This book covers a variety of topics in mechanics, with a special emphasis to fluid mechanics and energy transfer. Chapters are based on selected contributions presented during the Algerian Congress of Mechanics (CAM 2017), held on November 26 - 30, 2017, in Constantine, Algeria. The book covers theoretical analysis, modeling, and numerical treatment of performance-related problems of new refrigeration systems, heating and cooling. It reports on experimental research to solve problems related to the flow of microfluids, and relevant applications in the areas of chemical engineering, biochemistry, biomedicine and renewable energy. Further topics include methods for maintenance of mechanical structures, strength, wear, fracture, damage and life of structures, and image processing solutions for the design and 3D manufacturing of mechanical parts. Improvement, control and regulation of urban road traffic are also discussed in this book, thus offering a comprehensive, practice-oriented reference guide for academics and professionals.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Springer International Publishing
Illustrationen
116
21 s/w Abbildungen, 116 farbige Abbildungen
VIII, 192 p. 137 illus., 116 illus. in color.
Dateigröße
ISBN-13
978-3-030-11827-3 (9783030118273)
DOI
10.1007/978-3-030-11827-3
Schweitzer Klassifikation
1 - Foreword [Seite 6]
2 - Contents [Seite 8]
3 - Mixing-Time in T-Mixer Reactor [Seite 10]
3.1 - 1 Introduction [Seite 10]
3.2 - 2 Experimental Setup [Seite 11]
3.2.1 - 2.1 Experimental Device [Seite 11]
3.2.2 - 2.2 Results and Discussions [Seite 13]
3.3 - 3 Numerical Setup [Seite 13]
3.3.1 - 3.1 Geometry and Meshing [Seite 13]
3.3.2 - 3.2 Theory [Seite 14]
3.3.3 - 3.3 Results and Discussions [Seite 15]
3.4 - 4 Conclusions [Seite 16]
3.5 - References [Seite 17]
4 - Thermal Hydraulic Modeling of a Nuclear Reactor Core Channel Using CFD [Seite 18]
4.1 - 1 Introduction [Seite 18]
4.2 - 2 Equation Set-Up [Seite 19]
4.3 - 3 Essential Core and Thermal-Hydraulic Parameters of EPR [Seite 21]
4.4 - 4 Results and Discussion [Seite 23]
4.5 - 5 Conclusions [Seite 24]
4.6 - References [Seite 25]
5 - Thermochemical Modeling in Hypersonic Reactive Flow Behind Strong Shock Wave [Seite 26]
5.1 - 1 Introduction [Seite 26]
5.2 - 2 System of Equations [Seite 27]
5.3 - 3 Results and Discussion [Seite 32]
5.4 - 4 Conclusion [Seite 33]
5.5 - References [Seite 34]
6 - Kinematic and Dynamic Modeling and Simulation Analysis of a Cable-Driven Continuum Robot [Seite 35]
6.1 - 1 Introduction [Seite 35]
6.2 - 2 Planar Cable-Driven Continuum Robot and Description [Seite 37]
6.3 - 3 Kinematic Modeling [Seite 37]
6.3.1 - 3.1 Modeling Assumptions [Seite 38]
6.3.2 - 3.2 Kinematics Modeling [Seite 38]
6.4 - 4 Dynamic Modeling [Seite 39]
6.4.1 - 4.1 Kinetic Energy of the P-CDCR [Seite 39]
6.4.2 - 4.2 Kinetic Energy of the P-CDCR [Seite 39]
6.4.3 - 4.3 Dynamical Model of the P-CDCR [Seite 40]
6.5 - 5 Simulation Studies [Seite 40]
6.5.1 - 5.1 Matlab Simulation Run [Seite 41]
6.5.2 - 5.2 Solidworks Simulation Run [Seite 41]
6.6 - 6 Conclusion [Seite 44]
6.7 - References [Seite 44]
7 - A Novel Constitutive Modelling for Spring Back Prediction in Sheet Metal Forming Processes [Seite 46]
7.1 - 1 Introduction [Seite 46]
7.2 - 2 Experimental Traction Data [Seite 47]
7.3 - 3 Numerical Simulation of Tensile Test Experienced by Sheet Specimens of Titanium T40 Alloy [Seite 47]
7.3.1 - 3.1 Without Considering the Material Heterogeneity [Seite 47]
7.3.2 - 3.2 By Considering the Material Heterogeneity [Seite 50]
7.4 - 4 Numerical Simulation of L-Bending Operation with SB Stage [Seite 54]
7.5 - 5 Conclusion [Seite 56]
7.6 - References [Seite 56]
8 - Microstructural Analysis of Nickel-Based Composite Coatings and Their Effect on Micro-hardness and Nano-indentation Behavior [Seite 58]
8.1 - 1 Introduction [Seite 58]
8.2 - 2 Experimental Procedure [Seite 59]
8.3 - 3 Results and Discussion [Seite 60]
8.4 - 4 Conclusion [Seite 67]
8.5 - References [Seite 68]
9 - Effect of Slag and Natural Pozzolan on the Mechanical Behavior of Recycled Glass Mortars [Seite 70]
9.1 - 1 Introduction [Seite 70]
9.2 - 2 Materials [Seite 72]
9.3 - 3 Experimental Methods [Seite 73]
9.4 - 4 Results and Discussion [Seite 75]
9.4.1 - 4.1 Bending Strength Test Results [Seite 75]
9.4.2 - 4.2 Compressive Strength Test Results [Seite 79]
9.5 - 5 Conclusion [Seite 81]
9.6 - References [Seite 81]
10 - Buckling Analysis of Isotropic and Composite Laminated Plates: New Finite Element Formulation [Seite 83]
10.1 - 1 Introduction [Seite 83]
10.2 - 2 Kinematic [Seite 84]
10.3 - 3 Constitutive Equations [Seite 84]
10.4 - 4 Virtual Work Principle [Seite 85]
10.5 - 5 Finite Element Formulation [Seite 87]
10.5.1 - 5.1 Nodal Approximation [Seite 87]
10.5.2 - 5.2 Deformations and Nodal Displacements Relations [Seite 88]
10.6 - 6 Results and Discussion [Seite 89]
10.6.1 - 6.1 Convergence Study [Seite 89]
10.6.2 - 6.2 The Orthotropic Effect on Cross-Ply Square Plates (0/90) [Seite 89]
10.7 - 7 Conclusion [Seite 90]
10.8 - References [Seite 91]
11 - Prediction of Optimal Lifetime of the Tool's Wear in Turning Operation of AISI D3 Steel Based on the a New Spectral Indicator SCG [Seite 93]
11.1 - 1 Introduction [Seite 93]
11.2 - 2 Lifetime Theory [Seite 94]
11.3 - 3 Spectral Center of Gravity-SCG [Seite 95]
11.4 - 4 Experimental Validation and Data Acquisition [Seite 96]
11.5 - 5 Results and Discussion [Seite 97]
11.5.1 - 5.1 Vibration Signals and Characterization of Cutting Wear [Seite 97]
11.5.2 - 5.2 Spectral Analysis of Characteristic Frequencies [Seite 98]
11.5.3 - 5.3 Proposed Spectrum Indicators [Seite 101]
11.6 - 6 Conclusion [Seite 104]
11.7 - References [Seite 105]
12 - The Evaluation of the Dynamic Response of the Moving Exciter Due to the Irregularities of the Slab [Seite 107]
12.1 - 1 Introduction [Seite 107]
12.2 - 2 Path Surface Model [Seite 108]
12.3 - 3 Mobile Exciter-Path Surface Coupled Equation of Motion [Seite 110]
12.3.1 - 3.1 Solving Method Algorithm [Seite 111]
12.3.2 - 3.2 Validation Exemple [Seite 111]
12.3.3 - 3.3 Stability Roadway Irregularities Influence [Seite 113]
12.4 - 4 Conclusion [Seite 114]
12.5 - References [Seite 114]
13 - Rolling Bearing Local Fault Detection During a Run-Up Test Using Wavelet-Filtered CEEMDAN Envelopes [Seite 115]
13.1 - 1 Introduction [Seite 115]
13.2 - 2 Tools and Methodology [Seite 116]
13.3 - 3 Application [Seite 118]
13.4 - 4 Conclusion [Seite 122]
13.5 - References [Seite 123]
14 - Industrial Reproduction of Objects with Freeform Surfaces Using Reverse Engineering Process [Seite 124]
14.1 - 1 Introduction [Seite 124]
14.2 - 2 Exploited Equipments [Seite 125]
14.3 - 3 Reproduction Procedure [Seite 126]
14.4 - 4 Variances Analysis [Seite 130]
14.5 - 5 Cavity Mold Prototype Realization [Seite 131]
14.6 - 6 Conclusions [Seite 132]
14.7 - References [Seite 132]
15 - Effect of Boundary Conditions and Damping on Critical Speeds of a Flexible Mono Rotor [Seite 134]
15.1 - 1 Introduction [Seite 134]
15.2 - 2 Model Equations Implementation [Seite 135]
15.3 - 3 Natural Frequencies and Campbell Diagrams [Seite 139]
15.4 - 4 Response to the Synchronous Force (Unbalance) [Seite 140]
15.5 - 5 Response to an Asynchronous Force [Seite 143]
15.6 - 6 Conclusion [Seite 146]
15.7 - References [Seite 148]
16 - Remaining Life Estimation of the High Strength Low Alloy Steel Pipelines by Using Response Surface Methodology [Seite 149]
16.1 - 1 Introduction [Seite 149]
16.2 - 2 Theory [Seite 150]
16.3 - 3 Experimental Procedure [Seite 150]
16.4 - 4 Results and Discussion [Seite 150]
16.4.1 - 4.1 Meshing of the Rectangular Plate [Seite 151]
16.4.2 - 4.2 T Stress Along the Ligament [Seite 152]
16.4.3 - 4.3 Limit State Function for Reliability Analysis [Seite 154]
16.5 - 5 Conclusion [Seite 155]
16.6 - References [Seite 156]
17 - Implementation and Experimentation of (VSI) Applied for a Photovoltaic System [Seite 157]
17.1 - 1 Introduction [Seite 157]
17.2 - 2 Theory [Seite 158]
17.2.1 - 2.1 Photovoltaic Generator Model [Seite 158]
17.2.2 - 2.2 Modeling and Control of Dc-Dc Converter [Seite 159]
17.2.3 - 2.3 Inverter Model [Seite 162]
17.2.4 - 2.4 Theory of SVPWM Technique [Seite 164]
17.3 - 3 Implementation and Experiments [Seite 167]
17.3.1 - 3.1 Results and Discussion [Seite 168]
17.4 - 4 Conclusion [Seite 169]
17.5 - References [Seite 170]
18 - CFD Study About an Archimed Wind Mill [Seite 171]
18.1 - 1 Introduction [Seite 171]
18.2 - 2 Archimede WIND MILL 'AWM' [Seite 172]
18.3 - 3 Theory [Seite 173]
18.4 - 4 Results and Discussion [Seite 175]
18.5 - 5 Conclusion [Seite 178]
18.6 - References [Seite 178]
19 - Periodic Inspection Policy for a System with Two Levels of Degradation [Seite 179]
19.1 - 1 Introduction [Seite 179]
19.2 - 2 Reliability of the DT Model (Degradation Threshold Model) [Seite 180]
19.2.1 - 2.1 System Description [Seite 180]
19.2.2 - 2.2 Degradation Threshold Model (DT) [Seite 181]
19.3 - 3 Inspection Policy (?T, B) for a System with Two Levels of Degradation [Seite 182]
19.4 - 4 Numerical Example [Seite 184]
19.4.1 - 4.1 Presentation of Data [Seite 185]
19.4.2 - 4.2 Influence of Model Parameters on ( DT_opt ,B_opt ) [Seite 185]
19.5 - 5 Discussion of Results [Seite 186]
19.6 - 6 Conclusion [Seite 187]
19.7 - References [Seite 187]
20 - Modeling of Elastic and Mechanical Properties of ZnS Using Mehl Method [Seite 189]
20.1 - 1 Introduction [Seite 189]
20.2 - 2 Theoretical Section [Seite 190]
20.3 - 3 Results and Discussions [Seite 191]
20.3.1 - 3.1 Elastic and Mechanical Properties Under Ambient Conditions at P = 0 GPa [Seite 191]
20.3.2 - 3.2 Elastic and Mechanical Properties Under Pressure [Seite 193]
20.4 - 4 Conclusion [Seite 195]
20.5 - References [Seite 195]