Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.
Agustin Blasco
Professor of Animal Breeding and Genetics
Visiting scientist at ABRO (Edinburgh), INRA (Jouy en Josas) and FAO (Rome). He was President of the World Rabbit Science Association and editor in chief of the journal World Rabbit Science. His career has focused on the genetics of litter size components and genetics of meat quality in rabbits and pigs. He has published more than one hundred papers in international journals. Invited speaker several times at the European Association for Animal Production and at the World Congress on Genetics Applied to Livestock Production among others. Chapman Lecturer at the University of Wisconsin. He has taught courses on Bayesian Inference at the universities of Valencia (Spain), Edinburgh (UK), Wisconsin (USA), Padua (Italy), Sao Paulo, Lavras (Brazil), Nacional (Uruguay), Lomas (Argentina) and at INRA in Toulouse (France).
Foreword.- Notation.- 1. Do we understand classical statistics?.- 2. The Bayesian choice.- 3. Posterior distributions.- 4. MCMC.- 5. The "baby" model.- 6. The linear model. I. The "fixed" effects model.- 7. The linear model. II. The "mixed" model.- 8. A scope of the possibilities of Bayesian inference + MCMC.- 9. Prior information.- 10. Model choice.- Appendix.- References.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.