Fig. 17. Fig. 18. We have thus seen that a large ball of liquid can be moulded by the elasticity of its skin if the disturbing effect of its weight is neutralized, as in the last experiment. This disturbing effect is practically of no account in the case of a soap-bubble, because it is so thin that it hardly weighs anything. You all know, of course, that a soap-bubble is perfectly round, and now you know why; it is because the elastic film, trying to become as small as it can, must take the form which has the smallest surface for its content, and that form is the sphere. I want you to notice here, as with the oil, that a large bubble oscillates much more slowly than a small one when knocked out of shape with a bat covered with baize or wool.
The chief result that I have endeavoured to make clear to-day is this. The outside of a liquid acts as if it were an elastic skin, which will, as far as it is able, so mould the liquid within it that it shall be as small as possible. Generally the weight of liquids, especially when there is a large quantity, is too much for the feebly elastic skin, and its power may not be noticed. The disturbing effect of weight is got rid of by immersing one liquid in another which is equally heavy with which it does not mix, and it is hardly noticed when very small drops are examined, or when a bubble is blown, for in these cases the weight is almost nothing, while the elastic power of the skin is just as great as ever.
LECTURE II.
Table of Contents I did not in the last lecture by any direct experiment show that a soap-film or bubble is really elastic, like a piece of stretched india-rubber.
A soap-bubble consisting, as it does, of a thin layer of liquid, which must have of course both an inside and an outside surface or skin, must be elastic, and this is easily shown in many ways. Perhaps the easiest way is to tie a thread across a ring rather loosely, and then to dip the ring into soap water. On taking it out there is a film stretched over the ring, in which the thread moves about quite freely, as you can see upon the screen. But if I break the film on one side, then immediately the thread is pulled by the film on the other side as far as it can go, and it is now tight (Fig. 19). You will also notice that it is part of a perfect circle, because that form makes the space on one side as great, and therefore on the other side, where the film is, as small, as possible. Or again, in this second ring the thread is double for a short distance in the middle. If I break the film between the threads they are at once pulled apart, and are pulled into a perfect circle (Fig. 20), because that is the form which makes the space within it as great as possible, and therefore leaves the space outside it as small as possible. You will also notice, that though the circle will not allow itself to be pulled out of shape, yet it can move about in the ring quite freely, because such a movement does not make any difference to the space outside it.
Fig. 19. Fig. 20. Fig. 21. Fig. 22. I have now blown a bubble upon a ring of wire. I shall hang a small ring upon it, and to show more clearly what is happening, I shall blow a little smoke into the bubble. Now that I have broken the film inside the lower ring, you will see the smoke being driven out and the ring lifted up, both of which show the elastic nature of the film. Or again, I have blown a bubble on the end of a wide pipe; on holding the open end of the pipe to a candle flame, the outrushing air blows out the flame at once, which shows that the soap-bubble is acting like an elastic bag (Fig. 21). You now see that, owing to the elastic skin of a soap-bubble, the air inside is under pressure and will get out if it can. Which would you think would squeeze the air inside it most, a large or a small bubble? We will find out by trying, and then see if we can tell why. You now see two pipes each with a tap. These are joined together by a third pipe in which there is a third tap. I will first blow one bubble and shut it off with the tap 1 (Fig. 22), and then the other, and shut it off with the tap 2. They are now nearly equal in size, but the air cannot yet pass from one to the other because the tap 3 is turned off. Now if the pressure in the largest one is greatest it will blow air into the other when I open this tap, until they are equal in size; if, on the other hand, the pressure in the small one is greatest, it will blow air into the large one, and will itself get smaller until it has quite disappeared. We will now try the experiment. You see immediately that I open the tap 3 the small bubble shuts up and blows out the large one, thus showing that there is a greater pressure in a small than in a large bubble. The directions in which the air and the bubble move is indicated in the figure by arrows. I want you particularly to notice and remember this, because this is an experiment on which a great deal depends. To impress this upon your memory I shall show the same thing in another way. There is in front of the lantern a little tube shaped like a U half filled with water. One end of the U is joined to a pipe on which a bubble can be blown (Fig. 23). You will now be able to see how the pressure changes as the bubble increases in size, because the water will be displaced more when the pressure is more, and less when it is less. Now that there is a very small bubble, the pressure as measured by the water is about one quarter of an inch on the scale. The bubble is growing and the pressure indicated by the water in the gauge is falling, until, when the bubble is double its former size, the pressure is only half what it was; and this is always true, the smaller the bubble the greater the pressure. As the film is always stretched with the same force, whatever size the bubble is, it is clear that the pressure inside can only depend upon the curvature of a bubble. In the case of lines, our ordinary language tells us, that the larger a circle is the less is its curvature; a piece of a small circle is said to be a quick or a sharp curve, while a piece of a great circle is only slightly curved; and if you take a piece of a very large circle indeed, then you cannot tell it from a straight line, and you say it is not curved at all. With a part of the surface of a ball it is just the same-the larger the ball the less it is curved; and if the ball is very large indeed, say 8000 miles across, you cannot tell a small piece of it from a true plane. Level water is part of such a surface, and you know that still water in a basin appears perfectly flat, though in a very large lake or the sea you can see that it is curved. We have seen that in large bubbles the pressure is little and the curvature is little, while in small bubbles the pressure is great and the curvature is great. The pressure and the curvature rise and fall together. We have now learnt the lesson which the experiment of the two bubbles, one blown out by the other, teaches us.
Fig. 23. Fig. 24. A ball or sphere is not the only form which you can give to a soap-bubble. If you take a bubble between two rings, you can pull it out until at last it has the shape of a round straight tube or cylinder as it is called. We have spoken of the curvature of a ball or sphere; now what is the curvature of a cylinder? Looked at sideways, the edge of the wooden cylinder upon the table appears straight, i. e. not curved at all; but looked at from above it appears round, and is seen to have a definite curvature (Fig. 24). What then is the curvature of the surface of a cylinder? We have seen that the pressure in a bubble depends upon the curvature when they are spheres, and this is true whatever shape they have. If, then, we find what sized sphere will produce the same pressure upon the air inside that a cylinder does, then we shall know that the curvature of the cylinder is the same as that of the sphere which balances it. Now at each end of a short tube I shall blow an ordinary bubble, but I shall pull the lower bubble by means of another tube into the cylindrical form, and finally blow in more or less air until the sides of the cylinder are perfectly straight. That is now done (Fig. 25), and the pressure in the two bubbles must be exactly the same, as there is a free passage of air between the two. On measuring them you see that the sphere is exactly double the cylinder in diameter. But this sphere has only half the curvature that a sphere half its diameter would have. Therefore the cylinder, which we know has the same curvature that the large sphere has, because the two balance, has only half the curvature of a sphere of its own diameter, and the pressure in it is only half that in a sphere of its own diameter.
Fig. 25. I must now make one more step in explaining this question of curvature. Now that the cylinder and sphere are balanced I shall blow in more air, making the sphere larger; what will happen to the cylinder? The cylinder is, as you see, very short; will it become blown out too, or what will happen? Now that I am blowing in air you see the sphere enlarging, thus relieving the pressure; the cylinder develops a waist, it is no longer a cylinder, the sides are curved inwards. As I go on blowing and enlarging the sphere, they go on falling inwards, but not indefinitely. If I were to blow the upper bubble till it was of an enormous size the pressure would become extremely small. Let us make the pressure nothing at all at once by simply breaking the upper bubble, thus allowing the air a free passage from the inside to the outside of what was the cylinder. Let me repeat this experiment on a larger scale. I have...