1 Foundations.- §1.1. Logic, set notations.- §1.2. Relations.- §1.3. Functions (mappings).- §1.4. Product sets, axiom of choice.- §1.5. Inverse functions.- §1.6. Equivalence relations, partitions, quotient sets.- §1.7. Order relations.- §1.8. Real numbers.- §1.9. Finite and infinite sets.- §1.10. Countable and uncountable sets.- §1.11. Zorn's lemma, the well-ordering theorem.- §1.12. Cardinality.- §1.13. Cardinal arithmetic, the continuum hypothesis.- §1.14. Ordinality.- §1.15. Extended real numbers.- §1.16. limsup, liminf, convergence in ?.- 2 Lebesgue Measure.- §2.1. Lebesgue outer measure on ?.- §2.2. Measurable sets.- §2.3. Cantor set: an uncountable set of measure zero.- §2.4. Borel sets, regularity.- §2.5. A nonmeasurable set.- §2.6. Abstract measure spaces.- 3 Topology.- §3.1. Metric spaces: examples.- §3.2. Convergence, closed sets and open sets in metric spaces.- §3.3. Topological spaces.- §3.4. Continuity.- §3.5. Limit of a function.- 4 Lebesgue Integral.- §4.1. Measurable functions.- §4.2. a.e..- §4.3. Integrable simple functions.- §4.4. Integrable functions.- §4.5. Monotone convergence theorem, Fatou's lemma.- §4.6. Monotone classes.- §4.7. Indefinite integrals.- §4.8. Finite signed measures.- 5 Differentiation.- §5.1. Bounded variation, absolute continuity.- §5.2. Lebesgue's representation of AC functions.- §5.3. limsup, liminf of functions; Dini derivates.- §5.4. Criteria for monotonicity.- §5.5. Semicontinuity.- §5.6. Semicontinuous approximations of integrable functions.- §5.7. F. Riesz's "Rising sun lemma".- §5.8. Growth estimates of a continuous increasing function.- §5.9. Indefinite integrals are a.e. primitives.- §5.10. Lebesgue's "Fundamental theorem of calculus".- §5.11. Measurability of derivates of a monotone function.- §5.12. Lebesgue decomposition of a function of bounded variation.- §5.13. Lebesgue's criterion for Riemann-integrability.- 6 Function Spaces.- §6.1. Compact metric spaces.- §6.2. Uniform convergence, iterated limits theorem.-§6.3. Complete metric spaces.- §6.4. L1.- §6.5. Real and complex measures.- §6.6. L?.- §6.7. LP(1 < p < ?).- §6.8.C(X).- §6.9. Stone-Weierstrass approximation theorem.- 7 Product Measure.- §7.1. Extension of measures.- §7.2. Product measures.- §7.3. Iterated integrals, Fubini-Tonelli theorem for finite measures.- §7.4. Fubini-Tonelli theorem for o--finite measures.- 8 The Differential Equation y' =f (xy).- §8.1. Equicontinuity, Ascoli's theorem.- §8.2. Picard's existence theorem for y' =f (xy).- §8.3. Peano's existence theorem for y' =f (xy).- 9 Topics in Measure and Integration.- §9.1. Jordan-Hahn decomposition of a signed measure.- §9.2. Radon-Nikodym theorem.- §9.3. Lebesgue decomposition of measures.- §9.4. Convolution in L1(?).- §9.5. Integral operators (with continuous kernel function).- Index of Notations.