Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Behandeln Sie alle Gase als ideal, sofern nicht ausdrücklich etwas anderes verlangt ist. Thermochemische Daten sind für 298,15 K angegeben, sofern nicht ausdrücklich etwas anderes erwähnt ist.
Die mit dem Symbol ╬ gekennzeichneten Aufgaben wurden von Charles Trapp und Carmen Giunta beigesteuert.
D1.1.1 Eine Zustandsgleichung verknüpft die verschiedenen Variablen miteinander, die den Zustand eines Systems definieren. Boyle, Charles und Avogadro konnten nach entsprechenden Experimenten Gleichungen für Gase bei niedrigen Drücken (ideale Gase) herleiten. Boyle bestimmte, wie sich das Volumen mit dem Druck verändert (V ? 1 /p), Charles untersuchte den Zusammenhang von Volumen und Temperatur (V ? T), und Avogadro gab an, wie sich das Volumen mit der Menge des Gases ändert (V ? n). Wenn wir diese Proportionalitäten zu einer einzigen Gleichung zusammenfassen, erhalten wir
Wenn wir nun eine Proportionalitätskonstante R einführen, gelangen wir zur Zustandsgleichung des idealen Gases:
L1.1.1a Mithilfe entsprechender Umrechnungsfaktoren können wir den Druck in unterschiedlichen Einheiten angeben. Es gilt: 1 atm = 101,325 kPa = 760 Torr; 1 bar entspricht exakt 105 Pa.
(i) Ein Druck von 108 kPa lässt sich wie folgt in Torr umrechnen:
(ii) Ein Druck von 0,975 bar entspricht 0,975 × 105 Pa und lässt sich wie folgt in atm umrechnen:
L1.1.2a
(i) Nach der Zustandsgleichung des idealen Gases (Gl. (1.4)) gilt pV = nRT. Auflösen nach dem Druck ergibt p = nRT/V. Die Stoffmenge n von Xenon finden wir, indem wir die im beschriebenen Experiment eingesetzte Masse durch die Molmasse dieses Gases teilen (M(Xe) = 131,29 g mol-1). Für den Druck p ergibt sich
Die Probe hätte als ideales Gas folglich einen Druck von 24,4 atm anstelle von 20 atm. Die Antwort auf die Fragestellung ist daher: nein.
(ii) Die Van-der-Waals-Gleichung (Gl. (1.27a)) für den Druck des Gases lautet
Aus Tab. 1.6 im Anhang des Lehrbuchs entnehmen wir für Xenon die folgenden Van-der-Waals-Parameter: a = 4,137 dm6 atm mol-2 und b = 5,16 × 10-2 dm3 mol-1. Einsetzen dieser Konstanten ergibt folgende Terme in der Gleichung für den Druck p:
Also ist .
L1.1.3a Da die Temperatur bei einer isothermen Kompression konstant gehalten wird, können wir das Boyle'sche Gesetz (Gl. (1.3a), pV = konst.) anwenden. Das Produkt pEVE = pAVA können wir nach dem Anfangs- bzw. dem Enddruck auflösen:
(i) Daraus folgt für den Anfangsdruck
(ii) Wegen 1 atm = 1,013 25 bar folgt weiter
L1.1.4a Die Zustandsgleichung idealer Gase, pV = nRT (Gl. (1.4)), lässt sich für konstante Stoffmenge n und konstantes Volumen V in die Form p/T = nR/V = konst. bringen. Der Druck steigt proportional mit der Temperatur an, p ? T. Daraus folgt pE/TE = pA/TA oder, durch Auflösen nach pE,
Der Reifendruck ist pA = 3 bar, die Temperaturen sind TA = -5 °C bzw. 268 K und TE = 35 °C bzw. 308 K. Damit ergibt sich durch Einsetzen
Komplikationen ergeben sich aus den Faktoren, die die Konstanz von V oder n aufheben, beispielsweise eine Änderung des Reifenvolumens oder der Elastizität des Gummis oder ein Druckverlust aufgrund eines Lecks oder durch Diffusion, der den Reifendruck verringert.
L1.1.5a Wir verwenden die Zustandsgleichung idealer Gase, (Gl. (1.4)), in der Form p = nRT/V. Gegeben sind T und V, die Stoffmenge n muss berechnet werden:
Durch Einsetzen erhalten wir für den Druck
Beachten Sie, dass bei dieser Berechnung diejenige Variante der Gaskonstante R verwendet wurde, deren Einheiten den Angaben der übrigen Größen entsprechen. Alternativ könnten wir beispielsweise auch R = 8,3154 J K-1 mol-1 verwenden und die übrigen Einheiten entsprechend umrechnen, wodurch wir den Druck z. B. in der Einheit Pascal (Pa) erhalten:
Dabei haben wir 1 dm3 = 10-3 m3 sowie 1 J = 1 kg m2 s-2 und 1 Pa = 1 kg m-1 s-2 verwendet.
L1.1.6a Wir betrachten den Schwefeldampf näherungsweise als ideales Gas und verwenden daher die Zustandsgleichung des idealen Gases (Gl. (1.4), pV = nRT). Unsere Aufgabe besteht zunächst darin, mithilfe dieser Gleichung einen Ausdruck für den Zusammenhang zwischen der Dichte ? und der Molmasse M zu finden.
Zunächst führen wir über die Stoffmenge n = m/M die Molmasse M in die Zustandsgleichung des idealen Gases ein, pV = (m/M)RT. Division durch das Volumen V auf beiden Seiten dieser Gleichung liefert p = (m/V)(RT/M). Die Größe (m/V) entspricht der Dichte ?, also gilt p = ?RT/M, was sich umstellen lässt zu M = ?RT/p; dies ist die gesuchte Beziehung zwischen der Molmasse und der Dichte.
Einsetzen der Werte ergibt
Dabei haben wir 1 J = 1 kg m2 s-2 und 1 Pa = 1 kg m-1 s-2 verwendet. Die molare Masse von atomarem Schwefel ist 32,06 g mol-1; daher finden wir für die Anzahl N der Schwefelatome, aus denen der Schwefeldampf zusammengesetzt ist,
Als Ergebnis erwarten wir allerdings eine ganze, natürliche Zahl; die chemische Formel des Schwefeldampfs ist also S8.
L1.1.7a Wir betrachten den Wasserdampf näherungsweise als ideales Gas und verwenden daher die Zustandsgleichung des idealen Gases (Gl. (1.4), pV = nRT). Unsere Aufgabe besteht zunächst darin, mithilfe dieser Gleichung einen Ausdruck für den Zusammenhang zwischen den gegebenen Werten und der Masse m zu finden.
Der Partialdruck des Wasserdampfs in dem Raum beträgt 60 % des Gleichgewichtsdampfdrucks, den wir aus einem Nachschlagewerk wie dem CRC Handbook of Chemistry and Physics oder ähnlichen Quellen entnehmen können,
Durch Einsetzen der Gleichung für die Stoffmenge n = m/M in die Zustandsgleichung des idealen Gases erhalten wir pV = mRT/M und nach Umstellen m = MpV/RT. Damit ist
L1.1.8a
(i) Der Einfachheit halber nehmen wir an, das Volumen des Behälters betrage 1 m3. Dann ist die gesamte Masse
Wenn wir Luft als ideales Gas ansehen, ist pGV = nGRT, wenn nG die gesamte Stoffmenge des Gases ist,
Die Gln. (G1.1) und (G1.2) für die Stoffmengen der Gase müssen gleichzeitig erfüllt sein. Wenn wir nO2 aus Gl. (G1.1) in Gl. (G1.2) einsetzen, erhalten wir
Die Stoffmengenanteile (Molenbrüche) sind
Die Partialdrücke sind pN2 = (0,762) × (0,987 bar) = 0,752 bar und pO2 = (0,238) × (0,987 bar) = 0,235 bar. Zur Kontrolle berechnen wir deren Summe: (0,752 + 0,235) bar = 0,987 bar.
(ii) Diese Teilaufgabe ist am einfachsten zu lösen, wenn man sich klar macht, dass nG, pG und mG als experimentell bestimmte Größen dieselben Werte haben wie in Teilaufgabe (i). Allerdings sind die zu lösenden Gleichungen für die Stoffmengen, die Molenbrüche und die Partialdrücke etwas verändert:
Wegen xAr = 0,0100 ist nAr = 0,396 mol und daher
und
Durch Lösen dieser Gleichung erhalten wir
Die Partialdrücke sind
L1.1.9a Wir nehmen an, dass die Zustandsgleichung des idealen Gases (Gl. (1.4)) gilt, pV = nRT. Die Aufgabe besteht nun darin, die gegebene Dichte mit der Molmasse der Verbindung in Beziehung zu setzen.
Zunächst drücken wir die Stoffmenge n über die Masse m geteilt durch die Molmasse M aus, pV = (m/M)RT; nach Division durch V auf beiden Seiten der Gleichung erhalten wir p = (m/V)(RT /M). Die Größe (m/V) entspricht der Dichte ?, also gilt p = ?RT/M, was sich umstellen lässt zu M = ?RT/p; dies ist die gesuchte Beziehung zwischen der Molmasse M und der Dichte ?.
Dabei haben wir 1 J = 1 kg m2 s-2 und 1 Pa = 1 kg m-1 s-2 verwendet.
L1.1.10a Das Gesetz von Charles, Gl. (1.3b), besagt: Bei...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.