Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
1 Atomic Orbitals, Electronic Configurations2 Covalent Bonding3 Hybridization of Atomic Orbitals4 Covalent Carbon-Carbon Bonding5 Alkanes6 Skeletal Structures, Structural Isomerism7 Basic Rules of Nomenclature8 Drawing Molecular Structures9 Conformation10 Reactive Intermediates11 Basic Types of Organic Reactions12 Energy Turnover of Chemical Reactions13 Radical Substitution14 Alkenes, Skeletal and Configurational Isomers15 Synthesis of Alkenes16 Additions to Alkenes17 Dienes18 Additions and Cycloadditions with 1,3-Dienes19 Alkynes20 Cycloalkanes21 Basic Syntheses of Cycloalkanes and Cycloalkenes22 Reactions of Cycloalkanes and Cycloalkenes23 Benzene, Aromaticity, Aromatic Compounds24 Benzenoid Aromatic Compounds25 Electrophilic Substitution of Benzene26 Electrophilic Second Substitution of Benzenes27 Other Reactions of Benzenoid Aromatics28 Polycyclic Benzenoid Aromatic Compounds29 Non-benzenoid Aromatic Compounds30 Alkyl Halides31 Mechanisms of Nucleophilic Substitution32 Organometal Compounds33 Alcohols34 Diols, Triols35 Reactions of Alcohols36 Dehydration of Alcohols37 Ethers38 Amines39 Reactions of Amines40 Diazo and Azo Compounds41 Carboxylic Acids42 Carboxylic Acid Derivatives43 Substituted Carboxylic Acids44 Absolute Configuration45 Enantiomers without Carbon as Stereogenic Center46 Diastereomers47 Aldehydes48 Ketones49 Carbonyl Reactions50 CH Acidity of Carbonyl Compounds51 1,3-Dicarbonyl Compounds52 Phenols51 Quinones54 Organosulfur Compounds55 Carbonic Acid Derivatives56 Heterocumulenes57 Rearrangements58 Polymers, Polymerization59 Syntheses with Organosilicon Compounds60 Heteroalicycles61 Five-Membered Aromatic Heterocycles62 Six-Membered Aromatic Heterocycles63 Benzo-Fused Five-Membered Heteroaromatics64 Benzo-Fused Six-Membered Heteroaromatics65 Fused Aromatic Heterocycles66 Absorption of Light, Color, Dyes67 Porphyrinoids68 Amino Acids69 Peptides, Proteins70 Alkaloids71 Carbohydrates: Aldoses and Ketoses72 Carbohydrates: Oligo- and Polysaccharides73 Nucleic Acids: DNA and RNA74 Lipids75 Polyketides76 Terpenes77 Steroids78 Selectivity and Specificity of Organic Reactions79 Planning Organic Syntheses80 Aspects of Molecular Structure81 Mass Spectrometry82 Infrared Spectroscopy83 Nuclear Magnetic Resonance: Proton NMR84 Nuclear Magnetic Resonance: Carbon-13 NMR85 Nuclear Magnetic Resonance: Two-Dimensional NMR
Additions of molecules such as HX or X2 to the CC double bond are typical reactions of alkenes and the reverse of eliminations (? Chapters 11.1, ? 11.2, ? 15.1).
Catalytic hydrogenation of alkenes to provide alkanes involves the addition of hydrogen to a CC double bond in the presence of a group 10 metal (Ni, Pd, Pt) as catalyst. As illustrated in ? Fig. 12.1, the catalyst decreases the activation barrier of hydrogenation and thus the reaction proceeds more rapidly. The hydrogen molecule, activated at the surface of the catalyst, collides as a whole with the CC double bond, forming a cyclic transition state to induce a four-center reaction. Thus, after having added from one side of the CC double bond, both hydrogen atoms are attached at the same side of the CC double bond meaning that they will adopt a syn arrangement (syn- or cis- addition). This stereospecificity, however, is undetectable in open-chain alkanes because of free rotation about the CC single bond arising from the hydrogenation.
The addition of brownish-red bromine to an alkene giving an a,ß-dibromoalkane decolorizes the solution and thereby indicates the presence of a CC double bond. The mechanism of bromination starts with a polarization of the bromine molecule upon collision with the alkene, resulting in a transition state which is converted into an intermediate three-membered cyclic bromonium ion with loss of a bromide anion. This bromide anion adds from the backside of the bulky bromonium ion (anti- or trans- addition), opening the strained three-membered ring to yield an a,ß-dibromoalkane.
The stereospecificity of this reaction is not detectable for open-chain alkenes because of free rotation about the newly formed CC single bond, so that 2,3-dibromobutane is obtained by bromination of both configurational isomers of 2-butene:
Chlorination of alkenes also follows the mechanism of bromination, involving an intermediate three-membered halonium ion. Fluorine is too reactive for a controlled reaction: all bonds are attacked and thus mixtures of compounds are produced. Iodinations proceed too slowly to be of synthetic significance.
Hydrogen halides (HCl, HBr, HI) add to alkenes yielding alkyl halides. This reaction, called hydrohalogenation of alkenes, follows a stepwise ionic mechanism involving the proton of the hydrogen halide as an electrophile: In the first step, the electrophilic proton adds to the CC double bond (electrophilic addition), thus generating an intermediate carbenium ion which reacts with the halide anion in a fast reaction of the ions to produce the haloalkane (alkyl halide).
Ethene (H2C=CH2) is readily hydrochlorinated to give chloroethane (H3C-CH2-Cl). Hydrohalogenation of an unsymmetrically substituted alkene, such as propene in the simplest case, may produce two structural isomers of the resulting alkyl halides, with different positions of the halogens, called regioisomers. Thus, hydrobromination of propene may produce the regioisomers 2-bromopropane and 1-bomopropane:
The regioselectivity of hydrohalogenation, favoring one and discriminating against the other product, is predicted by the MARKOVNIKOV rule: Electrophilic addition preferentially involves the most stable carbenium ion. Since the relative stability of radicals (? Chapter 13.2) as well as of carbenium ions increases with increasing alkylation, the 2-propyl cation is more stable than the 1-propyl cation. As a result, hydrobromination of propene predominantly yields 2-bromopropane (isopropyl bromide).
Water adds to the CC double bond of alkenes in the presence of an acid to give alcohols (? Chapter 33.3.3). This hydration of alkenes, the reverse of dehydration of alcohols to alkenes (? Chapters 15.1.2, ? 36.1), also proceeds as an electrophilic addition, because the electrophilic proton of the acid adds to the double bond in the first and slow step. Water adds to the resulting intermediate carbenium ion to give an intermediate oxonium ion which deprotonates to yield the alcohol.
Again, MARKOVNIKOV´s rule predicts the regioselectivity of hydration taking into account the relative stabilities of the intermediate carbenium ions. Thus, hydration of methylpropene (isobutene) almost exclusively yields 2-methyl-2-propanol (t- butyl alcohol) because the t- butyl cation is much more stable and longer-living than the isomeric methylpropyl cation with a terminal positive charge.
Halohydrins (2-haloalcohols) are formed by addition of halogen and water to alkenes. For example, 2-bromoethanol (ethylene bromohydrin) is obtained by reacting ethene, bromine and water.
Halohydrin formation involves an electrophilic addition of the positive halogen end of hypohalous acid to the double bond. The resulting intermediate ion pair, a ß-halocarbenium ion and hydroxide anion, quickly reacts to provide the halohydrin:
Diborane, B2H6, adds to alkenes. The monomer borane, BH3, is assumed to act as the reactive compound. This addition, referred to as hydroboration, involves a four-center mechanism, with electrophilic addition of ?BH2 and nucleophilic addition of the hydride part of borane occurring simultaneously. A trialkylborane is produced in three successive steps.
The addition is controlled by the spatial requirements of groups (thus said to be stereocontrolled) so that the bulkier BH2 attacks at the less hindered part of the alkene. Methylpropene (R = CH3), as an example, exclusively reacts to provide triisobutylborane.
Osmium tetroxide or potassium permanganate undergo a [3+2]-cycloaddition (2 atoms of the alkene, and 3 of the oxide) with alkenes.Cyclic esters (osmates and manganates) are the primary products, liberating 1,2-diols (alcohols with two adjacent hydroxy groups) with syn arrangement of OH groups upon hydrolysis.
Peroxy acids convert alkenes into oxiranes (epoxides, PRILEZHAEV epoxidation), a process which involves a [2+1]-cycloaddition (2 for two carbon atoms of the alkene, 1 for the adding oxygen of the peroxy acid). The oxirane ring is opened upon protonation and backside attack of water (similar to the opening of bromonium ions described ? Chapter 16.2), yielding 1,2-diols with OH groups arranged anti to each other.
The stereospecificity of these dihydroxylations is not detectable for non-cyclic alkenes due to free rotation about the newly formed CC single bond, and both cis- and trans-2-butene are dihydroxylated to yield 2,3-butanediol:
Canonical formulas depict ozone as a 1,2- and 1,3-dipole. As a 1,3-dipole, ozone adds to alkenes, and this kind of [2+3]-cycloaddition is called a 1,3-dipolar cycloaddition. An initially formed five-membered primary ozonide rearranges to the corresponding ozonide. In the presence of a reducing reagent, water cleaves the ozonide to yield carbonyl compounds (aldehydes or ketones, ? Chapters 47, ? 48).
The resulting carbonyl compounds permit reconstruction of the original alkene for structure elucidation. Acetone (propanone) and butanal as products of ozonolysis and subsequent hydrolysis, for example, identify 2-methyl-2-hexene as the original alkene.
(16.1) Suggest the preparation of (a) 2,3-dimethylpentane and (b) 2,3-dibromohexane from appropriate alkenes.
(16.2) What is an electrophilic addition? Write mechanisms for bromination and hydrobromination of alkenes.
(16.3) What products are obtained by hydrobromination of (a) 2-methyl-2-butene and (b) 1-hexene?
(16.4) What products arise from (a) hydration and (b) hydroboration of 2-methyl-1-butene?
(16.5) Which methods can be used to prepare 1,2-diols from alkenes? Formulate general reaction...
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.