280]
37.3.3 - 2.3 Other Types of High-Speed Traction Machines [Seite 281]
37.4 - 3 Conclusion [Seite 282]
37.5 - Acknowledgement [Seite 283]
37.6 - References [Seite 283]
38 - Control and Design of a High Power Density PMSM [Seite 284]
38.1 - Abstract [Seite 284]
38.2 - 1 Introduction [Seite 284]
38.3 - 2 Modeling of PMSM [Seite 285]
38.4 - 3 Design of PMSM [Seite 287]
38.5 - 4 Simulation Results [Seite 288]
38.6 - 5 Conclusion [Seite 290]
38.7 - References [Seite 291]
39 - Magnetic Measurements of Solid Material [Seite 292]
39.1 - Abstract [Seite 292]
39.2 - 1 Introduction [Seite 292]
39.3 - 2 Experimental [Seite 293]
39.4 - 3 Results [Seite 295]
39.5 - 4 Conclusion [Seite 298]
39.6 - Acknowledgement [Seite 299]
39.7 - References [Seite 299]
40 - Identification of Induction Machine Electromagnetic Parameters for a Wide Range of Frequency and Flux Density [Seite 300]
40.1 - 1 Introduction [Seite 300]
40.2 - 2 Measuring Method Description [Seite 301]
40.2.1 - 2.1 Induction Machine Equivalent Circuit [Seite 301]
40.2.2 - 2.2 Derivation of the Equations [Seite 302]
40.3 - 3 Measurement Results [Seite 303]
40.3.1 - 3.1 Core Losses and Core Loss Resistance Identification [Seite 303]
40.3.2 - 3.2 Magnetizing Inductance Identification [Seite 305]
40.4 - 4 Conclusions [Seite 305]
40.5 - References [Seite 306]
41 - Modification of Frame for Synchronous Machine with Permanent Magnet [Seite 307]
41.1 - Abstract [Seite 307]
41.2 - 1 Introduction [Seite 307]
41.3 - 2 Vibration Measurement and Evaluation [Seite 307]
41.4 - 3 Modal Analysis [Seite 310]
41.5 - 4 Frame Modification [Seite 311]
41.6 - 5 Conclusion [Seite 312]
41.7 - Acknowledgement [Seite 312]
41.8 - References [Seite 312]
42 - Mechatronic System with a Turbo-Generator of Two Different Frequencies [Seite 313]
42.1 - Abstract [Seite 313]
42.2 - 1 Introduction [Seite 313]
42.3 - 2 Block Diagram of Turbogenerator [Seite 314]
42.4 - 3 Time Diagram of Control Signals of Sinusoidal PWM [Seite 316]
42.5 - 4 Calculation of Power of MFC and Harmonic Components [Seite 318]
42.6 - 5 Conclusion [Seite 320]
42.7 - References [Seite 320]
43 - Test Rig for Determination of Performance Characteristics of High Speed Linear Actuators [Seite 322]
43.1 - Abstract [Seite 322]
43.2 - 1 Introduction [Seite 322]
43.2.1 - 1.1 Characteristic Performance Parameters of the TTM Systems [Seite 324]
43.3 - 2 Structure of the Test Rig [Seite 324]
43.3.1 - 2.1 Performance Requirements for the Rig [Seite 324]
43.3.2 - 2.2 Conception of the Rig [Seite 325]
43.3.3 - 2.3 Realization of the Rig [Seite 325]
43.4 - 3 Sample Tests of an Actuator [Seite 327]
43.5 - 4 Summary [Seite 328]
43.6 - Acknowledgements [Seite 329]
43.7 - References [Seite 329]
44 - Modelling and Simulation [Seite 330]
45 - Dynamic Analysis of Multispindle Lathe [Seite 331]
45.1 - Abstract [Seite 331]
45.2 - 1 Introduction [Seite 331]
45.3 - 2 Model of Mechanical System with Flexible Parts [Seite 332]
45.4 - 3 Model of Motor with Field-Oriented Vector Control [Seite 334]
45.5 - 4 Simulation Results [Seite 335]
45.5.1 - 4.1 Dynamic Analysis of Flexible Mechanism [Seite 335]
45.5.2 - 4.2 Control Parameters Setting and Response [Seite 336]
45.6 - 5 Conclusion [Seite 338]
45.7 - Acknowledgement [Seite 338]
45.8 - References [Seite 338]
46 - Numerical and Experimental Solution of Friction Stir Welding of Plates [Seite 340]
46.1 - Abstract [Seite 340]
46.2 - 1 Introduction [Seite 340]
46.3 - 2 Numerical Solution by Program SYSWELD [Seite 341]
46.3.1 - 2.1 Thermo-Fluid Analysis [Seite 341]
46.3.2 - 2.2 Thermo - Mechanical Analysis [Seite 343]
46.4 - 3 Measurement of Temperature During FSW [Seite 344]
46.5 - 4 Discussion [Seite 345]
46.6 - 5 Conclusion [Seite 346]
46.7 - Acknowledgments [Seite 346]
46.8 - References [Seite 347]
47 - Universal HIL Test Platform for Mechatronic Systems [Seite 348]
47.1 - Abstract [Seite 348]
47.2 - 1 Introduction [Seite 348]
47.3 - 2 HIL Simulation Workplace Design [Seite 349]
47.4 - 3 Case Study - HIL Simulation of a DC Drive Control [Seite 351]
47.5 - 4 Conclusions [Seite 354]
47.6 - Acknowledgment [Seite 355]
47.7 - Appendix [Seite 355]
47.8 - References [Seite 355]
48 - A Dynamic Feedback Neural Model for Identification of the Robot Manipulator [Seite 357]
48.1 - Abstract [Seite 357]
48.2 - 1 Introduction [Seite 357]
48.3 - 2 Kinematics Modeling of the Robot Manipulator [Seite 358]
48.3.1 - 2.1 Analysis of the Forward Kinematics [Seite 358]
48.3.2 - 2.2 Analysis of the Inverse Kinematics [Seite 360]
48.3.3 - 2.3 Graphical User Interface of the Robot Manipulator [Seite 361]
48.4 - 3 Neural Network Model Based NARX Network Structure [Seite 361]
48.5 - 4 Experimental Results [Seite 362]
48.6 - 5 Conclusion [Seite 364]
48.7 - References [Seite 364]
49 - Innovative Model of Radial Fluid Bearing for Simulations of Turbocharger Rotordynamics [Seite 366]
49.1 - Abstract [Seite 366]
49.2 - 1 Introduction [Seite 366]
49.3 - 2 Review of the State of the Art [Seite 366]
49.4 - 3 Objectives for Computational Modelling [Seite 367]
49.5 - 4 Computational Approach [Seite 367]
49.5.1 - 4.1 Innovative Approach Introduction [Seite 367]
49.5.2 - 4.2 Numerical Solution of Reynolds Equations [Seite 370]
49.5.3 - 4.3 Averaging of Results [Seite 372]
49.6 - 5 Model Verification on Full Floating Bearing of Turbocharger Rotor [Seite 372]
49.7 - 6 Conclusions [Seite 373]
49.8 - Acknowledgement [Seite 373]
49.9 - References [Seite 373]
50 - The Model of Non-stationary Heat Conduction in a Metal Mould [Seite 374]
50.1 - Abstract [Seite 374]
50.2 - 1 Introduction [Seite 374]
50.3 - 2 The Mathematical Model of Heat Conduction [Seite 375]
50.3.1 - 2.1 Model A - Without Own Heat Radiation of the Mould [Seite 376]
50.3.2 - 2.2 Model B - With Own Heat Radiation of the Mould [Seite 376]
50.4 - 3 The Influence of Boundary Conditions on the Temperature Field [Seite 377]
50.4.1 - 3.1 The Comparison of the Temperature Fields for Different Boundary Conditions [Seite 377]
50.4.2 - 3.2 The Calculated Temperature Field and Experimental Measurement [Seite 379]
50.5 - 4 Conclusion [Seite 380]
50.6 - Acknowledgement [Seite 380]
50.7 - References [Seite 381]
51 - The Possibility of Applying Neural Networks to Influence Vehicle Energy Consumption by Eco Driving [Seite 382]
51.1 - Abstract [Seite 382]
51.2 - 1 Introduction [Seite 382]
51.2.1 - 1.1 Problems Defined in Eco-Driving [Seite 382]
51.3 - 2 Defining Driving Test of Heavy Duty Vehicle [Seite 383]
51.3.1 - 2.1 Path Selection for Driving Test [Seite 384]
51.4 - 3 Data Collection from Vehicle [Seite 384]
51.5 - 4 The Application of Neural Networks in Vehicle Model Design [Seite 386]
51.6 - 5 Conclusion [Seite 388]
51.7 - Acknowledgement [Seite 389]
51.8 - References [Seite 389]
52 - Parametric Model of Human Body for Orthotic Robot Simulation Study [Seite 390]
52.1 - Abstract [Seite 390]
52.2 - 1 Introduction - Orthotic Robots and the 'Veni-Prometheus' System [Seite 390]
52.3 - 2 Purpose of the Model [Seite 391]
52.4 - 3 Model Description [Seite 392]
52.5 - 4 Discussion [Seite 394]
52.6 - 5 Conclusions [Seite 396]
52.7 - References [Seite 396]
53 - Evaluation of Gait and Standing Posture by Software Based on SimMechanics [Seite 397]
53.1 - Abstract [Seite 397]
53.2 - 1 Introduction [Seite 397]
53.3 - 2 Methods [Seite 398]
53.3.1 - 2.1 Measurement Procedure and Model of the Body [Seite 398]
53.3.2 - 2.2 Data Analysis [Seite 399]
53.4 - 3 Application and Results [Seite 401]
53.5 - 4 Discussion [Seite 402]
53.6 - 5 Conclusions [Seite 403]
53.7 - Acknowledgements [Seite 403]
53.8 - References [Seite 404]
54 - FEM - Based Simulations of Selected Setups of Magnetic Field Tomography [Seite 405]
54.1 - Abstract [Seite 405]
54.2 - 1 Introduction [Seite 405]
54.3 - 2 Tested Setups for Magnetic Field Tomography [Seite 406]
54.3.1 - 2.1 Four Permanent Magnets Setup [Seite 406]
54.3.2 - 2.2 Six Permanent Magnets Setup [Seite 406]
54.3.3 - 2.3 Eight Permanent Magnets Setup [Seite 407]
54.3.4 - 2.4 Two Permanent Magnets Setup with Additional Objects' Linear Movement [Seite 407]
54.4 - 3 FEM - Modelling and Exemplary Results [Seite 408]
54.5 - 4 Result Analysis [Seite 409]
54.6 - 5 Conclusions [Seite 410]
54.7 - Acknowledgements [Seite 411]
54.8 - References [Seite 411]
55 - Modelling and Simulation of Vehicle Boot Door [Seite 412]
55.1 - Abstract [Seite 412]
55.2 - 1 Introduction [Seite 412]
55.3 - 2 System Analysis and Description [Seite 412]
55.4 - 3 Dynamic Model of a Boot Door Mechanism [Seite 414]
55.5 - 4 Simulation Results and Verification Using Measured Data [Seite 416]
55.5.1 - 4.1 Simulations with Real Data [Seite 417]
55.6 - 5 Conclusion [Seite 418]
55.7 - References [Seite 419]
56 - Advanced Multi-body Modelling in Mechatronics Education [Seite 420]
56.1 - Abstract [Seite 420]
56.2 - 1 Introduction [Seite 420]
56.3 - 2 Model [Seite 421]
56.3.1 - 2.1 Kinematics [Seite 421]
56.3.2 - 2.2 Dynamics [Seite 423]
56.3.3 - 2.3 State-Space Model Based on MBS Model with Flexible Bodies [Seite 425]
56.4 - 3 Conclusions [Seite 426]
56.5 - Acknowledgement [Seite 426]
56.6 - References [Seite 426]
57 - Control [Seite 427]
58 - Unusual Application of the X3STEP Controller [Seite 428]
58.1 - Abstract [Seite 428]
58.2 - 1 Introduction [Seite 428]
58.3 - 2 Problem Statement [Seite 429]
58.4 - 3 X3STEP Controller [Seite 430]
58.5 - 4 Hardware Interface [Seite 432]
58.6 - 5 Software Interface [Seite 432]
58.7 - 6 Simulations Research [Seite 434]
58.8 - 7 Summary [Seite 435]
58.9 - References [Seite 436]
59 - Disturbance Compensation and Control Algorithm with Application for Non-linear Twin Rotor MIMO System [Seite 437]
59.1 - Abstract [Seite 437]
59.2 - 1 Introduction [Seite 437]
59.3 - 2 Problem Statement [Seite 438]
59.4 - 3 Compensation of Disturbances [Seite 439]
59.5 - 4 Example [Seite 441]
59.6 - 5 Conclusions [Seite 443]
59.7 - Acknowledgement [Seite 443]
59.8 - References [Seite 443]
60 - Model Reference Control for a Class of MIMO System with Dead-Time [Seite 445]
60.1 - Abstract [Seite 445]
60.2 - 1 Introduction [Seite 445]
60.3 - 2 Problem Formulation [Seite 445]
60.4 - 3 Controller Design [Seite 447]
60.5 - 4 Concluding Remarks [Seite 452]
60.6 - References [Seite 452]
61 - Robust Control of Uncertain MIMO Plants in Conditions of Output Quantization and Time-Delay [Seite 453]
61.1 - Abstract [Seite 453]
61.2 - 1 Introduction [Seite 453]
61.3 - 2 Problem Statement [Seite 454]
61.4 - 3 Control Law [Seite 455]
61.5 - 4 Example [Seite 458]
61.6 - 5 Conclusion [Seite 459]
61.7 - Acknowledgement [Seite 459]
61.8 - References [Seite 460]
62 - Speed Estimator for Low Speed PMSM Aerospace Application [Seite 461]
62.1 - Abstract [Seite 461]
62.2 - 1 Introduction [Seite 461]
62.3 - 2 Speed Control Loop Design and Simulation of Vector Controlled PMSM [Seite 462]
62.4 - 3 Conclusion [Seite 465]
62.5 - Acknowledgements [Seite 465]
62.6 - References [Seite 466]
63 - The New Stepper Driver for Low-Cost Arduino Based 3D Printer with Dynamic Stepper Control [Seite 467]
63.1 - Abstract [Seite 467]
63.2 - 1 Introduction [Seite 467]
63.3 - 2 Torque Design of X and Y Axis Gears [Seite 468]
63.4 - 3 General Approach to Stepper Drivers Used in Low-Cost 3D Printers [Seite 469]
63.5 - 4 The New Stepper Driver Design [Seite 470]
63.6 - 5 Dynamic Stepper Control [Seite 472]
63.7 - 6 Comparison of the Results [Seite 473]
63.8 - 7 Conclusion [Seite 474]
63.9 - Acknowledgements [Seite 474]
63.10 - References [Seite 474]
64 - Model Based Fault-Tolerant Control for SMA Actuator in Soft Robotics [Seite 476]
64.1 - Abstract [Seite 476]
64.2 - 1 Introduction [Seite 476]
64.3 - 2 Modelling of SMA-Actuator [Seite 477]
64.3.1 - 2.1 Model of Single SMA-Actuator [Seite 477]
64.3.2 - 2.2 Experiment Setup and Parameters of Modell [Seite 478]
64.4 - 3 Parallel Control for Reality and Model of SMA Actuator [Seite 479]
64.5 - 4 Fault-Tolerant Control for Single SMA Actuator [Seite 481]
64.6 - 5 Conclusion and Outlook [Seite 483]
64.7 - References [Seite 483]
65 - Design and Verification of FPGA-Based Real-Time HIL Simulator of Induction Motor Drive [Seite 484]
65.1 - 1 Introduction [Seite 484]
65.2 - 2 HIL Platform Hardware Description [Seite 485]
65.3 - 3 HIL Simulator Setup [Seite 486]
65.3.1 - 3.1 HIL Model [Seite 488]
65.4 - 4 Experimental Results [Seite 489]
65.5 - 5 Conclusion [Seite 491]
65.6 - References [Seite 491]
66 - Robust Control of a Robot Arm Using an Optimized PID Controller [Seite 493]
66.1 - Abstract [Seite 493]
66.2 - 1 Introduction [Seite 493]
66.3 - 2 Dynamic Model of Scorbot ER-V Plus [Seite 494]
66.4 - 3 Controller Design of Joint Motors [Seite 495]
66.5 - 4 Simulation Results [Seite 498]
66.6 - 5 Conclusion [Seite 500]
66.7 - References [Seite 500]
67 - PSO Optimized ADRC Motor Speed Controller for Two Mass System with Backlash [Seite 502]
67.1 - Abstract [Seite 502]
67.2 - 1 Introduction [Seite 502]
67.3 - 2 Plant Model [Seite 503]
67.4 - 3 Control System Structure [Seite 504]
67.4.1 - 3.1 2DOF - PI Controller [Seite 504]
67.4.2 - 3.2 ADRC Controller [Seite 505]
67.5 - 4 Optimization Algorithm [Seite 506]
67.6 - 5 Simulation Results [Seite 506]
67.7 - 6 Conclusions [Seite 509]
67.8 - References [Seite 509]
68 - Sensors and Measurement [Seite 510]
69 - Separation of Gravitational Acceleration from Acceleration of Human Motion Using Quaternion Based Un ... [Seite 511]
69.1 - Abstract [Seite 511]
69.2 - 1 Introduction [Seite 511]
69.3 - 2 Method [Seite 512]
69.3.1 - 2.1 Instrumentation [Seite 512]
69.3.2 - 2.2 Data Processing [Seite 513]
69.3.3 - 2.3 Filter Tuning [Seite 516]
69.4 - 3 Results [Seite 516]
69.5 - 4 Conclusion [Seite 517]
69.6 - Acknowledgements [Seite 518]
69.7 - References [Seite 518]
70 - Methods of Motion Data Analysis of Animal's Body on Rotating Platform [Seite 519]
70.1 - Abstract [Seite 519]
70.2 - 1 Introduction [Seite 519]
70.3 - 2 Evaluation Methods [Seite 520]
70.3.1 - 2.1 Methods of Evaluation of Time Domain Data [Seite 522]
70.3.2 - 2.2 Methods of Evaluation of Relationship Between Measured Variables [Seite 524]
70.4 - 3 Experiments and Results [Seite 525]
70.5 - 4 Discussion and Conclusion [Seite 526]
70.6 - Acknowledgements [Seite 526]
70.7 - References [Seite 526]
71 - Fabrication and Optical-Electrical Characterization of Al/p-Si/CdO/Au Photodiode [Seite 528]
71.1 - Abstract [Seite 528]
71.2 - 1 Introduction [Seite 528]
71.3 - 2 Experimental Details [Seite 529]
71.4 - 3 Results and Discussions [Seite 529]
71.5 - 4 Conclusion [Seite 535]
71.6 - References [Seite 535]
72 - Threshold Selection Based on Extreme Value Theory [Seite 537]
72.1 - 1 Introduction [Seite 537]
72.2 - 2 Extreme Value Estimation [Seite 539]
72.3 - 3 Extreme Value Theory [Seite 541]
72.4 - 4 Real Dataset Experiments [Seite 543]
72.5 - 5 Conclusions [Seite 544]
72.6 - References [Seite 544]
73 - Development of a Time of Flight Laser Scanner 3D [Seite 546]
73.1 - Abstract [Seite 546]
73.2 - 1 Introduction [Seite 546]
73.3 - 2 Design of the Laser Scanner [Seite 547]
73.3.1 - 2.1 Objectives [Seite 547]
73.3.2 - 2.2 Fields of Application [Seite 547]
73.3.3 - 2.3 The Proposed Solution [10] [Seite 548]
73.4 - 3 Control [Seite 549]
73.4.1 - 3.1 Data Communication via the CAN Interface [Seite 550]
73.4.2 - 3.2 Data Interpretation [11-13] [Seite 550]
73.5 - 4 Results and Conclusion [Seite 551]
73.6 - References [Seite 552]
74 - Polish Road Signs Detection and Classification System Based on Sign Sketches and ConvNet [Seite 554]
74.1 - Abstract [Seite 554]
74.2 - 1 Introduction [Seite 554]
74.3 - 2 Related Work [Seite 555]
74.4 - 3 Generation of Synthetic Sign Views [Seite 556]
74.5 - 4 Deep Convolutional Neural Network [Seite 558]
74.6 - 5 Experimental Results [Seite 559]
74.7 - 6 Conclusions [Seite 560]
74.8 - Acknowledgement [Seite 560]
74.9 - References [Seite 561]
75 - The Influence of the Learning Set on the Evaluation of Microcalcifications Using Artificial Neural N ... [Seite 562]
75.1 - Abstract [Seite 562]
75.2 - 1 Introduction [Seite 562]
75.3 - 2 Research Methodology and Results [Seite 564]
75.4 - 3 Conclusion [Seite 567]
75.5 - References [Seite 568]
76 - Experimental Measurement of Magnetic Field Generated by Neodymium Magnet [Seite 570]
76.1 - Abstract [Seite 570]
76.2 - 1 Introduction [Seite 570]
76.3 - 2 Measuring Station [Seite 571]
76.4 - 3 Measurements Results [Seite 574]
76.5 - 4 Conclusions [Seite 577]
76.6 - References [Seite 577]
77 - Measurement of Power Transistors Dynamic Parameters [Seite 579]
77.1 - Abstract [Seite 579]
77.2 - 1 Introduction [Seite 579]
77.3 - 2 Measuring Laboratory Workplace [Seite 580]
77.4 - 3 Conclusions [Seite 585]
77.5 - Acknowledgements [Seite 585]
77.6 - References [Seite 585]
78 - Measurement of High-Frequency Currents in Power Electronics [Seite 586]
78.1 - 1 Introduction [Seite 586]
78.2 - 2 Possibilities of Collector Current Measurement [Seite 587]
78.3 - 3 Current Transformer Analysis [Seite 588]
78.3.1 - 3.1 Current Transformer Numeric Calculation [Seite 588]
78.3.2 - 3.2 Experimental Verification of Model Results [Seite 589]
78.3.3 - 3.3 Measured Values Explanation [Seite 590]
78.4 - 4 Practical Realization of the Current Transformer [Seite 591]
78.5 - 5 Conclusions [Seite 592]
78.6 - References [Seite 593]
79 - Counting Pedestrians in Inner Spaces Using Optical Flow Algorithm [Seite 594]
79.1 - Abstract [Seite 594]
79.2 - 1 Introduction [Seite 594]
79.3 - 2 Reviewed Approaches [Seite 595]
79.4 - 3 Used Approach [Seite 595]
79.5 - 4 Achievements [Seite 596]
79.6 - 5 Conclusion [Seite 599]
79.7 - References [Seite 599]
80 - Comparison of Vibration and Noise Measurement of Induction Machine Under Static Eccentricity [Seite 600]
80.1 - Abstract [Seite 600]
80.2 - 1 Introduction [Seite 600]
80.3 - 2 Measurement Description [Seite 601]
80.4 - 3 Data Evaluation [Seite 603]
80.5 - 4 Conclusions [Seite 606]
80.6 - Acknowledgements [Seite 606]
80.7 - References [Seite 606]
81 - A Distributed Measurement System for Helium Spill Monitoring [Seite 607]
81.1 - Abstract [Seite 607]
81.2 - 1 Introduction [Seite 607]
81.3 - 2 Measurement System for Helium Spill Monitoring [Seite 608]
81.4 - 3 Ultrasonic Helium Detector [Seite 610]
81.5 - 4 Acoustic Helium Detection - Principle of Operation [Seite 611]
81.6 - 5 Numerical Simulations and Comparison with Initial Test Results [Seite 612]
81.7 - 6 Final Remarks [Seite 613]
81.8 - References [Seite 613]
82 - Influence of Measurement Parameters Settings on the Results of the CT Measurement [Seite 615]
82.1 - Abstract [Seite 615]
82.2 - 1 Introduction [Seite 615]
82.3 - 2 Study Procedure [Seite 616]
82.4 - 3 Results [Seite 618]
82.5 - 4 Conclusions [Seite 619]
82.6 - Acknowledgements [Seite 620]
82.7 - References [Seite 620]
83 - Measurement System for Magnetic Field Sensors Testing with Earth's Magnetic Field Compensation [Seite 621]
83.1 - Abstract [Seite 621]
83.2 - 1 Introduction [Seite 621]
83.3 - 2 System Setup [Seite 622]
83.3.1 - 2.1 The Main Field Generating Coils [Seite 622]
83.3.2 - 2.2 Connection Schematic [Seite 622]
83.3.3 - 2.3 LabView Software [Seite 623]
83.4 - 3 Measurement Results [Seite 624]
83.5 - 4 Conclusion [Seite 626]
83.6 - References [Seite 626]
84 - DeepEMGNet: An Application for Efficient Discrimination of ALS and Normal EMG Signals [Seite 627]
84.1 - Abstract [Seite 627]
84.2 - 1 Introduction [Seite 627]
84.3 - 2 Proposed Method [Seite 629]
84.3.1 - 2.1 Short Time Fourier Transform (STFT) [Seite 629]
84.3.2 - 2.2 Convolutional Neural Networks (CNN) [Seite 629]
84.4 - 3 Dataset and Experiments [Seite 630]
84.4.1 - 3.1 Dataset [Seite 630]
84.4.2 - 3.2 Experimental Setup and Results [Seite 630]
84.5 - 4 Conclusions [Seite 632]
84.6 - References [Seite 632]
85 - Comparison of Interpolation Methods for Atmospheric Pressure Determination with Help of TDOA System [Seite 634]
85.1 - Abstract [Seite 634]
85.2 - 1 Introduction [Seite 634]
85.3 - 2 UFE Data Format (ASTERIX) [Seite 635]
85.4 - 3 Extraction of Data [Seite 635]
85.5 - 4 Data Interpolation [Seite 636]
85.5.1 - 4.1 Interpolation Area Selection [Seite 637]
85.5.2 - 4.2 Data Interpolation - 16.12.2010 [Seite 637]
85.6 - 5 Conclusions [Seite 641]
85.7 - Reference [Seite 641]
86 - Robotics [Seite 642]
87 - Determination of Optimal Local Path for Mobile Robot [Seite 643]
87.1 - Abstract [Seite 643]
87.2 - 1 Introduction [Seite 643]
87.3 - 2 Path Optimization [Seite 644]
87.3.1 - 2.1 Path, Robot and World Representation [Seite 644]
87.3.2 - 2.2 Fitness Function [Seite 644]
87.3.3 - 2.3 Optimization [Seite 645]
87.3.4 - 2.4 Refinement [Seite 646]
87.4 - 3 Results [Seite 647]
87.5 - 4 Conclusions [Seite 649]
87.6 - Acknowledgement [Seite 649]
87.7 - References [Seite 649]
88 - Development of Dual Wiimote-Based 3D Localization Schemes for Mobile Robot and Quadcopter Integration [Seite 650]
88.1 - Abstract [Seite 650]
88.2 - 1 Introduction [Seite 650]
88.3 - 2 Wiimote 3D Localization System [Seite 652]
88.4 - 3 Realization of Wiimote 3D Localization [Seite 652]
88.5 - 4 Dual Wiimote 3D Localization [Seite 654]
88.6 - 5 Demonstrations [Seite 656]
88.7 - 6 Discussion, Conclusion, and Future Work [Seite 657]
88.8 - Acknowledgement [Seite 657]
88.9 - References [Seite 657]
89 - Battery-Powered Autonomous Robot for Cleaning of Dusty Photovoltaic Panels in Desert Zones [Seite 659]
89.1 - Abstract [Seite 659]
89.2 - 1 Introduction [Seite 659]
89.3 - 2 The Mechanical Design [Seite 661]
89.3.1 - 2.1 Technical Specifications [Seite 661]
89.3.2 - 2.2 The Cleaning Strategy [Seite 662]
89.3.3 - 2.3 The Functional Design [Seite 663]
89.3.4 - 2.4 The Prototype [Seite 664]
89.4 - 3 The Electronic Control System Design [Seite 664]
89.5 - 4 Experimental Verification of the Robot [Seite 666]
89.6 - References [Seite 666]
90 - Design and Control of Diving Mechanism for the Biomimetic Robotic Fish [Seite 668]
90.1 - Abstract [Seite 668]
90.2 - 1 Introduction [Seite 668]
90.3 - 2 Mathematical Modelling of the Gravity Center [Seite 669]
90.4 - 3 Diving Mechanism for the Depth Control [Seite 670]
90.5 - 4 Results [Seite 672]
90.6 - 5 Conclusion [Seite 675]
90.7 - Acknowledgement [Seite 676]
90.8 - References [Seite 676]
91 - Standards to Support Military Autonomous System Life Cycle [Seite 677]
91.1 - Abstract [Seite 677]
91.2 - 1 Introduction [Seite 677]
91.3 - 2 AS Life Cycle in Military Domain [Seite 678]
91.4 - 3 Gap Analysis of Standards and Best Practices for AS Life Cycle [Seite 680]
91.5 - 4 Composition of MSDL and CBML into AS Life Cycle [Seite 682]
91.6 - 5 Conclusion [Seite 684]
91.7 - References [Seite 684]
92 - Robotic Assistant for the Elderly - Rehabilitation Walker [Seite 685]
92.1 - Abstract [Seite 685]
92.2 - 1 Introduction [Seite 685]
92.3 - 2 General Working Principles [Seite 686]
92.3.1 - 2.1 Design of a Robotic Walker [Seite 686]
92.3.2 - 2.2 Criteria and Calculations for Stability [Seite 688]
92.3.3 - 2.3 Operating Principle of the Robotic Assistant [Seite 690]
92.4 - 3 Conclusion [Seite 691]
92.5 - References [Seite 692]
93 - Motion Control of Three-Rotor Unmanned Underwater Vehicle [Seite 693]
93.1 - Abstract [Seite 693]
93.2 - 1 Introduction [Seite 693]
93.3 - 2 Description of the UUV [Seite 694]
93.4 - 3 Motion Equations of the Three-Rotor UUV [Seite 695]
93.4.1 - 3.1 UUV Reference Frames [Seite 695]
93.4.2 - 3.2 UUV Modeling [Seite 696]
93.5 - 4 Guidance and Trajectory Tracking [Seite 698]
93.6 - 5 Conclusion [Seite 700]
93.7 - References [Seite 700]
94 - Smart Systems [Seite 702]
95 - From Simulation to Manufacturing of Piezoelectric Micromachined AlN Membrane [Seite 703]
95.1 - Abstract [Seite 703]
95.2 - 1 Introduction [Seite 703]
95.3 - 2 Piezoelectric Layer Properties [Seite 704]
95.4 - 3 Experimental [Seite 704]
95.4.1 - 3.1 Simulation Results [Seite 704]
95.4.2 - 3.2 Mechanical Tests of AlN Piezo Layer [Seite 706]
95.4.3 - 3.3 Development of AlN Layer Technology [Seite 707]
95.4.4 - 3.4 Electrical Measurements of the Manufactured AlN Layer [Seite 709]
95.5 - 4 Summary [Seite 710]
95.6 - Acknowledgement [Seite 710]
95.7 - References [Seite 710]
96 - Probabilistic Reasoning in Diagnostic Expert System for Smart Homes [Seite 712]
96.1 - Abstract [Seite 712]
96.2 - 1 Introduction [Seite 712]
96.3 - 2 General Expert System Architecture [Seite 712]
96.3.1 - 2.1 Inference Mechanism [Seite 713]
96.3.2 - 2.2 Inference Mechanism in Numbers [Seite 715]
96.4 - 3 Simulation Experiment with Three Evidences [Seite 717]
96.5 - 4 Conclusion [Seite 719]
96.6 - Acknowledgement [Seite 719]
96.7 - References [Seite 719]
97 - Development of Smart and Dynamic Floral Clothing Accessories [Seite 720]
97.1 - Abstract [Seite 720]
97.2 - 1 Introduction [Seite 720]
97.3 - 2 Concept Design of the Floral Clothing Accessory [Seite 722]
97.4 - 3 Actuating Elements by Shape Memory Alloy (SMA) [Seite 723]
97.4.1 - 3.1 Measurement of the Performances of the SMA Wire [Seite 724]
97.4.2 - 3.2 Actuating Element by Helical Spring-Shaped SMA [Seite 724]
97.5 - 4 Design and Fabrication of SMA Actuating Mechanisms [Seite 725]
97.6 - 5 Electronic Control System [Seite 726]
97.6.1 - 5.1 Electronic Components [Seite 726]
97.6.2 - 5.2 Drive and Control of the Actuating Mechanism by Using Arduino [Seite 727]
97.7 - 6 Conclusion [Seite 728]
97.8 - References [Seite 728]
98 - Numerical Wave Tank Analysis for Energy Harvesting with Oscillating Water Column [Seite 730]
98.1 - Abstract [Seite 730]
98.2 - 1 Introduction [Seite 730]
98.3 - 2 Materials and Methods [Seite 731]
98.3.1 - 2.1 General Working Principles [Seite 731]
98.3.2 - 2.2 Numerical Wave Tank and Oscillating Water Column [Seite 732]
98.3.3 - 2.3 User Defined Function [Seite 734]
98.4 - 3 Results [Seite 735]
98.4.1 - 3.1 Validation [Seite 735]
98.4.2 - 3.2 Cases [Seite 735]
98.4.3 - 3.3 Power Output [Seite 736]
98.5 - 4 Conclusions [Seite 737]
98.6 - References [Seite 738]
99 - Coil Optimization for Linear Electromagnetic Energy Harvesters with Non-uniform Magnetic Field [Seite 739]
99.1 - Abstract [Seite 739]
99.2 - 1 Introduction [Seite 739]
99.3 - 2 Linear Electromagnetic Harvester Model [Seite 740]
99.4 - 3 Model of Magnetic Field in the Coil Area [Seite 741]
99.5 - 4 Coil Optimization Algorithm [Seite 743]
99.6 - 5 Results and Discussion [Seite 744]
99.7 - 6 Conclusions [Seite 745]
99.8 - Acknowledgement [Seite 746]
99.9 - References [Seite 746]
100 - Performance Analysis of Wave Energy Harvesting System with Piezoelectric Element [Seite 747]
100.1 - Abstract [Seite 747]
100.2 - 1 Introduction [Seite 747]
100.3 - 2 Experimental Setup [Seite 748]
100.4 - 3 Results and Discussion [Seite 750]
100.5 - 4 Conclusion [Seite 753]
100.6 - References [Seite 753]
101 - Author Index [Seite 754]