1 - Science of Synthesis: Knowledge Updates 2012/3 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 18]
1.6 - Table of Contents [Seite 20]
1.7 - Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10-8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) [Seite 36]
1.7.1 - 1.4 Product Class 4: Organometallic Complexes of Cobalt [Seite 36]
1.7.1.1 - 1.4.5 Organometallic Complexes of Cobalt [Seite 36]
1.7.1.1.1 - 1.4.5.1 Cobalt-.5-Dienyl Complexes [Seite 36]
1.7.1.1.1.1 - 1.4.5.1.1 Synthesis of Cobalt-.5-Dienyl Complexes [Seite 36]
1.7.1.1.1.1.1 - 1.4.5.1.1.1 Method 1: Synthesis of Chiral Dicarbonyl(.5-cyclopentadienyl)cobalt(I) and (.5-Cyclopentadienyl)(.4-diene)cobalt(I) Complexes [Seite 36]
1.7.1.1.1.1.1.1 - 1.4.5.1.1.1.1 Variation 1: Synthesis of Chiral Dicarbonyl(.5-cyclopentadienyl)cobalt(I) Complexes by Oxidative Addition [Seite 37]
1.7.1.1.1.1.1.2 - 1.4.5.1.1.1.2 Variation 2: Synthesis of Chiral (.5-Cyclopentadienyl)(.4-diene)cobalt(I) Complexes by Substitution of Ligands [Seite 37]
1.7.1.1.1.1.2 - 1.4.5.1.1.2 Method 2: Synthesis of (Alkene)carbonyl(.5-cyclopentadienyl)cobalt(I) Complexes via Displacement of One Carbonyl Moiety [Seite 39]
1.7.1.1.1.1.3 - 1.4.5.1.1.3 Method 3: Synthesis of (.5-Cyclopentadienyl)(.4-diene)cobalt(I) Complexes via Substitution of Ligands [Seite 40]
1.7.1.1.1.1.4 - 1.4.5.1.1.4 Method 4: Synthesis of (.5-Cyclopentadienyl)cobalt-N-Heterocyclic Carbene Complexes by Exchange of Ligands [Seite 40]
1.7.1.1.1.1.4.1 - 1.4.5.1.1.4.1 Variation 1: Synthesis of Carbonyl(.5-cyclopentadienyl)cobalt-N-Heterocyclic Carbene Complexes [Seite 41]
1.7.1.1.1.1.4.2 - 1.4.5.1.1.4.2 Variation 2: Synthesis of (.5-Cyclopentadienyl)(ethene)cobalt-N-Heterocyclic Carbene Complexes [Seite 42]
1.7.1.1.1.1.4.3 - 1.4.5.1.1.4.3 Variation 3: Synthesis of (.5-Cyclopentadienyl)(triphenylphosphine)cobalt-N-Heterocyclic Carbene Complexes [Seite 42]
1.7.1.1.1.1.5 - 1.4.5.1.1.5 Method 5: Synthesis of (.5-Cyclopentadienyl)(phosphine)cobalt(I)-Ligand Complexes [Seite 43]
1.7.1.1.1.1.5.1 - 1.4.5.1.1.5.1 Variation 1: Synthesis of Carbonyl(.5-cyclopentadienyl)(triphenylphosphine)cobalt(I) [Seite 43]
1.7.1.1.1.1.5.2 - 1.4.5.1.1.5.2 Variation 2: Synthesis of (.5-Cyclopentadienyl)(triphenylphosphine)cobalt(I)-Alkene Complexes [Seite 43]
1.7.1.1.1.1.5.3 - 1.4.5.1.1.5.3 Variation 3: Synthesis of {[2-(Di-tert-butylphosphino)ethyl]cyclopentadienyl}(ethene)cobalt(I) [Seite 44]
1.7.1.1.1.1.6 - 1.4.5.1.1.6 Method 6: Synthesis of (.5-Cyclopentadienyl)cobalt-Dinitrosoalkane Complexes [Seite 45]
1.7.1.1.1.1.7 - 1.4.5.1.1.7 Method 7: Synthesis of (.5-Pentamethylcyclopentadienyl)cobalt-.3-Allyl Complexes by Exchange of Ligands [Seite 46]
1.7.1.1.1.1.8 - 1.4.5.1.1.8 Method 8: Synthesis of (.5-Cyclopentadienyl)cobalt-.5-Pentadienyl Complexes by Exchange of Ligands [Seite 48]
1.7.1.1.1.1.9 - 1.4.5.1.1.9 Method 9: Synthesis of (.5-Cyclopentadienyl)cobalt-Alkyne Complexes [Seite 50]
1.7.1.1.1.1.10 - 1.4.5.1.1.10 Method 10: Synthesis of (.5-Cyclopentadienyl)cobaltacycles [Seite 51]
1.7.1.1.1.1.10.1 - 1.4.5.1.1.10.1 Variation 1: Synthesis of (.5-Cyclopentadienyl)cobaltacyclobutenes [Seite 51]
1.7.1.1.1.1.10.2 - 1.4.5.1.1.10.2 Variation 2: Synthesis of (.5-Cyclopentadienyl)cobaltasilacyclopentenes [Seite 51]
1.7.1.1.1.2 - 1.4.5.1.2 Applications of Cobalt-.5-Dienyl Complexes in Organic Synthesis [Seite 52]
1.7.1.1.1.2.1 - 1.4.5.1.2.1 Method 1: Inter- and Intramolecular [2 + 2 + 2] Cyclizations [Seite 52]
1.7.1.1.1.2.1.1 - 1.4.5.1.2.1.1 Variation 1: Inter- and Intramolecular [2 + 2 + 2] Cyclizations of Triynes in Aromatic and Aqueous Solvents [Seite 52]
1.7.1.1.1.2.1.2 - 1.4.5.1.2.1.2 Variation 2: Intermolecular [2 + 2 + 2] Cyclizations of Diynes and Nitriles: Preparation of Pyridines [Seite 59]
1.7.1.1.1.2.1.3 - 1.4.5.1.2.1.3 Variation 3: Intermolecular [2 + 2 + 2] Cyclizations of Enediynes and Allenediynes [Seite 63]
1.7.1.1.1.2.1.4 - 1.4.5.1.2.1.4 Variation 4: Inter- and Intramolecular [2 + 2 + 2] Cyclizations of Diynes with Heteroatom-Substituted Multiple Bonds [Seite 67]
1.7.1.1.1.2.2 - 1.4.5.1.2.2 Method 2: Other Cyclizations [Seite 67]
1.7.1.1.1.2.2.1 - 1.4.5.1.2.2.1 Variation 1: [2 + 2] Cycloaddition [Seite 68]
1.7.1.1.1.2.2.2 - 1.4.5.1.2.2.2 Variation 2: [3 + 2] Annulation [Seite 69]
1.7.1.1.1.2.2.3 - 1.4.5.1.2.2.3 Variation 3: [3 + 2 + 2] Cycloaddition [Seite 70]
1.7.1.1.1.2.2.4 - 1.4.5.1.2.2.4 Variation 4: [5 + 2] Cycloaddition [Seite 72]
1.7.1.1.1.2.3 - 1.4.5.1.2.3 Method 3: Miscellaneous Reactions [Seite 73]
1.7.1.1.1.2.3.1 - 1.4.5.1.2.3.1 Variation 1: Cobalt-Mediated Ring Expansion [Seite 73]
1.7.1.1.1.2.3.2 - 1.4.5.1.2.3.2 Variation 2: Linear Co-oligomerization of Alkynes with Alkenes [Seite 74]
1.7.1.1.1.2.3.3 - 1.4.5.1.2.3.3 Variation 3: Hydroamination of Alkynes [Seite 76]
1.7.1.1.1.2.3.4 - 1.4.5.1.2.3.4 Variation 4: Activation of sp3 C--H Bonds [Seite 77]
1.7.1.1.1.2.3.5 - 1.4.5.1.2.3.5 Variation 5: Vinylic C--H Functionalization Reactions [Seite 78]
1.7.1.1.2 - 1.4.5.2 Miscellaneous Cobalt Complexes [Seite 79]
1.7.1.1.2.1 - 1.4.5.2.1 Synthesis of Miscellaneous Cobalt Complexes [Seite 79]
1.7.1.1.2.1.1 - 1.4.5.2.1.1 Method 1: Synthesis of Methyltetrakis(trimethylphosphine)cobalt(I) [Seite 79]
1.7.1.1.2.1.2 - 1.4.5.2.1.2 Method 2: Synthesis of Chlorotris(trimethylphosphine)cobalt(I) [Seite 80]
1.7.1.1.2.1.3 - 1.4.5.2.1.3 Method 3: Synthesis of Dihalobis(phosphine)cobalt(II) Complexes [Seite 80]
1.7.1.1.2.1.4 - 1.4.5.2.1.4 Method 4: Cobalt(II) or -(III) Salts as Precatalysts [Seite 81]
1.7.1.1.2.1.5 - 1.4.5.2.1.5 Method 5: Preformed Cobalt(II) and Cobalt(III) Complexes [Seite 82]
1.7.1.1.2.2 - 1.4.5.2.2 Applications of Miscellaneous Cobalt Complexes in Organic Synthesis [Seite 83]
1.7.1.1.2.2.1 - 1.4.5.2.2.1 Method 1: Cobalt-Catalyzed Homocoupling Reactions [Seite 83]
1.7.1.1.2.2.2 - 1.4.5.2.2.2 Method 2: C(sp2)--C(sp2) Cross-Coupling Reactions [Seite 84]
1.7.1.1.2.2.2.1 - 1.4.5.2.2.2.1 Variation 1: Alkenylation [Seite 85]
1.7.1.1.2.2.2.2 - 1.4.5.2.2.2.2 Variation 2: Biaryl Formation [Seite 86]
1.7.1.1.2.2.3 - 1.4.5.2.2.3 Method 3: C(sp2)--C(sp3) Cross-Coupling Reactions [Seite 88]
1.7.1.1.2.2.3.1 - 1.4.5.2.2.3.1 Variation 1: Alkylation of Alkenyl Halides [Seite 88]
1.7.1.1.2.2.3.2 - 1.4.5.2.2.3.2 Variation 2: Alkenylation of Alkyl Halides [Seite 89]
1.7.1.1.2.2.3.3 - 1.4.5.2.2.3.3 Variation 3: Alkylation of Aromatic Halides [Seite 90]
1.7.1.1.2.2.3.4 - 1.4.5.2.2.3.4 Variation 4: Arylation of Alkyl Halides [Seite 90]
1.7.1.1.2.2.3.5 - 1.4.5.2.2.3.5 Variation 5: Pseudodirect and Direct Arylation of Alkyl Halides [Seite 92]
1.7.1.1.2.2.3.6 - 1.4.5.2.2.3.6 Variation 6: Allylation [Seite 94]
1.7.1.1.2.2.4 - 1.4.5.2.2.4 Method 4: C(sp3)--C(sp3) Cross-Coupling Reactions [Seite 95]
1.7.1.1.2.2.4.1 - 1.4.5.2.2.4.1 Variation 1: Allylation [Seite 95]
1.7.1.1.2.2.4.2 - 1.4.5.2.2.4.2 Variation 2: Benzylation [Seite 96]
1.7.1.1.2.2.4.3 - 1.4.5.2.2.4.3 Variation 3: Alkylation [Seite 96]
1.7.1.1.2.2.5 - 1.4.5.2.2.5 Method 5: Alkynylation [Seite 97]
1.7.1.1.2.2.5.1 - 1.4.5.2.2.5.1 Variation 1: Benzylation of Alkynes [Seite 97]
1.7.1.1.2.2.5.2 - 1.4.5.2.2.5.2 Variation 2: Alkylation of Alkynes [Seite 97]
1.7.1.1.2.2.5.3 - 1.4.5.2.2.5.3 Variation 3: Alkenylation of Alkynes [Seite 98]
1.7.1.1.2.2.6 - 1.4.5.2.2.6 Method 6: Acylation [Seite 98]
1.7.1.1.2.2.7 - 1.4.5.2.2.7 Method 7: Radical Reactions [Seite 99]
1.7.1.1.2.2.8 - 1.4.5.2.2.8 Method 8: Cross Coupling of Unsaturated Compounds [Seite 101]
1.7.1.1.2.2.8.1 - 1.4.5.2.2.8.1 Variation 1: Alkyne Functionalization [Seite 101]
1.7.1.1.2.2.8.2 - 1.4.5.2.2.8.2 Variation 2: Cross Coupling of Alkynes with Enones [Seite 101]
1.7.1.1.2.2.8.3 - 1.4.5.2.2.8.3 Variation 3: Cross-Coupling Reactions Involving Alkenes and Alkynes [Seite 103]
1.7.1.1.2.2.9 - 1.4.5.2.2.9 Method 9: Michael-Type Conjugate Additions [Seite 103]
1.7.1.1.2.2.10 - 1.4.5.2.2.10 Method 10: Formation of Carbon--Heteroatom Bonds [Seite 104]
1.7.1.1.2.2.11 - 1.4.5.2.2.11 Method 11: Cross-Coupling Reactions with Carbonyl Compounds [Seite 105]
1.7.1.1.2.2.11.1 - 1.4.5.2.2.11.1 Variation 1: Allylation [Seite 105]
1.7.1.1.2.2.11.2 - 1.4.5.2.2.11.2 Variation 2: Formation of Hydroxy Amides and Esters [Seite 106]
1.7.1.1.2.2.11.3 - 1.4.5.2.2.11.3 Variation 3: Arylation [Seite 106]
1.7.1.1.2.2.12 - 1.4.5.2.2.12 Method 12: Multicomponent Reactions [Seite 107]
1.7.1.1.2.2.13 - 1.4.5.2.2.13 Method 13: Preparation of Organometallic Derivatives [Seite 108]
1.7.1.1.2.2.14 - 1.4.5.2.2.14 Method 14: Cyclization Reactions [Seite 109]
1.7.1.1.2.2.15 - 1.4.5.2.2.15 Method 15: Cobalt-Catalyzed Cycloadditions [Seite 110]
1.7.1.1.2.2.15.1 - 1.4.5.2.2.15.1 Variation 1: [2 + 2] Cycloadditions [Seite 110]
1.7.1.1.2.2.15.2 - 1.4.5.2.2.15.2 Variation 2: [3 + 2] Cycloadditions [Seite 111]
1.7.1.1.2.2.15.3 - 1.4.5.2.2.15.3 Variation 3: [4 + 2] Cycloadditions [Seite 112]
1.7.1.1.2.2.15.4 - 1.4.5.2.2.15.4 Variation 4: Homo-Diels-Alder Reactions [Seite 115]
1.7.1.1.2.2.15.5 - 1.4.5.2.2.15.5 Variation 5: [6 + 2] Cycloadditions [Seite 116]
1.7.1.1.2.2.15.6 - 1.4.5.2.2.15.6 Variation 6: [2 + 2 + 2] Cycloadditions [Seite 116]
1.7.1.1.2.2.15.7 - 1.4.5.2.2.15.7 Variation 7: [4 + 2 + 2] Cycloadditions [Seite 120]
1.7.1.1.2.2.15.8 - 1.4.5.2.2.15.8 Variation 8: [6 + 4] Cycloadditions [Seite 121]
1.7.1.1.2.2.15.9 - 1.4.5.2.2.15.9 Variation 9: Dipolar Cycloadditions with Nitrones [Seite 122]
1.7.1.1.2.2.16 - 1.4.5.2.2.16 Method 16: Alkene Functionalizations [Seite 123]
1.7.1.1.2.2.16.1 - 1.4.5.2.2.16.1 Variation 1: Cyclopropanation [Seite 123]
1.7.1.1.2.2.16.2 - 1.4.5.2.2.16.2 Variation 2: Aziridination [Seite 127]
1.7.1.1.2.2.16.3 - 1.4.5.2.2.16.3 Variation 3: Hydrovinylation of Alkenes [Seite 129]
1.7.1.1.2.2.16.4 - 1.4.5.2.2.16.4 Variation 4: Miscellaneous Alkene Functionalizations [Seite 130]
1.7.1.1.2.2.17 - 1.4.5.2.2.17 Method 17: C--H Activation [Seite 131]
1.7.1.1.2.2.17.1 - 1.4.5.2.2.17.1 Variation 1: Cobalt-Catalyzed Assisted ortho-Functionalization [Seite 131]
1.7.1.1.2.2.17.2 - 1.4.5.2.2.17.2 Variation 2: Cobalt-Catalyzed Direct Arylation [Seite 134]
1.7.1.1.2.2.17.3 - 1.4.5.2.2.17.3 Variation 3: Cobalt-Catalyzed Transformation of Alkynyl C--H Bonds [Seite 135]
1.7.1.1.2.2.17.4 - 1.4.5.2.2.17.4 Variation 4: Cobalt-Catalyzed C--H Amination [Seite 135]
1.7.1.1.2.2.17.5 - 1.4.5.2.2.17.5 Variation 5: Formation of Organocobalt Complexes [Seite 136]
1.7.1.1.2.2.18 - 1.4.5.2.2.18 Method 18: Cobalt-Catalyzed Ring-Expansion and Ring-Opening Reactions [Seite 141]
1.7.1.1.2.2.18.1 - 1.4.5.2.2.18.1 Variation 1: Cobalt-Catalyzed Carboxylative and Carbonylative Ring Expansion/Opening [Seite 142]
1.7.1.1.2.2.18.2 - 1.4.5.2.2.18.2 Variation 2: Cobalt-Catalyzed Ring-Opening Reactions [Seite 144]
1.8 - Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au) [Seite 158]
1.8.1 - 3.6 Product Class 6: Organometallic Complexes of Gold [Seite 158]
1.8.1.1 - 3.6.14 Organometallic Complexes of Gold (Update 1) [Seite 158]
1.8.1.1.1 - 3.6.14.1 Asymmetric Gold-Catalyzed Transformations [Seite 158]
1.8.1.1.1.1 - 3.6.14.1.1 Asymmetric Gold(I)-Catalyzed Transformations Proceeding via Initial Alkyne p-Activation [Seite 163]
1.8.1.1.1.1.1 - 3.6.14.1.1.1 Cycloisomerization Reactions [Seite 163]
1.8.1.1.1.1.1.1 - 3.6.14.1.1.1.1 Method 1: Cycloisomerizations of 1,6-Enynes [Seite 163]
1.8.1.1.1.1.1.1.1 - 3.6.14.1.1.1.1.1 Variation 1: 5-exo-dig Cyclization [Seite 163]
1.8.1.1.1.1.1.1.2 - 3.6.14.1.1.1.1.2 Variation 2: 6-endo-dig Cyclization [Seite 166]
1.8.1.1.1.1.1.2 - 3.6.14.1.1.1.2 Method 2: Cycloisomerizations of 1,5-Enynes [Seite 170]
1.8.1.1.1.1.1.3 - 3.6.14.1.1.1.3 Method 3: Cyclizations of 1,3-Enynes [Seite 171]
1.8.1.1.1.1.1.4 - 3.6.14.1.1.1.4 Method 4: Cyclopropanations [Seite 172]
1.8.1.1.1.1.1.4.1 - 3.6.14.1.1.1.4.1 Variation 1: Intermolecular Cyclopropanation [Seite 172]
1.8.1.1.1.1.1.4.2 - 3.6.14.1.1.1.4.2 Variation 2: Intramolecular Cyclopropanation [Seite 174]
1.8.1.1.1.1.1.5 - 3.6.14.1.1.1.5 Method 5: Analogous Cycloisomerizations Proceeding through Gold(I) Carbenoids [Seite 175]
1.8.1.1.1.1.1.6 - 3.6.14.1.1.1.6 Method 6: Other Cycloisomerization Reactions of Propargyl Carboxylates [Seite 176]
1.8.1.1.1.1.2 - 3.6.14.1.1.2 Desymmetrization Reactions [Seite 177]
1.8.1.1.1.1.2.1 - 3.6.14.1.1.2.1 Method 1: Desymmetrization of Diynes [Seite 177]
1.8.1.1.1.1.2.2 - 3.6.14.1.1.2.2 Method 2: Desymmetrization of Diols [Seite 179]
1.8.1.1.1.2 - 3.6.14.1.2 Asymmetric Gold(I)-Catalyzed Transformations Proceeding via Initial Allene p-Activation [Seite 180]
1.8.1.1.1.2.1 - 3.6.14.1.2.1 Cycloisomerization Reactions [Seite 180]
1.8.1.1.1.2.1.1 - 3.6.14.1.2.1.1 Method 1: Hydroindolization [Seite 180]
1.8.1.1.1.2.1.2 - 3.6.14.1.2.1.2 Method 2: Cycloisomerization of 1,6-Allenenes [Seite 181]
1.8.1.1.1.2.1.3 - 3.6.14.1.2.1.3 Method 3: Formal [2 + 2]-Cycloaddition Reactions [Seite 182]
1.8.1.1.1.2.1.4 - 3.6.14.1.2.1.4 Method 4: Formal [4 + 2]-Cycloaddition Reactions [Seite 184]
1.8.1.1.1.2.1.5 - 3.6.14.1.2.1.5 Method 5: Ring Expansion of Allenylcyclopropanols [Seite 186]
1.8.1.1.1.2.2 - 3.6.14.1.2.2 Addition Reactions [Seite 187]
1.8.1.1.1.2.2.1 - 3.6.14.1.2.2.1 Method 1: Intramolecular Hydroalkoxylation and Hydroamination [Seite 187]
1.8.1.1.1.2.2.2 - 3.6.14.1.2.2.2 Method 2: Intramolecular Hydroindolization [Seite 196]
1.8.1.1.1.2.2.3 - 3.6.14.1.2.2.3 Method 3: Intermolecular Hydroamination [Seite 197]
1.8.1.1.1.3 - 3.6.14.1.3 Asymmetric Reactions of Alkenes [Seite 198]
1.8.1.1.1.3.1 - 3.6.14.1.3.1 Method 1: Hydrogenation [Seite 198]
1.8.1.1.1.4 - 3.6.14.1.4 Miscellaneous Reactions [Seite 199]
1.8.1.1.1.4.1 - 3.6.14.1.4.1 Method 1: Enantioselective Reactions by Lewis Acidic Heteroatom Coordination [Seite 199]
1.8.1.1.1.4.1.1 - 3.6.14.1.4.1.1 Variation 1: Aldol Reaction [Seite 199]
1.8.1.1.1.4.1.2 - 3.6.14.1.4.1.2 Variation 2: Cycloaddition of Münchnones with Electron-Deficient Alkenes [Seite 199]
1.8.1.1.1.4.2 - 3.6.14.1.4.2 Method 2: Enantioselective Reactions of Alkynyl-Gold(I) Species [Seite 200]
1.8.1.1.1.4.3 - 3.6.14.1.4.3 Method 3: Enantioselective Protonation of Silyl Enol Ethers [Seite 201]
1.8.1.2 - 3.6.15 Organometallic Complexes of Gold (Update 2) [Seite 206]
1.8.1.2.1 - 3.6.15.1 Gold-Catalyzed Reactions of Alkenes [Seite 206]
1.8.1.2.1.1 - 3.6.15.1.1 Functionalization of Alkenes [Seite 206]
1.8.1.2.1.1.1 - 3.6.15.1.1.1 Hydrofunctionalization of Unactivated Alkenes [Seite 206]
1.8.1.2.1.1.1.1 - 3.6.15.1.1.1.1 Method 1: Inter- and Intramolecular Hydroalkylation of Alkenes [Seite 206]
1.8.1.2.1.1.1.2 - 3.6.15.1.1.1.2 Method 2: Inter- and Intramolecular Hydroarylation of Alkenes [Seite 209]
1.8.1.2.1.1.1.2.1 - 3.6.15.1.1.1.2.1 Variation 1: Formation of Hexahydrodibenzo[b,d]furans [Seite 211]
1.8.1.2.1.1.1.3 - 3.6.15.1.1.1.3 Method 3: Hydroalkoxylation of Alkenes [Seite 211]
1.8.1.2.1.1.1.3.1 - 3.6.15.1.1.1.3.1 Variation 1: Formation of Allylic Ethers [Seite 213]
1.8.1.2.1.1.1.3.2 - 3.6.15.1.1.1.3.2 Variation 2: Formation of Dihydrobenzofurans from Allyl Aryl Ethers [Seite 214]
1.8.1.2.1.1.1.4 - 3.6.15.1.1.1.4 Method 4: Inter- and Intramolecular Hydroamination of Alkenes [Seite 215]
1.8.1.2.1.1.1.4.1 - 3.6.15.1.1.1.4.1 Variation 1: Formation of Pyrrolidines through Domino Ring Opening/Ring Closing of Methylenecyclopropanes with Sulfonamides [Seite 221]
1.8.1.2.1.1.1.4.2 - 3.6.15.1.1.1.4.2 Variation 2: Inter- and Intramolecular Hydroamination of Dienes [Seite 222]
1.8.1.2.1.1.1.5 - 3.6.15.1.1.1.5 Method 5: Hydrothiolation of Alkenes [Seite 224]
1.8.1.2.1.1.2 - 3.6.15.1.1.2 Michael-Type Addition to a,ß-Unsaturated Carbonyl Compounds [Seite 225]
1.8.1.2.1.1.2.1 - 3.6.15.1.1.2.1 Method 1: Addition of Indoles and 7-Azaindoles to a,ß-Unsaturated Ketones [Seite 226]
1.8.1.2.1.1.2.1.1 - 3.6.15.1.1.2.1.1 Variation 1: Formation of Alkylated Indoles from 2-Alkynylanilines [Seite 228]
1.8.1.2.1.1.2.2 - 3.6.15.1.1.2.2 Method 2: Addition of Furans and Pyrroles to a,ß-Unsaturated Ketones [Seite 229]
1.8.1.2.1.1.2.2.1 - 3.6.15.1.1.2.2.1 Variation 1: Formation of Phenols from Furans and a,ß-Unsaturated Alkynyl Ketones [Seite 230]
1.8.1.2.1.1.2.3 - 3.6.15.1.1.2.3 Method 3: Addition of Electron-Rich Arenes to a,ß-Unsaturated Carbonyl Compounds and Nitriles [Seite 230]
1.8.1.2.1.1.2.4 - 3.6.15.1.1.2.4 Method 4: Addition of Carbamates and 4-Toluenesulfonamides to a,ß-Unsaturated Ketones [Seite 231]
1.8.1.2.1.1.3 - 3.6.15.1.1.3 Reactions of Allylic Acetates [Seite 232]
1.8.1.2.1.1.3.1 - 3.6.15.1.1.3.1 Method 1: Rearrangement of Allylic Acetates [Seite 233]
1.8.1.2.1.1.3.2 - 3.6.15.1.1.3.2 Method 2: Allyl-Allyl Coupling [Seite 235]
1.8.1.2.1.1.3.3 - 3.6.15.1.1.3.3 Method 3: Cascade Intermolecular Allylic Substitution/Enyne Cycloisomerization [Seite 236]
1.8.1.2.1.1.4 - 3.6.15.1.1.4 Intermolecular Cyclopropanation of Alkenes [Seite 236]
1.8.1.2.1.1.4.1 - 3.6.15.1.1.4.1 Method 1: Cyclopropanation via Transfer Reaction from Diazo Compounds [Seite 237]
1.8.1.2.1.1.4.2 - 3.6.15.1.1.4.2 Method 2: Cyclopropanation via In Situ Generated Gold Carbenes from Propargylic Acetates [Seite 240]
1.8.1.2.1.1.4.2.1 - 3.6.15.1.1.4.2.1 Variation 1: Cyclopropanation via Retro-Buchner Reaction [Seite 242]
1.8.1.2.1.1.5 - 3.6.15.1.1.5 Cycloaddition Reactions [Seite 243]
1.8.1.2.1.1.5.1 - 3.6.15.1.1.5.1 Method 1: Intermolecular [3 + 2] Cycloaddition of Alkynyl Epoxides with Alkenes [Seite 244]
1.8.1.2.1.1.5.1.1 - 3.6.15.1.1.5.1.1 Variation 1: Formation of Tricyclic Indoles from Azomethine Ylides [Seite 244]
1.8.1.2.1.1.5.2 - 3.6.15.1.1.5.2 Method 2: Intermolecular [4 + 2] Cycloaddition of Enynes and Alkynes [Seite 245]
1.8.1.2.1.1.5.2.1 - 3.6.15.1.1.5.2.1 Variation 1: Formation of Benzonorcaradienes by Intermolecular [4 + 3] Cycloaddition of Diynes and Alkenes [Seite 247]
1.8.1.2.1.1.5.3 - 3.6.15.1.1.5.3 Method 3: Intermolecular [3 + 2] and [4 + 3] Cycloadditions of Propargyl Carboxylates and Alkenes or Dienes [Seite 248]
1.8.1.2.1.1.5.4 - 3.6.15.1.1.5.4 Method 4: 1,3-Dipolar Cycloadditions [Seite 252]
1.8.1.2.1.1.5.4.1 - 3.6.15.1.1.5.4.1 Variation 1: Enantioselective 1,3-Dipolar Cycloadditions of Münchnones [Seite 253]
1.8.1.2.1.1.6 - 3.6.15.1.1.6 Oxidation of Alkenes [Seite 255]
1.8.1.2.1.1.6.1 - 3.6.15.1.1.6.1 Method 1: Formation of Carbonyl Compounds [Seite 255]
1.9 - Volume 6: Boron Compounds [Seite 262]
1.9.1 - 6.1 Product Class 1: Boron Compounds [Seite 262]
1.9.1.1 - 6.1.3.8 Diborane(4) Compounds [Seite 262]
1.9.1.1.1 - 6.1.3.8.1 Applications of Diborane(4) Compounds in Organic Synthesis [Seite 262]
1.9.1.1.1.1 - 6.1.3.8.1.1 Method 1: Diboration of Alkenes [Seite 262]
1.9.1.1.1.1.1 - 6.1.3.8.1.1.1 Variation 1: Enantioselective Diboration of Terminal Alkenes [Seite 262]
1.9.1.1.1.1.2 - 6.1.3.8.1.1.2 Variation 2: Metal-Free Diboration [Seite 263]
1.9.1.1.1.2 - 6.1.3.8.1.2 Method 2: Enantioselective Diboration of Allenes [Seite 264]
1.9.1.1.1.3 - 6.1.3.8.1.3 Method 3: Enantioselective Diboration of (E)-1,3-Dienes [Seite 265]
1.9.1.1.1.4 - 6.1.3.8.1.4 Method 4: Advances in Alkyne Hydroboration and Diboration [Seite 266]
1.9.1.1.1.4.1 - 6.1.3.8.1.4.1 Variation 1: N-Heterocyclic Carbene-Copper Catalyzed Dihydroboration of Terminal Alkynes [Seite 266]
1.9.1.1.1.4.2 - 6.1.3.8.1.4.2 Variation 2: Borylative Cyclization of Enynes [Seite 267]
1.9.1.1.1.4.3 - 6.1.3.8.1.4.3 Variation 3: Platinum-Catalyzed Diborylation of Arynes [Seite 268]
1.9.1.1.1.4.4 - 6.1.3.8.1.4.4 Variation 4: Differentially Protected Diboron Reagents [Seite 269]
1.9.1.1.1.5 - 6.1.3.8.1.5 Method 5: Allylic Substitution [Seite 271]
1.9.1.1.1.5.1 - 6.1.3.8.1.5.1 Variation 1: Nickel-Catalyzed Borylative Ring Opening of Vinyl Epoxides and Aziridines [Seite 271]
1.9.1.1.1.5.2 - 6.1.3.8.1.5.2 Variation 2: Reaction Using a Copper(I)-Bidentate Phosphine Complex [Seite 272]
1.9.1.1.1.5.3 - 6.1.3.8.1.5.3 Variation 3: Reaction Using a Copper(II)-N-Heterocyclic Carbene Complex [Seite 273]
1.9.1.1.1.5.4 - 6.1.3.8.1.5.4 Variation 4: Desymmetrization of meso-Diols [Seite 275]
1.9.1.1.1.6 - 6.1.3.8.1.6 Method 6: Copper-Catalyzed Synthesis of Multisubstituted Allenylboronates [Seite 276]
1.9.1.1.1.7 - 6.1.3.8.1.7 Method 7: Nickel-Catalyzed Borylative Ring Opening [Seite 277]
1.9.1.1.1.7.1 - 6.1.3.8.1.7.1 Variation 1: Reaction of Vinylcyclopropanes [Seite 277]
1.9.1.1.1.7.2 - 6.1.3.8.1.7.2 Variation 2: Reaction of Aryl Cyclopropyl Ketones [Seite 277]
1.9.1.1.1.8 - 6.1.3.8.1.8 Method 8: Copper-Catalyzed Conjugate Addition of 2,2'-Bi-1,3,2-dioxaborolane to a,ß-Unsaturated Carbonyl Compounds [Seite 279]
1.9.1.1.1.8.1 - 6.1.3.8.1.8.1 Variation 1: Racemic Addition to Carbonyl Compounds [Seite 279]
1.9.1.1.1.8.2 - 6.1.3.8.1.8.2 Variation 2: Enantioselective Addition to Carbonyl Compounds [Seite 280]
1.9.1.1.1.8.3 - 6.1.3.8.1.8.3 Variation 3: Addition to Aldehydes and Imines [Seite 281]
1.9.1.1.1.8.4 - 6.1.3.8.1.8.4 Variation 4: Metal-Free Addition to Carbonyl Compounds [Seite 283]
1.9.1.1.1.8.5 - 6.1.3.8.1.8.5 Variation 5: Tertiary Boronic Esters by Addition to 3,3-Disubstituted Enones [Seite 284]
1.9.1.1.1.8.6 - 6.1.3.8.1.8.6 Variation 6: Enantioselective Addition to 3-Boryl Enoates [Seite 285]
1.9.1.1.1.9 - 6.1.3.8.1.9 Method 9: Synthesis of Cycloalkylboronates [Seite 288]
1.9.1.1.1.9.1 - 6.1.3.8.1.9.1 Variation 1: Stereospecific Synthesis of Cyclobutylboronates [Seite 288]
1.9.1.1.1.9.2 - 6.1.3.8.1.9.2 Variation 2: Enantioselective Synthesis of Cyclopropylboronates [Seite 288]
1.9.1.1.2 - 6.1.35.20 Allylboranes [Seite 292]
1.9.1.1.2.1 - 6.1.35.20.1 Synthesis of Allylboranes [Seite 292]
1.9.1.1.2.1.1 - 6.1.35.20.1.1 Method 1: Synthesis by Transmetalation [Seite 292]
1.9.1.1.2.1.2 - 6.1.35.20.1.2 Method 2: Synthesis by Hydroboration of 1,3-Dienes or Allenes [Seite 300]
1.9.1.1.2.1.2.1 - 6.1.35.20.1.2.1 Variation 1: Catalyzed Hydroboration of 1,3-Dienes [Seite 300]
1.9.1.1.2.1.2.2 - 6.1.35.20.1.2.2 Variation 2: Thermal Hydroboration [Seite 302]
1.9.1.1.2.1.3 - 6.1.35.20.1.3 Method 3: Synthesis by Diboration or Silaboration of 1,3-Dienes, Allenes, or Vinylcyclopropanes [Seite 307]
1.9.1.1.2.1.3.1 - 6.1.35.20.1.3.1 Variation 1: Diboration of 1,3-Dienes, Enones, or Allenes [Seite 307]
1.9.1.1.2.1.3.2 - 6.1.35.20.1.3.2 Variation 2: Diboration of Vinylcyclopropanes, Vinyloxiranes, or Aziridines [Seite 315]
1.9.1.1.2.1.3.3 - 6.1.35.20.1.3.3 Variation 3: Silaboration of 1,3-Dienes or Allenes [Seite 317]
1.9.1.1.2.1.4 - 6.1.35.20.1.4 Method 4: Synthesis by [4 + 2] Cycloaddition [Seite 319]
1.9.1.1.2.1.5 - 6.1.35.20.1.5 Method 5: Synthesis from Diborane(4) Derivatives and Allylic Alcohols, Acetates, or Carbonates [Seite 322]
1.9.1.1.2.1.6 - 6.1.35.20.1.6 Method 6: Synthesis by 3,3-Sigmatropic Rearrangement [Seite 328]
1.9.1.1.2.1.7 - 6.1.35.20.1.7 Method 7: Homologation of Alkenylboron Compounds [Seite 331]
1.9.1.1.2.1.8 - 6.1.35.20.1.8 Method 8: Synthesis by Vinylation of (a-Haloalkyl)boron Derivatives [Seite 335]
1.9.1.1.2.1.9 - 6.1.35.20.1.9 Method 9: Synthesis by Metathesis [Seite 338]
1.9.1.1.2.1.10 - 6.1.35.20.1.10 Method 10: Synthesis by Miscellaneous Methods [Seite 342]
1.9.1.1.2.2 - 6.1.35.20.2 Applications of Allylboranes in Organic Synthesis [Seite 351]
1.9.1.1.2.2.1 - 6.1.35.20.2.1 Method 1: Synthesis of Homoallylic Alcohols, Amines, and Hydrazines via Allylboration of C==O and C==N Bonds [Seite 352]
1.9.1.1.2.2.1.1 - 6.1.35.20.2.1.1 Variation 1: Allylboration of Aldehydes and Ketones [Seite 352]
1.9.1.1.2.2.1.2 - 6.1.35.20.2.1.2 Variation 2: Allylboration of C==N Bonds [Seite 355]
1.9.1.1.2.2.2 - 6.1.35.20.2.2 Method 2: Allylboration of N==N and C==N Bonds [Seite 359]
1.9.1.1.2.2.3 - 6.1.35.20.2.3 Method 3: Allylation by Cross-Coupling Reactions [Seite 360]
1.9.1.1.2.2.4 - 6.1.35.20.2.4 Method 4: Allylboron-Acetylene Condensation [Seite 364]
1.9.1.1.2.2.5 - 6.1.35.20.2.5 Method 5: Reductive trans-Diallylation of Aromatic N-Heterocycles [Seite 367]
1.9.1.1.2.2.6 - 6.1.35.20.2.6 Method 6: Miscellaneous Methods [Seite 369]
1.10 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 378]
1.10.1 - 16.15 Product Class 15: Quinoxalines [Seite 378]
1.10.1.1 - 16.15.5 Quinoxalines [Seite 378]
1.10.1.1.1 - 16.15.5.1 Synthesis by Ring-Closure Reactions [Seite 380]
1.10.1.1.1.1 - 16.15.5.1.1 By Annulation to an Arene [Seite 380]
1.10.1.1.1.1.1 - 16.15.5.1.1.1 By Formation of Two N--C Bonds and One C--C Bond [Seite 380]
1.10.1.1.1.1.1.1 - 16.15.5.1.1.1.1 Fragments N--Arene--N, C, and C [Seite 380]
1.10.1.1.1.1.1.1.1 - 16.15.5.1.1.1.1.1 Method 1: From Benzene-1,2-diamine, Aldehydes, and Isocyanides [Seite 380]
1.10.1.1.1.1.1.1.2 - 16.15.5.1.1.1.1.2 Method 2: From Benzene-1,2-diamine, Aldehydes, and Tosylmethyl Isocyanide [Seite 381]
1.10.1.1.1.1.2 - 16.15.5.1.1.2 By Formation of Two N--C Bonds [Seite 382]
1.10.1.1.1.1.2.1 - 16.15.5.1.1.2.1 Fragments N--Arene--N and C--C [Seite 382]
1.10.1.1.1.1.2.1.1 - 16.15.5.1.1.2.1.1 Method 1: From Benzene-1,2-diamines and Glyoxal or Its Synthetic Equivalents [Seite 383]
1.10.1.1.1.1.2.1.1.1 - 16.15.5.1.1.2.1.1.1 Variation 1: From Substituted Benzene-1,2-diamines and 1,4-Dioxane-2,3-diol [Seite 383]
1.10.1.1.1.1.2.1.1.2 - 16.15.5.1.1.2.1.1.2 Variation 2: From Benzene-1,2-diamine and Hexahydro-[1,4]dioxino[2,3-b]-1,4-dioxin-2,3,6,7-tetraol [Seite 383]
1.10.1.1.1.1.2.1.1.3 - 16.15.5.1.1.2.1.1.3 Variation 3: From Benzene-1,2-diamine and Disodium 1,2-Dihydroxyethane-1,2-disulfonate [Seite 384]
1.10.1.1.1.1.2.1.1.4 - 16.15.5.1.1.2.1.1.4 Variation 4: From Benzene-1,2-diamine and N,N'-Dicyclohexylethane-1,2-diimine [Seite 385]
1.10.1.1.1.1.2.1.2 - 16.15.5.1.1.2.1.2 Method 2: From Benzene-1,2-diamines and a-Oxoaldehydes or Their Synthetic Equivalents [Seite 385]
1.10.1.1.1.1.2.1.2.1 - 16.15.5.1.1.2.1.2.1 Variation 1: From Benzene-1,2-diamine and a,a-Dihydroxy Ketones [Seite 386]
1.10.1.1.1.1.2.1.2.2 - 16.15.5.1.1.2.1.2.2 Variation 2: From Benzene-1,2-diamine and a-Ketoaldehyde Oximes or Hydrazones [Seite 386]
1.10.1.1.1.1.2.1.3 - 16.15.5.1.1.2.1.3 Method 3: From Benzene-1,2-diamines and 1,2-Diketones or Their Synthetic Equivalents [Seite 387]
1.10.1.1.1.1.2.1.3.1 - 16.15.5.1.1.2.1.3.1 Variation 1: Synthesis of Quinoxalinium Salts from N-Substituted Benzene-1,2-diamines and Butane-2,3-dione [Seite 388]
1.10.1.1.1.1.2.1.3.2 - 16.15.5.1.1.2.1.3.2 Variation 2: From Benzene-1,2-diamines and Alkynes under Oxidative Conditions [Seite 389]
1.10.1.1.1.1.2.1.3.3 - 16.15.5.1.1.2.1.3.3 Variation 3: From Benzene-1,2-diamines and Diiminosuccinonitrile [Seite 389]
1.10.1.1.1.1.2.1.4 - 16.15.5.1.1.1.1.4 Method 4: From Benzene-1,2-diamines and a-Oxo Acids or Their Derivatives (The Hinsberg Reaction) [Seite 390]
1.10.1.1.1.1.2.1.5 - 16.15.5.1.1.1.1.5 Method 5: From Benzene-1,2-diamines and Oxalic Acid Derivatives [Seite 391]
1.10.1.1.1.1.2.1.5.1 - 16.15.5.1.1.1.1.5.1 Variation 1: From Benzene-1,2-diamines and Alkyl Alkoxy(imino)acetates [Seite 392]
1.10.1.1.1.1.2.1.6 - 16.15.5.1.1.2.1.6 Method 6: From Benzene-1,2-diamines and Dialkyl Acetylenedicarboxylates [Seite 393]
1.10.1.1.1.1.2.1.7 - 16.15.5.1.1.2.1.7 Method 7: From Benzene-1,2-diamine and Aryl Methyl Ketones and Their Derivatives [Seite 394]
1.10.1.1.1.1.2.1.7.1 - 16.15.5.1.1.2.1.7.1 Variation 1: Oxidative Cyclization of Benzene-1,2-diamine and Acetylpyridines [Seite 394]
1.10.1.1.1.1.2.1.7.2 - 16.15.5.1.1.2.1.7.2 Variation 2: From Benzene-1,2-diamines and Hydroxymethyl Ketones [Seite 395]
1.10.1.1.1.1.2.1.7.3 - 16.15.5.1.1.2.1.7.3 Variation 3: From Benzene-1,2-diamines and Halomethyl Ketones [Seite 396]
1.10.1.1.1.1.2.1.7.4 - 16.15.5.1.1.2.1.7.4 Variation 4: From Benzene-1,2-diamines and Aminomethyl Ketones [Seite 397]
1.10.1.1.1.1.2.1.8 - 16.15.5.1.1.2.1.8 Method 8: From Benzene-1,2-diamines and a-Diazo Ketones [Seite 397]
1.10.1.1.1.1.2.2 - 16.15.5.1.1.2.2 Fragments N--C--C--N and C--C (Arene) [Seite 398]
1.10.1.1.1.1.2.2.1 - 16.15.5.1.1.2.2.1 Method 1: From 1,2-Diamines and Benzo-1,4-quinones and -1,2-quinones [Seite 398]
1.10.1.1.1.1.2.3 - 16.15.5.1.1.2.3 Fragments N--Arene and N--C--C [Seite 398]
1.10.1.1.1.1.2.3.1 - 16.15.5.1.1.2.3.1 Method 1: Synthesis of Quinoxalinone N-Oxides from Anilines and 1,1,2-Trichloro-2-nitroethene [Seite 398]
1.10.1.1.1.1.3 - 16.15.5.1.1.3 By Formation of One N--C and One C--C Bond [Seite 399]
1.10.1.1.1.1.4 - 16.15.5.1.1.4 By Formation of One N--C Bond [Seite 400]
1.10.1.1.1.1.4.1 - 16.15.5.1.1.4.1 Fragment N--Arene--N--C--C [Seite 400]
1.10.1.1.1.1.4.1.1 - 16.15.5.1.1.4.1.1 Method 1: Intramolecular Reactions of C-Electrophiles with a 2-Aminophenyl Group [Seite 400]
1.10.1.1.1.1.4.1.1.1 - 16.15.5.1.1.4.1.1.1 Variation 1: Intramolecular Reductive Cyclization of N-(2-Nitrophenyl)-2-oxopropanamide [Seite 400]
1.10.1.1.1.1.4.1.1.2 - 16.15.5.1.1.4.1.1.2 Variation 2: From N-(2-Nitrophenyl)glycines by a Reductive Cyclization/Oxidation Sequence [Seite 400]
1.10.1.1.1.1.4.1.1.3 - 16.15.5.1.1.4.1.1.3 Variation 3: Intramolecular Reductive Cyclization of 2-(2-Nitrophenylamino)-2-oxoacetates [Seite 401]
1.10.1.1.1.1.4.1.2 - 16.15.5.1.1.4.1.2 Method 2: Quinoxalinone N-Oxides by Intramolecular C-Nucleophilic Attack on a 2-Nitrophenyl Group [Seite 402]
1.10.1.1.1.1.4.2 - 16.15.5.1.1.4.2 Fragment Arene--N--C--C--N [Seite 403]
1.10.1.1.1.1.4.2.1 - 16.15.5.1.1.4.2.1 Method 1: Intramolecular Cyclization of (Phenylimino)acetaldehyde [Seite 403]
1.10.1.1.1.1.4.2.2 - 16.15.5.1.1.4.2.2 Method 2: Unsymmetrical 2,3-Substituted Quinoxalines from N-Aryl Nitroketene N,S-Acetals and Phosphoryl Chloride [Seite 403]
1.10.1.1.1.2 - 16.15.5.1.2 By Annulation to the Heterocyclic Ring [Seite 404]
1.10.1.1.1.2.1 - 16.15.5.1.2.1 By Formation of Two C--C Bonds [Seite 404]
1.10.1.1.1.2.1.1 - 16.15.5.1.2.1.1 Fragments C--Hetarene--C and C--C [Seite 404]
1.10.1.1.1.2.1.1.1 - 16.15.5.1.2.1.1.1 Method 1: Cycloaddition of 2,3-Bis(dibromomethyl)pyrazine to Dienophiles [Seite 404]
1.10.1.1.2 - 16.15.5.2 Synthesis by Ring Transformation [Seite 404]
1.10.1.1.2.1 - 16.15.5.2.1 By Ring Enlargement [Seite 404]
1.10.1.1.2.1.1 - 16.15.5.2.1.1 Method 1: From Benzimidazoles and 1,2-Diketones [Seite 404]
1.10.1.1.2.1.2 - 16.15.5.2.1.2 Method 2: Quinoxalines from Benzofurazans and 2-Aminoethanol [Seite 405]
1.10.1.1.2.1.3 - 16.15.5.2.1.3 Method 3: Quinoxaline 1,4-Dioxides from Benzofurazan 1-Oxides and Enolizable Carbonyl Compounds [Seite 405]
1.10.1.1.2.1.4 - 16.15.5.2.1.4 Method 4: From Benzene-1,2-diamines and 1H-Indole-2,3-diones (Isatins) [Seite 406]
1.10.1.1.3 - 16.15.5.3 Synthesis by Ring Modification [Seite 407]
1.10.1.1.3.1 - 16.15.5.3.1 Oxidative Ring Modifications [Seite 407]
1.10.1.1.3.1.1 - 16.15.5.3.1.1 Method 1: Aromatization by Oxidation of 1,2,3,4-Tetrahydroquinoxalines [Seite 407]
1.10.1.1.3.1.2 - 16.15.5.3.1.2 Method 2: Aromatization by Oxidation of 1,2-Dihydroquinoxaline Derivatives [Seite 408]
1.10.1.1.3.1.3 - 16.15.5.3.1.3 Method 3: Quinoxaline N-Oxides by N-Oxidation of Quinoxalines [Seite 409]
1.10.1.1.3.1.4 - 16.15.5.3.1.4 Method 4: Quinoxaline 1,4-Dioxides by N-Oxidation of Quinoxalines [Seite 410]
1.10.1.1.3.1.4.1 - 16.15.5.3.1.4.1 Variation 1: Quinoxaline 1,4-Dioxides by N-Oxidation of Quinoxaline N-Oxides [Seite 411]
1.10.1.1.3.1.5 - 16.15.5.3.1.5 Method 5: Quinoxaline-2,3-diones from Quinoxalin-2-ones by Oxidation [Seite 412]
1.10.1.1.3.2 - 16.15.5.3.2 Reductive Ring Modifications [Seite 412]
1.10.1.1.3.2.1 - 16.15.5.3.2.1 Method 1: Reduction of Quinoxalines to 1,2,3,4-Tetrahydroquinoxalines [Seite 412]
1.10.1.1.3.2.2 - 16.15.5.3.2.2 Method 2: Reduction of Quinoxalin-2-ones to 3,4-Dihydroquinoxalin-2(1H)-ones [Seite 414]
1.10.1.1.3.2.3 - 16.15.5.3.2.3 Method 3: Reduction of Quinoxaline N-Oxides to Quinoxalines [Seite 414]
1.10.1.1.3.2.4 - 16.15.5.3.2.4 Method 4: Reduction of Quinoxaline 1,4-Dioxides to Quinoxalines [Seite 415]
1.10.1.1.3.3 - 16.15.5.3.3 Addition of C-Nucleophiles [Seite 416]
1.10.1.1.3.3.1 - 16.15.5.3.3.1 Method 1: Addition of Ketone Enols to Quinoxalin-2-ones [Seite 416]
1.10.1.1.3.3.2 - 16.15.5.3.3.2 Method 2: Addition of Anions Derived from 1-Haloalkyl Sulfones [Seite 416]
1.10.1.1.3.3.3 - 16.15.5.3.3.3 Method 3: Addition of Organometallics [Seite 417]
1.10.1.1.3.3.4 - 16.15.5.3.3.4 Method 4: Addition of Potassium Phenylacetylide to Quinoxaline 1-Oxides [Seite 418]
1.10.1.1.3.3.5 - 16.15.5.3.3.5 Method 5: Cycloaddition Reactions [Seite 418]
1.10.1.1.3.4 - 16.15.5.3.4 Elimination Reactions [Seite 419]
1.10.1.1.3.4.1 - 16.15.5.3.4.1 Method 1: Aromatization by Elimination from 1-Acyl-1,2-dihydroquinoxalines [Seite 419]
1.10.1.1.4 - 16.15.5.4 Ring Functionalization by Substitution of Ring Hydrogens or N-Alkylation [Seite 419]
1.10.1.1.4.1 - 16.15.5.4.1 Method 1: Hydrogen-Deuterium Exchange [Seite 419]
1.10.1.1.4.2 - 16.15.5.4.2 Method 2: Alkylation [Seite 420]
1.10.1.1.4.2.1 - 16.15.5.4.2.1 Variation 1: Radical C-Alkylation [Seite 420]
1.10.1.1.4.2.2 - 16.15.5.4.2.2 Variation 2: C-Alkylation of Quinoxaline Anions [Seite 420]
1.10.1.1.4.2.3 - 16.15.5.4.2.3 Variation 3: N-Alkylation of Quinoxalin-2-ones [Seite 421]
1.10.1.1.4.2.4 - 16.15.5.4.2.4 Variation 4: Synthesis of Onium Salts [Seite 422]
1.10.1.1.4.3 - 16.15.5.4.3 Method 3: Acylation [Seite 423]
1.10.1.1.4.3.1 - 16.15.5.4.3.1 Variation 1: Free-Radical Acylation of Quinoxaline [Seite 423]
1.10.1.1.4.3.2 - 16.15.5.4.3.2 Variation 2: Electrophilic Acylation of Quinoxaline Anions [Seite 424]
1.10.1.1.4.4 - 16.15.5.4.4 Method 4: Cyanation [Seite 424]
1.10.1.1.4.5 - 16.15.5.4.5 Method 5: Halogenation [Seite 425]
1.10.1.1.4.6 - 16.15.5.4.6 Method 6: Chlorosulfonylation [Seite 426]
1.10.1.1.4.7 - 16.15.5.4.7 Method 7: Nitration [Seite 426]
1.10.1.1.4.8 - 16.15.5.4.8 Method 8: Amination [Seite 427]
1.10.1.1.5 - 16.15.5.5 Synthesis by Substituent Transformation [Seite 427]
1.10.1.1.5.1 - 16.15.5.5.1 Transformation of Carbon Functionalities [Seite 427]
1.10.1.1.5.1.1 - 16.15.5.5.1.1 Method 1: Substitution with Hydrogen [Seite 427]
1.10.1.1.5.1.2 - 16.15.5.5.1.2 Method 2: Rearrangements of Carbon Functionalities [Seite 428]
1.10.1.1.5.1.2.1 - 16.15.5.5.1.2.1 Variation 1: Curtius Rearrangement [Seite 428]
1.10.1.1.5.1.2.2 - 16.15.5.5.1.2.2 Variation 2: Hofmann Rearrangement [Seite 428]
1.10.1.1.5.1.3 - 16.15.5.5.1.3 Method 3: Oxidation [Seite 429]
1.10.1.1.5.1.4 - 16.15.5.5.1.4 Method 4: Halogenation [Seite 430]
1.10.1.1.5.1.5 - 16.15.5.5.1.5 Method 5: Reductive Amination of Quinoxaline-2-carbaldehyde [Seite 431]
1.10.1.1.5.1.6 - 16.15.5.5.1.6 Method 6: Amidation of Quinoxaline Carboxylic Acids and Their Derivatives [Seite 431]
1.10.1.1.5.1.7 - 16.15.5.5.1.7 Method 7: Reactions with Electrophiles [Seite 432]
1.10.1.1.5.1.7.1 - 16.15.5.5.1.7.1 Variation 1: 3-Substitution of 3-Methylquinoxalin-2(1H)-one [Seite 432]
1.10.1.1.5.1.7.2 - 16.15.5.5.1.7.2 Variation 2: Knoevenagel Reaction [Seite 433]
1.10.1.1.5.2 - 16.15.5.5.2 Transformation of Halogen Functionalities [Seite 434]
1.10.1.1.5.2.1 - 16.15.5.5.2.1 Method 1: Dehalogenation [Seite 434]
1.10.1.1.5.2.2 - 16.15.5.5.2.2 Method 2: Halogen Exchange [Seite 435]
1.10.1.1.5.2.3 - 16.15.5.5.2.3 Method 3: Halogen-Metal Exchange [Seite 435]
1.10.1.1.5.2.4 - 16.15.5.5.2.4 Method 4: Reaction with C-Nucleophiles [Seite 436]
1.10.1.1.5.2.4.1 - 16.15.5.5.2.4.1 Variation 1: Cyanation [Seite 436]
1.10.1.1.5.2.4.2 - 16.15.5.5.2.4.2 Variation 2: a-Hetarylation of Esters, Lactones, Amides, and Nitriles with 2-Chloroquinoxaline [Seite 436]
1.10.1.1.5.2.4.3 - 16.15.5.5.2.4.3 Variation 3: Cross Coupling with Organolithiums [Seite 437]
1.10.1.1.5.2.4.4 - 16.15.5.5.2.4.4 Variation 4: Cross Coupling with Grignard Reagents [Seite 438]
1.10.1.1.5.2.4.5 - 16.15.5.5.2.4.5 Variation 5: Cross Coupling with Organozinc Compounds [Seite 438]
1.10.1.1.5.2.4.6 - 16.15.5.5.2.4.6 Variation 6: Stille Cross Coupling [Seite 439]
1.10.1.1.5.2.4.7 - 16.15.5.5.2.4.7 Variation 7: Cross Coupling with Organoboron Compounds [Seite 439]
1.10.1.1.5.2.4.8 - 16.15.5.5.2.4.8 Variation 8: Heck Cross Coupling [Seite 440]
1.10.1.1.5.2.4.9 - 16.15.5.5.2.4.9 Variation 9: Sonogashira Cross Coupling [Seite 441]
1.10.1.1.5.2.5 - 16.15.5.5.2.5 Method 5: Reaction with N-Nucleophiles [Seite 442]
1.10.1.1.5.2.6 - 16.15.5.5.2.6 Method 6: Reaction with O-Nucleophiles [Seite 443]
1.10.1.1.5.2.7 - 16.15.5.5.2.7 Method 7: Reaction with S-Nucleophiles [Seite 443]
1.10.1.1.5.3 - 16.15.5.5.3 Transformation of Nitrogen Functionalities [Seite 444]
1.10.1.1.5.3.1 - 16.15.5.5.3.1 Method 1: Reduction of Nitro Groups [Seite 444]
1.10.1.1.5.3.2 - 16.15.5.5.3.2 Method 2: Substitution with a Halogen via Diazotization [Seite 444]
1.10.1.1.5.3.3 - 16.15.5.5.3.3 Method 3: N-Alkylation [Seite 444]
1.10.1.1.5.3.4 - 16.15.5.5.3.4 Method 4: N-Acylation [Seite 444]
1.10.1.1.5.4 - 16.15.5.5.4 Transformation of Oxygen Functionalities [Seite 445]
1.10.1.1.5.4.1 - 16.15.5.5.4.1 Method 1: Haloquinoxalines from the Corresponding Oxo Derivatives [Seite 445]
1.10.1.1.5.4.2 - 16.15.5.5.4.2 Method 2: Reaction with C-Nucleophiles [Seite 446]
1.10.1.1.5.4.3 - 16.15.5.5.4.3 Method 3: Reactions with N-Nucleophiles [Seite 447]
1.10.1.1.5.4.4 - 16.15.5.5.4.4 Method 4: Reaction with S-Nucleophiles [Seite 447]
1.10.1.1.5.4.5 - 16.15.5.5.4.5 Method 5: O-Alkylation [Seite 447]
1.10.1.1.5.4.6 - 16.15.5.5.4.6 Method 6: O-Demethylation [Seite 448]
1.10.1.1.5.5 - 16.15.5.5.5 Transformation of Sulfur Functionalities [Seite 448]
1.10.1.1.5.5.1 - 16.15.5.5.5.1 Method 1: Oxidation [Seite 448]
1.10.1.1.5.5.2 - 16.15.5.5.5.2 Method 2: Reaction with C-Nucleophiles [Seite 449]
1.10.1.1.5.5.3 - 16.15.5.5.5.3 Method 3: Reaction with N-Nucleophiles [Seite 450]
1.10.1.1.5.5.4 - 16.15.5.5.5.4 Method 4: S-Alkylation [Seite 450]
1.10.1.1.5.5.5 - 16.15.5.5.5.5 Method 5: C--S Bond Cleavage [Seite 451]
1.11 - Volume 21: Three Carbon--Heteroatom Bonds: Amides and Derivatives [Seite 462]
1.11.1 - 21.16 Synthesis of Scalemic Amides by Kinetic Resolution [Seite 462]
1.11.1.1 - 21.16.1 Method 1: Kinetic Resolution by Acylation with Stoichiometric Amounts of Chiral Acylating Reagents [Seite 462]
1.11.1.2 - 21.16.2 Method 2: Kinetic Resolution with Catalytic Amounts of a Chiral Promoter [Seite 467]
1.11.1.2.1 - 21.16.2.1 Variation 1: Kinetic Resolution of Amines with Attenuated Reactivities [Seite 467]
1.11.1.2.2 - 21.16.2.2 Variation 2: Kinetic Resolution with Azlactone-Derived Acylating Reagents [Seite 469]
1.11.1.2.3 - 21.16.2.3 Variation 3: Kinetic Resolution with Carboxylic Acid Anhydrides as Acylating Reagents [Seite 471]
1.11.1.2.4 - 21.16.2.4 Variation 4: Kinetic Resolution with a'-Hydroxyenones as Acylating Reagents [Seite 473]
1.11.1.2.5 - 21.16.2.5 Variation 5: Kinetic Resolution with Carboxylic Acids as Acylating Reagents [Seite 476]
1.12 - Volume 27: Heteroatom Analogues of Aldehydes and Ketones [Seite 480]
1.12.1 - 27.16 Product Class 16: Azines [Seite 480]
1.12.1.1 - 27.16.3 Azines [Seite 480]
1.12.1.1.1 - 27.16.3.1 Synthesis of Azines [Seite 480]
1.12.1.1.1.1 - 27.16.3.1.1 1,4-Disubstituted Azines [Seite 480]
1.12.1.1.1.1.1 - 27.16.3.1.1.1 Method 1: Reaction of Aldehydes with Hydrazine [Seite 480]
1.12.1.1.1.1.2 - 27.16.3.1.1.2 Method 2: Reaction of Aldehyde Hydrazones with Aldehydes [Seite 481]
1.12.1.1.1.1.3 - 27.16.3.1.1.3 Method 3: Hydrazone Oxidation [Seite 482]
1.12.1.1.1.1.4 - 27.16.3.1.1.4 Method 4: Reaction of Aldehyde Hydrazones with Disulfur Compounds [Seite 483]
1.12.1.1.1.1.5 - 27.16.3.1.1.5 Method 5: Reaction of Semicarbazones with Aldehydes [Seite 483]
1.12.1.1.1.2 - 27.16.3.1.2 Trisubstituted Azines [Seite 484]
1.12.1.1.1.2.1 - 27.16.3.1.2.1 Method 1: Reaction of Aldehyde Hydrazones with Ketones [Seite 484]
1.12.1.1.1.2.2 - 27.16.3.1.2.2 Method 2: Reaction of Ketone Hydrazones with Aldehydes [Seite 484]
1.12.1.1.1.3 - 27.16.3.1.3 Tetrasubstituted Azines [Seite 485]
1.12.1.1.1.3.1 - 27.16.3.1.3.1 Method 1: Ketone Dimerization with Hydrazine [Seite 485]
1.12.1.1.1.3.2 - 27.16.3.1.3.2 Method 2: Reaction of Hydrazones with Ketones [Seite 486]
1.12.1.1.1.3.3 - 27.16.3.1.3.3 Method 3: Diazoalkane Dimerization [Seite 487]
1.12.1.1.1.3.4 - 27.16.3.1.3.4 Method 4: Imine Oxidation [Seite 487]
1.12.1.1.2 - 27.16.3.2 Applications of Azines in Organic Synthesis [Seite 488]
1.12.1.1.2.1 - 27.16.3.2.1 Method 1: Oxidation and Reduction [Seite 488]
1.12.1.1.2.2 - 27.16.3.2.2 Method 2: Addition Reactions [Seite 490]
1.12.1.1.2.3 - 27.16.3.2.3 Method 3: Formation of Organometallic Complexes [Seite 491]
1.12.1.1.2.4 - 27.16.3.2.4 Method 4: Intramolecular Cyclization Reactions [Seite 492]
1.12.1.1.2.5 - 27.16.3.2.5 Method 5: Cycloaddition Reactions [Seite 493]
1.12.1.1.2.6 - 27.16.3.2.6 Method 6: Hydrolytic Cleavage [Seite 494]
1.12.1.1.2.7 - 27.16.3.2.7 Method 7: Ugi Reaction [Seite 495]
1.12.2 - 27.17 Product Class 17: Hydrazones [Seite 500]
1.12.2.1 - 27.17.5 Hydrazones [Seite 500]
1.12.2.1.1 - 27.17.5.1 N-Unsubstituted Hydrazones [Seite 500]
1.12.2.1.1.1 - 27.17.5.1.1 Synthesis of N-Unsubstituted Hydrazones [Seite 500]
1.12.2.1.1.1.1 - 27.17.5.1.1.1 Method 1: Synthesis from Aldehydes and Ketones [Seite 500]
1.12.2.1.1.1.1.1 - 27.17.5.1.1.1.1 Variation 1: From Oximes [Seite 500]
1.12.2.1.1.1.2 - 27.17.5.1.1.2 Method 2: Synthesis from Diazo Compounds [Seite 501]
1.12.2.1.1.1.3 - 27.17.5.1.1.3 Method 3: Synthesis from Unsaturated Hydrocarbons [Seite 503]
1.12.2.1.1.1.3.1 - 27.17.5.1.1.3.1 Variation 1: From Terminal Alkynes [Seite 503]
1.12.2.1.1.1.3.2 - 27.17.5.1.1.3.2 Variation 2: From Allenes [Seite 504]
1.12.2.1.1.1.3.3 - 27.17.5.1.1.3.3 Variation 3: From Fluoroalkenes [Seite 504]
1.12.2.1.1.2 - 27.17.5.1.2 Applications of N-Unsubstituted Hydrazones in Organic Synthesis [Seite 505]
1.12.2.1.1.2.1 - 27.17.5.1.2.1 Method 1: Reductive Elimination of the Hydrazono Group [Seite 505]
1.12.2.1.1.2.2 - 27.17.5.1.2.2 Method 2: Synthesis of Nitrogen Heterocycles [Seite 506]
1.12.2.1.1.2.3 - 27.17.5.1.2.3 Method 3: Synthesis of Diazo Compounds by Oxidation [Seite 507]
1.12.2.1.1.2.4 - 27.17.5.1.2.4 Method 4: Synthesis of Halogenated Alkenes [Seite 509]
1.12.2.1.2 - 27.17.5.2 N-Monosubstituted Hydrazones [Seite 511]
1.12.2.1.2.1 - 27.17.5.2.1 Synthesis of N-Monosubstituted Hydrazones [Seite 511]
1.12.2.1.2.1.1 - 27.17.5.2.1.1 Method 1: Synthesis from Aldehydes and Ketones [Seite 511]
1.12.2.1.2.1.1.1 - 27.17.5.2.1.1.1 Variation 1: Hydroformylation-Hydrazone Formation from Alkenes [Seite 512]
1.12.2.1.2.1.1.2 - 27.17.5.2.1.1.2 Variation 2: Synthesis from Masked Carbonyl Groups [Seite 513]
1.12.2.1.2.1.2 - 27.17.5.2.1.2 Method 2: Synthesis by Arylation of Benzophenone Hydrazone [Seite 513]
1.12.2.1.2.1.3 - 27.17.5.2.1.3 Method 3: Synthesis from Activated Methylene Compounds [Seite 514]
1.12.2.1.2.1.3.1 - 27.17.5.2.1.3.1 Variation 1: Reaction with Benzotriazoles [Seite 514]
1.12.2.1.2.1.3.2 - 27.17.5.2.1.3.2 Variation 2: Reaction with Diazonium Salts [Seite 514]
1.12.2.1.2.1.4 - 27.17.5.2.1.4 Method 4: Synthesis from Terminal Alkynes [Seite 515]
1.12.2.1.2.1.5 - 27.17.5.2.1.5 Method 5: Synthesis from Diazo Esters [Seite 516]
1.12.2.1.2.2 - 27.17.5.2.2 Applications of N-Monosubstituted Hydrazones in Organic Synthesis [Seite 516]
1.12.2.1.2.2.1 - 27.17.5.2.2.1 Method 1: Synthesis of Nitrogen Heterocycles [Seite 517]
1.12.2.1.2.2.1.1 - 27.17.5.2.2.1.1 Variation 1: Fischer Indole Synthesis from N-Arylhydrazones [Seite 517]
1.12.2.1.2.2.2 - 27.17.5.2.2.2 Method 2: N-tert-Butylhydrazones as Acyl Anion Equivalents [Seite 517]
1.12.2.1.2.2.3 - 27.17.5.2.2.3 Method 3: Synthesis of N,N-Disubstituted Hydrazones by Acylation [Seite 518]
1.12.2.1.2.2.4 - 27.17.5.2.2.4 Method 4: Synthesis of Bicyclic Diazenium Salts [Seite 518]
1.12.2.1.3 - 27.17.5.3 N,N-Disubstituted Hydrazones [Seite 519]
1.12.2.1.3.1 - 27.17.5.3.1 Synthesis of N,N-Disubstituted Hydrazones [Seite 519]
1.12.2.1.3.1.1 - 27.17.5.3.1.1 Method 1: Synthesis from Aldehydes and Ketones [Seite 519]
1.12.2.1.3.1.1.1 - 27.17.5.3.1.1.1 Variation 1: Synthesis from Masked Aldehydes and Ketones [Seite 520]
1.12.2.1.3.1.1.2 - 27.17.5.3.1.1.2 Variation 2: Solid-Supported Synthesis [Seite 520]
1.12.2.1.3.1.2 - 27.17.5.3.1.2 Method 2: Synthesis from Unsaturated Hydrocarbons [Seite 522]
1.12.2.1.3.1.3 - 27.17.5.3.1.3 Method 3: Synthesis from N-Monosubstituted Hydrazones [Seite 523]
1.12.2.1.3.2 - 27.17.5.3.2 Applications of N,N-Disubstituted Hydrazones in Organic Synthesis [Seite 523]
1.12.2.1.3.2.1 - 27.17.5.3.2.1 Method 1: Alkylation of Hydrazone Anions [Seite 523]
1.12.2.1.3.2.1.1 - 27.17.5.3.2.1.1 Variation 1: Solid-Supported Synthesis [Seite 524]
1.12.2.1.3.2.1.2 - 27.17.5.3.2.1.2 Variation 2: Alkylation of Cyclic Carbamates Derived from N-Acyl-N-alkylhydrazones [Seite 526]
1.12.2.1.3.2.2 - 27.17.5.3.2.2 Method 2: Primary Amine Synthesis [Seite 527]
1.12.2.1.3.2.2.1 - 27.17.5.3.2.2.1 Variation 1: Solid-Supported Synthesis [Seite 528]
1.12.2.1.3.2.3 - 27.17.5.3.2.3 Method 3: Radical Reactions [Seite 529]
1.12.2.1.3.2.3.1 - 27.17.5.3.2.3.1 Variation 1: Radical Cyclization [Seite 529]
1.12.2.1.3.2.3.2 - 27.17.5.3.2.3.2 Variation 2: Radical Addition [Seite 530]
1.12.2.1.3.2.4 - 27.17.5.3.2.4 Method 4: Cycloaddition Reactions [Seite 531]
1.12.2.1.3.2.4.1 - 27.17.5.3.2.4.1 Variation 1: [4 + 2]-Cycloaddition Reactions [Seite 531]
1.12.2.1.3.2.4.2 - 27.17.5.3.2.4.2 Variation 2: [2 + 2]-Cycloaddition Reactions [Seite 531]
1.12.2.1.3.2.5 - 27.17.5.3.2.5 Method 5: Cleavage of N,N-Dialkylhydrazones [Seite 532]
1.12.2.1.3.2.5.1 - 27.17.5.3.2.5.1 Variation 1: Solid-Phase Synthesis of Nitriles [Seite 533]
1.12.2.1.4 - 27.17.5.4 N-Sulfonylated Hydrazones [Seite 533]
1.12.2.1.4.1 - 27.17.5.4.1 Synthesis of N-Sulfonylated Hydrazones [Seite 533]
1.12.2.1.4.1.1 - 27.17.5.4.1.1 Method 1: Synthesis from Aldehydes and Ketones [Seite 533]
1.12.2.1.4.1.1.1 - 27.17.5.4.1.1.1 Variation 1: Synthesis from O,O-Acetals [Seite 535]
1.12.2.1.4.1.2 - 27.17.5.4.1.2 Method 2: Synthesis from Nitriles [Seite 535]
1.12.2.1.4.1.3 - 27.17.5.4.1.3 Method 3: N-Alkylation of N-Tosylhydrazones [Seite 536]
1.12.2.1.4.2 - 27.17.5.4.2 Applications of N-Sulfonylated Hydrazones in Organic Synthesis [Seite 537]
1.12.2.1.4.2.1 - 27.17.5.4.2.1 Method 1: Synthesis of Unsaturated Hydrocarbons [Seite 537]
1.12.2.1.4.2.1.1 - 27.17.5.4.2.1.1 Variation 1: Synthesis of Alkenes [Seite 537]
1.12.2.1.4.2.1.2 - 27.17.5.4.2.1.2 Variation 2: Synthesis of Allenes [Seite 541]
1.12.2.1.4.2.1.3 - 27.17.5.4.2.1.3 Variation 3: Synthesis of Alkynes [Seite 542]
1.12.2.1.4.2.2 - 27.17.5.4.2.2 Method 2: N-Sulfonylated Hydrazones in Reduction Reactions [Seite 543]
1.12.2.1.4.2.2.1 - 27.17.5.4.2.2.1 Variation 1: Synthesis of Sulfides and Ethers [Seite 544]
1.12.2.1.4.2.2.2 - 27.17.5.4.2.2.2 Variation 2: Synthesis of Sulfones [Seite 545]
1.12.2.1.4.2.2.3 - 27.17.5.4.2.2.3 Variation 3: Synthesis of Arenes from Arylboronic Acids [Seite 546]
1.12.2.1.4.2.3 - 27.17.5.4.2.3 Method 3: Synthesis of a-Alkylated and a,a-Dialkylated N-Tosylhydrazones [Seite 547]
1.12.2.1.4.2.4 - 27.17.5.4.2.4 Method 4: Synthesis of Nitrogen Heterocycles [Seite 548]
1.12.3 - 27.18 Product Class 18: Hydrazonium Compounds [Seite 556]
1.12.3.1 - 27.18.3 Hydrazonium Compounds [Seite 556]
1.12.3.1.1 - 27.18.3.1 1,1,1-Trialkyl-2-alkylidenehydrazinium Compounds [Seite 556]
1.12.3.1.1.1 - 27.18.3.1.1 Synthesis of 1,1,1-Trialkyl-2-alkylidenehydrazinium Compounds [Seite 556]
1.12.3.1.1.1.1 - 27.18.3.1.1.1 Method 1: Alkylation of Hydrazone Compounds [Seite 556]
1.12.3.1.1.2 - 27.18.3.1.2 Applications of 1,1,1-Trialkyl-2-alkylidenehydrazinium Compounds in Organic Synthesis [Seite 557]
1.12.3.1.1.2.1 - 27.18.3.1.2.1 Method 1: Synthesis of Azirines [Seite 557]
1.12.3.1.1.2.2 - 27.18.3.1.2.2 Method 2: Synthesis of Pyrroles [Seite 558]
1.12.3.1.1.2.3 - 27.18.3.1.2.3 Method 3: Synthesis of Ketones [Seite 558]
1.13 - Author Index [Seite 560]
1.14 - Abbreviations [Seite 590]
1.15 - List of All Volumes [Seite 596]
1.4.5 Organometallic Complexes of Cobalt (Update 2012)
M. Amatore, C. Aubert, M. Malacria, and M. Petit
General Introduction
The present chapter is an update of the first report on organometallic cobalt complexes in Science of Synthesis (see Section 1.4). It summarizes the more recent and most relevant advances concerning the use and the synthesis of important cobalt complexes. During the decade 2000–2010, two major developments were made concerning cobalt complexes:
The first involves the extensive use of cobalt–η5-dienyl complexes not only in the context of the synthesis of new complexes, but also in terms of powerful applications in a wide range of reactions. This can be related to the increase in the number of reviews in this area since the beginning of the new millennium.[1–9]
The second major development in the organometallic chemistry of cobalt complexes is the use of more-convenient and easy-to-handle complexes based on cobalt(II) or -(III) salts. From economic and environmental points of view, these complexes represent an interesting alternative to the well-known cyclopentadienylcobalt(I) [Co(Cp)L2] or octacarbonyldicobalt(0) [Co2(CO)8] catalysts. Although early applications of these complexes in organic synthesis have been reported, their use has been generalized only recently. Because of their low cost, low toxicity, and relatively high stability, these cobalt complexes have gained an increasingly important role in the field of cross-coupling reactions, cycloadditions, alkene functionalizations, C—H bond activations, and even the chemistry of strained rings.[5,10] The most commonly employed catalytic systems are combinations of cobalt(II) or -(III) salts with defined ligands, such as phosphines or amines, that can be prepared in a previous step or generated in situ under reductive conditions. Another class of complexes that have shown high efficiency is represented by cobalt(II) or -(III) complexes incorporating macrocyclic ligands such as porphyrins, salens, or cobaloximes. Finally, cobalt(I) species obtained from tetrakis(trimethylphosphine)cobalt(0) have been employed with success in the course of C—H bond activation processes for the generation of new cobalt complexes. This review provides an overview of contemporary methods that require the preparation and the use of these complexes.
1.4.5.1 Cobalt–η5-Dienyl Complexes
1.4.5.1.1 Synthesis of Cobalt–η5-Dienyl Complexes
1.4.5.1.1.1 Method 1: Synthesis of Chiral Dicarbonyl(η5-cyclopentadienyl)cobalt(I) and (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes
In the course of asymmetric reactions, cobalt-mediated [2 + 2 + 2] cycloaddition has been for a long time one of the most difficult challenges. Chiral cobalt–η5-dienyl complexes may be obtained by introducing an asymmetric cyclopentadienyl moiety as a permanent ligand. Two general procedures are reported; these differ in the nature of the labile ligand on the complex.[11,12]
1.4.5.1.1.1.1 Variation 1: Synthesis of Chiral Dicarbonyl(η5-cyclopentadienyl)cobalt(I) Complexes by Oxidative Addition
The reaction between octacarbonyldicobalt(0), a readily available starting material, and the freshly distilled chiral cyclopentadiene 1 in a refluxing chlorinated solvent in the absence of light gives the desired chiral cobalt(I) complex 2 in moderate to good yields (▶ Scheme 1).[11]
▶ Scheme 1 Synthesis of a Dicarbonyl(η5-cyclopentadienyl)cobalt(I) Complex from Octacarbonyldicobalt(0) and a Chiral Cyclopentadiene[11]
Dicarbonyl{η5-(3S,4S)-3,4-(isopropylidenedioxy)bicyclo[4.3.0]nona-6,8-dienyl}cobalt(I) (2); Typical Procedure:[11]
A soln of chiral cyclopentadiene 1 (0.58 g, 3.0 mmol) in CH2Cl2 (10 mL) and pent-1-ene (5 mL) was degassed by three freeze–pump–thaw cycles, added to Co2(CO)8 (0.85 g, 2.5 mmol) in a round-bottomed flask equipped with a reflux condenser, and the mixture was heated at reflux in the dark under N2 for 30 h. The solvent was removed under reduced pressure, and the oil was taken up in degassed pentane. The mixture was purified by chromatography [alumina (activity 3), degassed Et2O/pentane 1:4] under N2. A single red fraction was obtained, which crystallized upon removal of the solvent under reduced pressure to provide a red solid; yield: 0.39 g (43%); mp 72–73 °C; [α]D26 +70 (c 0.00095, 95% EtOH).
1.4.5.1.1.1.2 Variation 2: Synthesis of Chiral (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes by Substitution of Ligands
Several chiral (η5-cyclopentadienyl)cobalt(I)–ligand complexes (ligand = cyclooctadiene, e.g. 3 and 4, or norbornadiene) are prepared by substitution reactions of tris(triphenylphosphine)cobalt(I) chloride using chiral lithium cyclopentadienides and cyclooctadiene or norbornadiene (▶ Scheme 2).[12,13]
▶ Scheme 2 Synthesis of Chiral (η5-Cyclopentadienyl)(η4-diene)cobalt(I) Complexes[12,13]
(+)-(η4-Cycloocta-1,5-diene)(η5-1-neomenthylindenyl)cobalt(I) (3); Typical Procedure:[12]
A 2.5 M soln of BuLi in hexanes (2 mL, 5 mmol) was added in one portion to a soln of (–)-3-neomenthylindene (1.27 g, 5 mmol) in THF (15 mL) at –78 °C. The mixture was stirred for 5 min, the temperature was allowed to rise to 20 °C for 30 min, and stirring was continued for 2 h at rt. The soln of (1-neomenthylindenyl)lithium was again cooled to –78 °C, and CoCl(PPh3)3 (4.41 g, 5 mmol) was added. The stirred soln was allowed to warm to rt over 1 h and then stirred for an additional 1 h. Cycloocta-1,5-diene (0.92 mL, 7.5 mmol) was added to the dark red mixture, which was then heated to reflux for 0.5 h. The color soon changed to red-orange, and the soln was cooled and filtered through a thin pad of degassed silica gel (2 × 3 cm), eluting with THF. The solvent was removed under reduced pressure, and the oily residue was dried for 1 h under high vacuum and purified by column chromatography [degassed silica gel (1.5 × 30 cm)]. Elution with pentane allowed the separation of the main diastereomer as the first red-orange fraction, and the more slowly moving second minor fraction was set aside. The eluate was concentrated under reduced pressure to a volume of 5 mL. Cooling to –78 °C caused the precipitation of the complex 3 as a dark red crystalline compound, which was collected by filtration and dried under high vacuum; yield: 1.11 g (53%); mp 89 °C; [α]D20 +156 (c 0.06, toluene).
(η4-Cycloocta-1,5-diene){η5-(3S,4S)-3,4-(isopropylidenedioxy)bicyclo[4.3.0]nona-6,8-dienyl}cobalt(I) (4); Typical Procedure:[13]
A soln of cyclopentadiene 1 (1.44 g, 7.5 mmol) in THF (20 mL) was treated with a 10% suspension of LDA (0.8 g, 7.5 mmol) in hexanes. The mixture was stirred for 5 min, and a suspension of CoCl(PPh3)3 (6.35 g, 7.2 mmol) and cycloocta-1,5-diene (1.29 mL, 10.5 mmol) in toluene (40 mL) was added. After it had been stirred for 1 h at rt, the dark red mixture was heated to 80 °C for 1 h, resulting finally in a clear orange soln. The mixture was cooled and filtered through a short column of silica gel (1.5 cm × 3 cm) degassed by three argon– vacuum pump cycles, 1 h each. Volatiles were removed under reduced pressure, and the residue was dissolved in pentane (20 mL) and left overnight at 0 °C. Precipitated Ph3P was filtered off, and the soln was filtered through a column of degassed silica gel (1.5 cm × 20 cm), an orange band being eluted with pentane. The soln was concentrated to a volume of 10 mL and cooled to –78 °C to crystallize 4 as orange needles; yield: 1.82 g (68%); mp 102 °C; [α]D20 +5.5 (c 0.17, toluene).
1.4.5.1.1.2 Method 2: Synthesis of (Alkene)carbonyl(η5-cyclopentadienyl)cobalt(I) Complexes via Displacement of One Carbonyl Moiety
Among the commercially available cyclopentadienylcobalt catalysts, dicarbonyl(η5-cyclopentadienyl)cobalt(I) is probably the most widely used. Its activation usually requires heat and/or visible light. The use of (η4-cycloocta-1,5-diene)(η5-cyclopentadienyl)cobalt(I), which has been employed mostly for the preparation of pyridines, also requires high temperatures and/or light. Conversely, (η5-cyclopentadienyl)bis(ethene)cobalt(I), which is also employed frequently, is active at room temperature or lower temperatures. However, these very efficient catalysts are all very sensitive to air and require the use of distilled and thoroughly degassed solvents. The challenge of finding easy-to-handle air-stable cobalt catalysts has been addressed by the use of complexes of the type (alkene)carbonyl(η5-cyclopentadienyl)cobalt(I), e.g. 5 and 6 (▶ Schemes 3 and 4).[14,15] These complexes do not need degassed solvents but do, however, still need energetic activation to be reactive.
▶ Scheme 3 Synthesis of...