Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The book contains a collection of more than 800 problems from all main chapters of functional analysis, with theoretical background and solutions. It is mostly intended for undergraduate students who are starting to study the course of functional analysis. The book will also be useful for graduate and post- graduate students and researchers who wish to refresh their knowledge and deepen their understanding of the subject, as well as for teachers of functional analysis and related disciplines. It can be used for independent study as well. It is assumed that the reader has mastered standard courses of calculus and measure theory and has basic knowledge of linear algebra, analytic geometry, and differential equations.
This collection of problems can help students of different levels of training and different areas of specialization to learn how to solve problems in functional analysis. Each chapter of the book has similar structure and consists of the following sections: Theoretical Background, Examples of Problems with Solutions, and Problems to Solve. The book contains theoretical preliminaries to ensure that the reader understands the statements of problems and is able to successfully solve them. Then examples of typical problems with detailed solutions are included, and this is relevant not only for those students who have significant difficulties in studying this subject, but also for other students who due to various circumstances ?could be deprived of communication with a teacher. There are problems for independent solving, and the corresponding selection of problems reflects all the main plot lines that relate to a given topic.
"The book is carefully written, with illuminating introductory theoretical parts and well chosen problems with hints and solutions. It will be of help to all students studying functional analysis or related fields as well as an auxiliary instrument in the teaching process." (Stefan Cobzas, zbMATH 1557.46001, 2025)
Dr. Volodymyr Brayman received his PhD in probability and statistics from the Institute of Mathematics of National Academy of Sciences of Ukraine in 2007. He is currently an Assistant Professor at the Department of Mathematical Analysis at Taras Shevchenko National University of Kyiv. He is an expert in stochastic processes, a jury member in various mathematical competitions, and an author of numerous problems proposed at the competitions. He co-authored with Prof. Alexander Kukush a problem book titled «Undergraduate Mathematics Competitions (1995-2016)», Taras Shevchenko National University of Kyiv (ISBN 978-3-319-58672-4), published with Springer.
Prof. Andrii Chaikovskyi received his PhD in differential equations from Taras Shevchenko National University of Kyiv in 2001 and completed his postdoctoral degree in differential equations (Habilitation) in 2012. He is currently the Head of the Department of Mathematical Analysis at Taras Shevchenko National University of Kyiv. He is the author/coauthor of more than 60 research papers. His research interests include abstract differential and difference equations and approximation theory.
Dr. Oleksii Konstantinov is an Associate Professor of the Department of Mathematical Analysis at Taras Shevchenko National University of Kyiv. His research interests include Operator Theory, Mathematical Scattering Theory and Differential Operators.
Prof. Alexander Kukush received his PhD in probability and statistics from Kyiv University in 1982 and completed his postdoctoral degree in probability and statistics (Habilitation) in 1995. He is a Professor of the Department of Mathematical Analysis at Taras Shevchenko National University of Kyiv. He is the author/coauthor of more than 150 research papers and 4 books. His research interests include mathematical and applied statistics, actuarial and financial mathematics.
Preface.- Banach Spaces.- Hilbert Spaces.- Continuous Linear Functionals.- Hahn - Banach Theorem.- Weak and Weak* Convergence.- Bounded Linear Operators.- Uniform, Strong and Weak Operator Convergences.- Inverse Operators.- Classes of Linear Operators in Hilbert Space.- Compact Sets and Operators.- Spectrum of Linear Operators.- Spectral Theory of Compact Operators.- Integral Equations.- Generalized Functions.- Answers, hints and solutions.- List of notations.- References.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.