1 - Science of Synthesis: Knowledge Updates 2013/4 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 16]
1.6 - Table of Contents [Seite 18]
1.7 - Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) [Seite 32]
1.7.1 - 2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides [Seite 32]
1.7.1.1 - 2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides [Seite 32]
1.7.1.1.1 - 2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions [Seite 32]
1.7.1.1.1.1 - 2.12.16.1.1 Rare-Earth(II) Complexes [Seite 32]
1.7.1.1.1.1.1 - 2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes [Seite 33]
1.7.1.1.1.1.1.1 - 2.12.16.1.1.1.1 Method 1: Salt Metathesis [Seite 33]
1.7.1.1.1.1.2 - 2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis [Seite 34]
1.7.1.1.1.1.2.1 - 2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes [Seite 34]
1.7.1.1.1.1.2.2 - 2.12.16.1.1.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes [Seite 35]
1.7.1.1.1.2 - 2.12.16.1.2 Cyclooctatetraene-Rare-Earth(III) Complexes [Seite 36]
1.7.1.1.1.2.1 - 2.12.16.1.2.1 Synthesis of Cyclooctatetraene-Rare-Earth(III) Complexes [Seite 36]
1.7.1.1.1.2.1.1 - 2.12.16.1.2.1.1 Method 1: Salt Metathesis [Seite 36]
1.7.1.1.1.2.2 - 2.12.16.1.2.2 Applications of Cyclooctatetraene-Rare-Earth(III) Complexes in Organic Synthesis [Seite 37]
1.7.1.1.1.2.2.1 - 2.12.16.1.2.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes [Seite 37]
1.7.1.1.1.2.2.2 - 2.12.16.1.2.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes [Seite 38]
1.7.1.1.1.3 - 2.12.16.1.3 Bis(boratabenzene)yttrium(III) Complexes [Seite 39]
1.7.1.1.1.3.1 - 2.12.16.1.3.1 Synthesis of Bis(boratabenzene)yttrium(III) Complexes [Seite 39]
1.7.1.1.1.3.1.1 - 2.12.16.1.3.1.1 Method 1: Salt Metathesis [Seite 39]
1.7.1.1.1.3.2 - 2.12.16.1.3.2 Applications of Bis(boratabenzene)yttrium(III) Complexes in Organic Synthesis [Seite 41]
1.7.1.1.1.3.2.1 - 2.12.16.1.3.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes [Seite 41]
1.7.1.1.1.4 - 2.12.16.1.4 Bis(pentamethylcyclopentadienyl)- and Modified Bis(cyclopentadienyl)-Rare-Earth(III) Complexes [Seite 41]
1.7.1.1.1.4.1 - 2.12.16.1.4.1 Synthesis of Bis(pentamethylcyclopentadienyl)- and Modified Bis(cyclopentadienyl)-Rare-Earth(III) Complexes [Seite 42]
1.7.1.1.1.4.1.1 - 2.12.16.1.4.1.1 Method 1: Salt Metathesis [Seite 42]
1.7.1.1.1.4.1.1.1 - 2.12.16.1.4.1.1.1 Variation 1: Two-Step Procedures [Seite 42]
1.7.1.1.1.4.1.1.2 - 2.12.16.1.4.1.1.2 Variation 2: Single-Pot Procedures [Seite 47]
1.7.1.1.1.4.1.2 - 2.12.16.1.4.1.2 Method 2: Alkane and Arene Elimination [Seite 49]
1.7.1.1.1.4.1.2.1 - 2.12.16.1.4.1.2.1 Variation 1: Hydride and Aryl Complexes [Seite 49]
1.7.1.1.1.4.1.2.2 - 2.12.16.1.4.1.2.2 Variation 2: Polymer-Bound Complexes [Seite 50]
1.7.1.1.1.4.2 - 2.12.16.1.4.2 Applications of Bis(pentamethylcyclopentadienyl)- and Modified Bis(cyclopentadienyl)-Rare-Earth(III) Complexes in Organic Synthesis [Seite 51]
1.7.1.1.1.4.2.1 - 2.12.16.1.4.2.1 Method 1: Catalytic Hydroamination Reactions of Monoalkynes [Seite 51]
1.7.1.1.1.4.2.1.1 - 2.12.16.1.4.2.1.1 Variation 1: Intramolecular Reaction [Seite 51]
1.7.1.1.1.4.2.1.2 - 2.12.16.1.4.2.1.2 Variation 2: Intermolecular Reaction [Seite 53]
1.7.1.1.1.4.2.2 - 2.12.16.1.4.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Monoalkenes [Seite 55]
1.7.1.1.1.4.2.2.1 - 2.12.16.1.4.2.2.1 Variation 1: Catalysis by Non-Polymer-Bound Complexes [Seite 55]
1.7.1.1.1.4.2.2.2 - 2.12.16.1.4.2.2.2 Variation 2: Catalysis by Polymer-Bound Complexes [Seite 61]
1.7.1.1.1.4.2.3 - 2.12.16.1.4.2.3 Method 3: Catalytic Intermolecular Hydroamination Reaction of Monoalkenes [Seite 62]
1.7.1.1.1.4.2.3.1 - 2.12.16.1.4.2.3.1 Variation 1: Reaction of Monosubstituted Alkenes [Seite 62]
1.7.1.1.1.4.2.3.2 - 2.12.16.1.4.2.3.2 Variation 2: Reaction of Methylenecyclopropanes [Seite 63]
1.7.1.1.1.4.2.4 - 2.12.16.1.4.2.4 Method 4: Catalytic Intramolecular Hydroamination Reaction of 1,2-Dienes [Seite 64]
1.7.1.1.1.4.2.5 - 2.12.16.1.4.2.5 Method 5: Catalytic Hydroamination Reaction of 1,3-Dienes [Seite 66]
1.7.1.1.1.4.2.6 - 2.12.16.1.4.2.6 Method 6: Catalytic Intermolecular Hydroamination Reaction of Di- and Trivinylarenes [Seite 68]
1.7.1.1.1.4.2.7 - 2.12.16.1.4.2.7 Method 7: Catalytic Hydroamination Reaction of Dialkynes, Alkenylalkynes, and Dialkenes Other than Divinylarenes and 1,2- and 1,3-Dienes [Seite 69]
1.7.1.1.1.5 - 2.12.16.1.5 Modified Mono(cyclopentadienyl)-Rare-Earth(III) Complexes [Seite 74]
1.7.1.1.1.5.1 - 2.12.16.1.5.1 Synthesis of Modified Mono(cyclopentadienyl)-Rare-Earth(III) Complexes [Seite 74]
1.7.1.1.1.5.1.1 - 2.12.16.1.5.1.1 Method 1: Salt Metathesis [Seite 74]
1.7.1.1.1.5.1.1.1 - 2.12.16.1.5.1.1.1 Variation 1: Two-Step Procedures [Seite 74]
1.7.1.1.1.5.1.1.2 - 2.12.16.1.5.1.1.2 Variation 2: Single-Pot Procedures [Seite 75]
1.7.1.1.1.5.1.2 - 2.12.16.1.5.1.2 Method 2: Silylamine or Alkane Elimination [Seite 76]
1.7.1.1.1.5.2 - 2.12.16.1.5.2 Applications of Modified Mono(cyclopentadienyl)-Rare-Earth(III) Complexes in Organic Synthesis [Seite 79]
1.7.1.1.1.5.2.1 - 2.12.16.1.5.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes [Seite 79]
1.7.1.1.1.5.2.2 - 2.12.16.1.5.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkynes and Monoalkenes [Seite 83]
1.7.1.1.1.5.2.3 - 2.12.16.1.5.2.3 Method 3: Catalytic Intramolecular Hydroamination Reaction of 1,2- and 1,3-Dienes [Seite 84]
1.7.1.1.1.6 - 2.12.16.1.6 Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands [Seite 86]
1.7.1.1.1.6.1 - 2.12.16.1.6.1 Synthesis of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands [Seite 87]
1.7.1.1.1.6.1.1 - 2.12.16.1.6.1.1 Method 1: Salt Metathesis/Alkane Elimination [Seite 87]
1.7.1.1.1.6.2 - 2.12.16.1.6.2 Applications of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands in Organic Synthesis [Seite 89]
1.7.1.1.1.6.2.1 - 2.12.16.1.6.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes [Seite 89]
1.7.1.1.1.7 - 2.12.16.1.7 Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1-3) [Seite 90]
1.7.1.1.1.7.1 - 2.12.16.1.7.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1-3) [Seite 91]
1.7.1.1.1.7.1.1 - 2.12.16.1.7.1.1 Method 1: Salt Metathesis [Seite 91]
1.7.1.1.1.7.1.2 - 2.12.16.1.7.1.2 Method 2: Silylamine or Alkane Elimination [Seite 93]
1.7.1.1.1.7.1.3 - 2.12.16.1.7.1.3 Method 3: Alkylation [Seite 97]
1.7.1.1.1.7.1.4 - 2.12.16.1.7.1.4 Method 4: Ligand Abstraction [Seite 98]
1.7.1.1.1.7.2 - 2.12.16.1.7.2 Applications of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1-3) in Organic Synthesis [Seite 99]
1.7.1.1.1.7.2.1 - 2.12.16.1.7.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Monoalkenes, and 1,3-Dienes [Seite 99]
1.7.1.1.1.7.2.1.1 - 2.12.16.1.7.2.1.1 Variation 1: Catalysis by Isolated Complexes [Seite 99]
1.7.1.1.1.7.2.1.2 - 2.12.16.1.7.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ [Seite 103]
1.7.1.1.1.8 - 2.12.16.1.8 Rare-Earth(III) Complexes Bearing X2-Type Ligands [Seite 105]
1.7.1.1.1.8.1 - 2.12.16.1.8.1 Synthesis of Rare-Earth(III) Complexes Bearing X2-Type Ligands [Seite 106]
1.7.1.1.1.8.1.1 - 2.12.16.1.8.1.1 Method 1: Salt Metathesis [Seite 106]
1.7.1.1.1.8.1.2 - 2.12.16.1.8.1.2 Method 2: Silylamine, Alkane, or Arene Elimination [Seite 108]
1.7.1.1.1.8.1.2.1 - 2.12.16.1.8.1.2.1 Variation 1: From Isolated Homoleptic Complexes [Seite 108]
1.7.1.1.1.8.1.2.2 - 2.12.16.1.8.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ [Seite 113]
1.7.1.1.1.8.2 - 2.12.16.1.8.2 Applications of Rare-Earth(III) Complexes Bearing X2-Type Ligands in Organic Synthesis [Seite 116]
1.7.1.1.1.8.2.1 - 2.12.16.1.8.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Alkenes, and Dienes [Seite 116]
1.7.1.1.1.8.2.1.1 - 2.12.16.1.8.2.1.1 Variation 1: Catalysis by Isolated Complexes [Seite 116]
1.7.1.1.1.8.2.1.2 - 2.12.16.1.8.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ [Seite 121]
1.7.1.1.1.8.2.2 - 2.12.16.1.8.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkenes [Seite 126]
1.7.1.1.1.9 - 2.12.16.1.9 Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) [Seite 127]
1.7.1.1.1.9.1 - 2.12.16.1.9.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) [Seite 127]
1.7.1.1.1.9.1.1 - 2.12.16.1.9.1.1 Method 1: Salt Metathesis [Seite 127]
1.7.1.1.1.9.1.2 - 2.12.16.1.9.1.2 Method 2: Amine or Alkane Elimination [Seite 129]
1.7.1.1.1.9.1.2.1 - 2.12.16.1.9.1.2.1 Variation 1: From Isolated Homoleptic Complexes [Seite 129]
1.7.1.1.1.9.1.2.2 - 2.12.16.1.9.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ [Seite 133]
1.7.1.1.1.9.2 - 2.12.16.1.9.2 Applications of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) in Organic Synthesis [Seite 135]
1.7.1.1.1.9.2.1 - 2.12.16.1.9.2.1 Method 1: Catalytic Intramolecular Hydroamination Reactions of Alkynes and Alkenes [Seite 135]
1.7.1.1.1.9.2.1.1 - 2.12.16.1.9.2.1.1 Variation 1: Catalysis by Isolated Complexes [Seite 135]
1.7.1.1.1.9.2.1.2 - 2.12.16.1.9.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ [Seite 138]
1.7.1.1.1.10 - 2.12.16.1.10 Rare-Earth(III) Complexes Bearing L3-Type Ligands [Seite 142]
1.7.1.1.1.10.1 - 2.12.16.1.10.1 Synthesis of Rare-Earth(III) Complexes Bearing L3-Type Ligands [Seite 143]
1.7.1.1.1.10.1.1 - 2.12.16.1.10.1.1 Method 1: Ligand Substitution [Seite 143]
1.7.1.1.1.10.1.2 - 2.12.16.1.10.1.2 Method 2: Alkane Elimination [Seite 144]
1.7.1.1.1.10.2 - 2.12.16.1.10.2 Applications of Rare-Earth(III) Complexes Bearing L3-Type Ligands in Organic Synthesis [Seite 145]
1.7.1.1.1.10.2.1 - 2.12.16.1.10.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes [Seite 145]
1.7.1.1.1.11 - 2.12.16.1.11 Homoleptic Tris(silylamido)- and Trialkyl-Rare-Earth(III) Complexes [Seite 146]
1.7.1.1.1.11.1 - 2.12.16.1.11.1 Synthesis of Homoleptic Tris(silylamido)- and Trialkyl-Rare-Earth(III) Complexes [Seite 146]
1.7.1.1.1.11.1.1 - 2.12.16.1.11.1.1 Method 1: Salt Metathesis [Seite 146]
1.7.1.1.1.11.2 - 2.12.16.1.11.2 Applications of Homoleptic Tris(silylamido)- and Trialkyl-Rare-Earth(III) Complexes in Organic Synthesis [Seite 149]
1.7.1.1.1.11.2.1 - 2.12.16.1.11.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Alkenes [Seite 149]
1.8 - Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4 [Seite 158]
1.8.1 - 18.3 Product Class 3: Carbonic Acid Halides [Seite 158]
1.8.1.1 - 18.3.7 Carbonic Acid Halides [Seite 158]
1.8.1.1.1 - 18.3.7.1 Carbonic Dihalides [Seite 158]
1.8.1.1.1.1 - 18.3.7.1.1 Synthesis of Carbonic Dihalides [Seite 158]
1.8.1.1.1.1.1 - 18.3.7.1.1.1 Method 1: Synthesis by Halogen Exchange [Seite 158]
1.8.1.1.1.1.1.1 - 18.3.7.1.1.1.1 Variation 1: Fluorination of Phosgene [Seite 158]
1.8.1.1.1.1.1.2 - 18.3.7.1.1.1.2 Variation 2: Bromination of Phosgene [Seite 159]
1.8.1.1.1.1.2 - 18.3.7.1.1.2 Method 2: Synthesis by Oxidation of Tetrahalomethanes [Seite 160]
1.8.1.1.1.1.2.1 - 18.3.7.1.1.2.1 Variation 1: Reaction of Trichlorofluoromethane with Sulfur Trioxide [Seite 160]
1.8.1.1.1.1.2.2 - 18.3.7.1.1.2.2 Variation 2: Reaction of Tribromofluoromethane with Sulfur Trioxide [Seite 160]
1.8.1.1.1.1.2.3 - 18.3.7.1.1.2.3 Variation 3: Reaction of Tetrabromomethane with Sulfuric Acid [Seite 161]
1.8.1.1.1.1.3 - 18.3.7.1.1.3 Method 3: Synthesis by Reaction of Bromine Trifluoride with Carbon Monoxide [Seite 162]
1.8.1.1.2 - 18.3.7.2 Haloformate Esters [Seite 162]
1.8.1.1.2.1 - 18.3.7.2.1 Synthesis of Haloformate Esters [Seite 162]
1.8.1.1.2.1.1 - 18.3.7.2.1.1 Method 1: Synthesis by Halogen Exchange [Seite 163]
1.8.1.1.2.1.1.1 - 18.3.7.2.1.1.1 Variation 1: Reaction of Chloroformates with Sodium Fluoride and a Crown Ether [Seite 163]
1.8.1.1.2.1.1.2 - 18.3.7.2.1.1.2 Variation 2: Reaction of Chloroformates with an Organotin Fluoride Reagent [Seite 163]
1.8.1.1.2.1.1.3 - 18.3.7.2.1.1.3 Variation 3: Reaction of Chloroformates with Thallium(I) Fluoride [Seite 164]
1.8.1.1.2.1.1.4 - 18.3.7.2.1.1.4 Variation 4: Reaction of Chloroformates with Sodium Iodide [Seite 167]
1.8.1.1.2.1.2 - 18.3.7.2.1.2 Method 2: Synthesis by Conversion of Alcohols [Seite 168]
1.8.1.1.2.1.2.1 - 18.3.7.2.1.2.1 Variation 1: Reaction with Carbonyl Difluoride and Potassium Fluoride [Seite 168]
1.8.1.1.2.1.2.2 - 18.3.7.2.1.2.2 Variation 2: Reaction with Carbonyl Chloride Fluoride [Seite 169]
1.8.1.1.2.1.2.3 - 18.3.7.2.1.2.3 Variation 3: Reaction with Carbonyl Bromide Fluoride [Seite 171]
1.8.1.1.2.1.2.4 - 18.3.7.2.1.2.4 Variation 4: Reaction with Carbonyl Dibromide [Seite 171]
1.8.1.1.2.1.3 - 18.3.7.2.1.3 Method 3: Synthesis by Reaction of Alkyl Carbamates with Sodium Nitrite and Hydrogen Fluoride-Pyridine Complex [Seite 172]
1.8.1.1.2.1.4 - 18.3.7.2.1.4 Method 4: Synthesis by Reaction of Cyclic Ethers with Carbonyl Chloride Fluoride [Seite 173]
1.8.1.1.2.1.5 - 18.3.7.2.1.5 Method 5: Synthesis by Reaction of Aldehydes and Ketones with Carbonyl Difluoride [Seite 174]
1.8.1.1.2.1.6 - 18.3.7.2.1.6 Method 6: Synthesis by Reaction of Trifluoromethyl Hypofluorite with Carbon Monoxide [Seite 174]
1.8.1.1.3 - 18.3.7.3 Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides [Seite 175]
1.8.1.1.3.1 - 18.3.7.3.1 Synthesis of Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides [Seite 175]
1.8.1.1.3.1.1 - 18.3.7.3.1.1 Method 1: Synthesis by Halogen Exchange [Seite 175]
1.8.1.1.3.1.1.1 - 18.3.7.3.1.1.1 Variation 1: Reaction of Chlorothioformate S-Esters with Hydrogen Fluoride [Seite 176]
1.8.1.1.3.1.1.2 - 18.3.7.3.1.1.2 Variation 2: Reaction of Chlorocarbonylsulfenyl Chloride with Antimony(III) Fluoride [Seite 176]
1.8.1.1.3.1.1.3 - 18.3.7.3.1.1.3 Variation 3: Reaction of Fluorocarbonylsulfenyl Chloride with Bromotrimethylsilane [Seite 177]
1.8.1.1.3.1.1.4 - 18.3.7.3.1.1.4 Variation 4: Reaction of Fluorocarbonylsulfenyl Bromide with Boron Trichloride [Seite 177]
1.8.1.1.3.1.1.5 - 18.3.7.3.1.1.5 Variation 5: Reaction of Chlorocarbonylsulfenyl Chloride with Boron Tribromide [Seite 177]
1.8.1.1.3.1.2 - 18.3.7.3.1.2 Method 2: Synthesis by Reaction of Sulfenyl Chlorides with Sulfuric Acid [Seite 178]
1.8.1.1.3.1.3 - 18.3.7.3.1.3 Method 3: Synthesis by Reaction of Sulfenyl Chlorides with O-Alkyl Chlorothioformates [Seite 178]
1.8.1.1.3.1.4 - 18.3.7.3.1.4 Method 4: Synthesis by Iron-Catalyzed Rearrangement of O-Alkyl Chlorothioformates [Seite 179]
1.8.1.1.4 - 18.3.7.4 Carbamoyl Halides [Seite 180]
1.8.1.1.4.1 - 18.3.7.4.1 Synthesis of Carbamoyl Halides [Seite 180]
1.8.1.1.4.1.1 - 18.3.7.4.1.1 Method 1: Synthesis by Reaction of Secondary Amines [Seite 180]
1.8.1.1.4.1.1.1 - 18.3.7.4.1.1.1 Variation 1: Reaction with Carbonyl Difluoride [Seite 180]
1.8.1.1.4.1.1.2 - 18.3.7.4.1.1.2 Variation 2: Reaction with Dibromodifluoromethane Followed by Hydrolysis [Seite 181]
1.8.1.1.4.1.2 - 18.3.7.4.1.2 Method 2: Synthesis by Reaction of Amides or Lactams [Seite 182]
1.8.1.1.4.1.2.1 - 18.3.7.4.1.2.1 Variation 1: Reaction with Carbonyl Difluoride [Seite 182]
1.8.1.1.4.1.3 - 18.3.7.4.1.3 Method 3: Synthesis by Reaction of C==N Containing Compounds [Seite 183]
1.8.1.1.4.1.3.1 - 18.3.7.4.1.3.1 Variation 1: Reaction of Isocyanates, Imines, and Hydrogen Cyanide with Carbonyl Difluoride and Cesium Fluoride [Seite 183]
1.8.1.1.4.1.3.2 - 18.3.7.4.1.3.2 Variation 2: Reaction of Isothiocyanates with Carbonyl Difluoride, Mercury(II) Fluoride, and Cesium Fluoride [Seite 185]
1.8.1.1.4.1.3.3 - 18.3.7.4.1.3.3 Variation 3: Reaction of Isocyanates with Poly(hydrogen fluoride)-Pyridine Complex [Seite 186]
1.8.1.1.4.1.4 - 18.3.7.4.1.4 Method 4: Synthesis by Reaction of N,N-Disubstituted Formamides with a Phosphorus(III) Halide Followed by a Thionyl Halide [Seite 187]
1.8.1.1.4.1.5 - 18.3.7.4.1.5 Method 5: Synthesis by Reaction of N,N-Disubstituted Formamides with Sulfur Tetrafluoride Followed by Hydrolysis [Seite 187]
1.8.1.1.4.1.6 - 18.3.7.4.1.6 Method 6: Synthesis by Reaction of Bis(perfluoroalkyl)(trifluoromethyl)amines with Oleum [Seite 188]
1.8.1.1.4.1.7 - 18.3.7.4.1.7 Method 7: Synthesis by Reaction of S-Alkyl Thiocarbamates with Halogens [Seite 189]
1.8.1.1.4.1.8 - 18.3.7.4.1.8 Method 8: Synthesis by Reaction of 3-Aryl-4-halosydnones with Hydrogen Halides [Seite 190]
1.8.2 - 18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues [Seite 192]
1.8.2.1 - 18.4.45 Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues [Seite 192]
1.8.2.1.1 - 18.4.45.1 Acyclic Carbonate Diesters [Seite 192]
1.8.2.1.1.1 - 18.4.45.1.1 Synthesis of Acyclic Carbonate Diesters [Seite 192]
1.8.2.1.1.1.1 - 18.4.45.1.1.1 Method 1: Reactions of Alcohols and Phenols with Derivatives of Carbonic Acid [Seite 192]
1.8.2.1.1.1.1.1 - 18.4.45.1.1.1.1 Variation 1: Alkoxycarbonylation of Alcohols and Phenols [Seite 192]
1.8.2.1.1.1.1.2 - 18.4.45.1.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole [Seite 194]
1.8.2.1.1.1.1.3 - 18.4.45.1.1.1.3 Variation 3: Transcarbonylation Using Dialkyl Carbonates [Seite 195]
1.8.2.1.1.1.2 - 18.4.45.1.1.2 Method 2: Reaction of Formate Derivatives with Carbonyl Compounds [Seite 197]
1.8.2.1.1.1.2.1 - 18.4.45.1.1.2.1 Variation 1: Addition of Formate Derivatives to Aldehydes [Seite 197]
1.8.2.1.1.1.2.2 - 18.4.45.1.1.2.2 Variation 2: Reaction of Enolates with Formate Derivatives [Seite 199]
1.8.2.1.1.1.3 - 18.4.45.1.1.3 Method 3: Addition of Carbon Dioxide [Seite 200]
1.8.2.1.1.1.4 - 18.4.45.1.1.4 Method 4: Addition of Carbon Monoxide [Seite 201]
1.8.2.1.1.1.5 - 18.4.45.1.1.5 Method 5: Alkylation of Metal Carbonates [Seite 201]
1.8.2.1.1.1.6 - 18.4.45.1.1.6 Method 6: Rearrangements [Seite 202]
1.8.2.1.1.1.7 - 18.4.45.1.1.7 Method 7: Reaction of Difluoro(diiodo)methane with Alcohols and Phenols [Seite 204]
1.8.2.1.1.2 - 18.4.45.1.2 Applications of Acyclic Carbonate Diesters in Organic Synthesis [Seite 204]
1.8.2.1.1.2.1 - 18.4.45.1.2.1 Method 1: Application of Dimethyl Carbonate as a Solvent in Green Chemistry [Seite 204]
1.8.2.1.1.2.2 - 18.4.45.1.2.2 Method 2: Application in Transition-Metal-Catalyzed Cross-Coupling Reactions [Seite 204]
1.8.2.1.1.2.3 - 18.4.45.1.2.3 Method 3: Use as a Photoremovable Protecting Group [Seite 206]
1.8.2.1.2 - 18.4.45.2 Cyclic Carbonate Diesters [Seite 206]
1.8.2.1.2.1 - 18.4.45.2.1 Synthesis of Cyclic Carbonate Diesters [Seite 206]
1.8.2.1.2.1.1 - 18.4.45.2.1.1 Method 1: Transfer of the Carbonyl Group to Diols [Seite 206]
1.8.2.1.2.1.1.1 - 18.4.45.2.1.1.1 Variation 1: Coupling Using Bis(trichloromethyl) Carbonate (Triphosgene) [Seite 206]
1.8.2.1.2.1.1.2 - 18.4.45.2.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole [Seite 207]
1.8.2.1.2.1.1.3 - 18.4.45.2.1.1.3 Variation 3: Transcarbonylation Using Dimethyl Carbonate [Seite 207]
1.8.2.1.2.1.1.4 - 18.4.45.2.1.1.4 Variation 4: One-Pot Conversion of Alkenes [Seite 208]
1.8.2.1.2.1.2 - 18.4.45.2.1.2 Method 2: Gold(I)-Catalyzed Cyclization of 1,6-Enynes [Seite 210]
1.8.2.1.2.1.3 - 18.4.45.2.1.3 Method 3: Iodocarbonate Cyclization of 1,5-Enynes [Seite 211]
1.8.2.1.2.1.4 - 18.4.45.2.1.4 Method 4: Addition to Carbon Dioxide [Seite 211]
1.8.2.1.2.1.4.1 - 18.4.45.2.1.4.1 Variation 1: Reaction with Propargylic Alcohols [Seite 211]
1.8.2.1.2.1.4.2 - 18.4.45.2.1.4.2 Variation 2: Reaction with Oxiranes [Seite 213]
1.8.2.1.2.1.5 - 18.4.45.2.1.5 Method 5: Addition to Carbon Monoxide [Seite 214]
1.8.2.1.2.2 - 18.4.45.2.2 Applications of Cyclic Carbonate Diesters in Organic Synthesis [Seite 215]
1.8.2.1.2.2.1 - 18.4.45.2.2.1 Method 1: Application as a Solvent in Green Chemistry [Seite 215]
1.8.2.1.3 - 18.4.45.3 Bis(trihalomethyl) Carbonates [Seite 216]
1.8.2.1.3.1 - 18.4.45.3.1 Synthesis of Bis(trihalomethyl) Carbonates [Seite 216]
1.8.2.1.3.2 - 18.4.45.3.2 Applications of Bis(trihalomethyl) Carbonates in Organic Synthesis [Seite 217]
1.8.2.1.3.2.1 - 18.4.45.3.2.1 Method 1: Synthesis of Acid Chlorides Using Bis(trichloromethyl) Carbonate [Seite 217]
1.8.2.1.3.2.1.1 - 18.4.45.3.2.1.1 Variation 1: Chlorination of Carboxylic Acids [Seite 217]
1.8.2.1.3.2.1.2 - 18.4.45.3.2.1.2 Variation 2: Chlorocarbonylation of Diazo Compounds [Seite 217]
1.8.2.1.3.2.2 - 18.4.45.3.2.2 Method 2: Chlorination of Alcohols Using Bis(trichloromethyl) Carbonate [Seite 218]
1.8.2.1.3.2.3 - 18.4.45.3.2.3 Method 3: Chlorocarbonylation of Hydroxy and Thiol Groups Using Bis-(trichloromethyl) Carbonate [Seite 219]
1.8.2.1.3.2.4 - 18.4.45.3.2.4 Method 4: Preparation of Isocyanates from Amines Using Bis(trichloromethyl) Carbonate [Seite 221]
1.8.2.1.3.2.5 - 18.4.45.3.2.5 Method 5: Preparation of Isocyanides Using Bis(trichloromethyl) Carbonate [Seite 222]
1.8.2.1.4 - 18.4.45.4 Dicarbonate Diesters [Seite 223]
1.8.2.1.4.1 - 18.4.45.4.1 Synthesis of Dicarbonate Diesters [Seite 223]
1.8.2.1.4.2 - 18.4.45.4.2 Applications of Dicarbonate Diesters in Organic Synthesis [Seite 223]
1.8.2.1.4.2.1 - 18.4.45.4.2.1 Method 1: Conversion of Alcohols or Phenols into Unsymmetrical Carbonates [Seite 223]
1.8.2.1.4.2.2 - 18.4.45.4.2.2 Method 2: Decarboxylative Esterification of Carboxylic Acids [Seite 223]
1.8.2.1.5 - 18.4.45.5 Tricarbonate Diesters [Seite 224]
1.8.2.1.5.1 - 18.4.45.5.1 Synthesis of Tricarbonate Diesters [Seite 224]
1.8.2.1.5.2 - 18.4.45.5.2 Applications of Tricarbonate Diesters in Organic Synthesis [Seite 224]
1.8.2.1.5.2.1 - 18.4.45.5.2.1 Method 1: Synthesis of Oxazolidine-2,5-diones Using Di-tert-butyl Tricarbonate [Seite 224]
1.8.2.1.6 - 18.4.45.6 Carbamic Carbonic Anhydride O,N-Diesters [Seite 225]
1.8.2.1.6.1 - 18.4.45.6.1 Synthesis of Carbamic Carbonic Anhydride O,N-Diesters [Seite 225]
1.8.2.1.7 - 18.4.45.7 Carbonic Sulfonic Anhydride Esters [Seite 225]
1.8.2.1.7.1 - 18.4.45.7.1 Synthesis of Carbonic Sulfonic Anhydride Esters [Seite 226]
1.8.2.1.7.2 - 18.4.45.7.2 Applications of Carbonic Sulfonic Anhydride Esters in Organic Synthesis [Seite 226]
1.8.2.1.7.2.1 - 18.4.45.7.2.1 Method 1: Synthesis of Carbonates and Thiocarbonates via Mesyl Carbonates [Seite 226]
1.8.2.1.8 - 18.4.45.8 O-Amino Carbonate Derivatives [Seite 226]
1.8.2.1.8.1 - 18.4.45.8.1 Synthesis of O-Amino Carbonate Derivatives [Seite 227]
1.8.2.1.9 - 18.4.45.9 Metal Complexes of Thiocarbonic Acid O-Monoesters [Seite 227]
1.8.2.1.9.1 - 18.4.45.9.1 Synthesis of Metal Complexes of Thiocarbonic Acid O-Monoesters [Seite 228]
1.8.2.1.10 - 18.4.45.10 Acyclic Thiocarbonate O,S-Diesters [Seite 228]
1.8.2.1.10.1 - 18.4.45.10.1 Synthesis of Acyclic Thiocarbonate O,S-Diesters [Seite 228]
1.8.2.1.10.1.1 - 18.4.45.10.1.1 Method 1: Reaction of Thiols with Derivatives of Carbonic Acid [Seite 228]
1.8.2.1.10.1.1.1 - 18.4.45.10.1.1.1 Variation 1: Alkoxycarbonylation of Thiols [Seite 228]
1.8.2.1.10.1.1.2 - 18.4.45.10.1.1.2 Variation 2: Reaction Using Bis(trichloromethyl) Carbonate [Seite 228]
1.8.2.1.10.1.1.3 - 18.4.45.10.1.1.3 Variation 3: Reaction Using Other tert-Butoxycarbonyl Reagents [Seite 229]
1.8.2.1.10.1.2 - 18.4.45.10.1.2 Method 2: Reductive Cleavage of Disulfides [Seite 229]
1.8.2.1.11 - 18.4.45.11 Cyclic Thiocarbonate O,S-Diesters [Seite 230]
1.8.2.1.11.1 - 18.4.45.11.1 Synthesis of Cyclic Thiocarbonate O,S-Diesters [Seite 230]
1.8.2.1.11.1.1 - 18.4.45.11.1.1 Method 1: Substitution of 1,1'-Carbonyldiimidazole [Seite 230]
1.8.2.1.11.1.2 - 18.4.45.11.1.2 Method 2: Hydrolysis of Oxathiolan-2-imine Derivatives [Seite 231]
1.8.2.1.11.1.3 - 18.4.45.11.1.3 Method 3: Addition to Carbon Monoxide [Seite 232]
1.8.2.1.11.1.4 - 18.4.45.11.1.4 Method 4: Palladium-Catalyzed Cyclocarbonylation of 2-Sulfanylphenols [Seite 233]
1.8.2.1.12 - 18.4.45.12 Thiocarbonate O,S-Diester S-Oxides [Seite 233]
1.8.2.1.12.1 - 18.4.45.12.1 Synthesis of Thiocarbonate O,S-Diester S-Oxides [Seite 233]
1.8.2.1.12.1.1 - 18.4.45.12.1.1 Method 1: Oxidation of Thiocarbonate O,S-Diesters [Seite 233]
1.8.2.1.13 - 18.4.45.13 Alkoxycarbonyl Thiocyanates [Seite 233]
1.8.2.1.13.1 - 18.4.45.13.1 Synthesis of Alkoxycarbonyl Thiocyanates [Seite 234]
1.8.2.1.13.1.1 - 18.4.45.13.1.1 Method 1: Reaction of (Methoxycarbonyl)sulfenyl Chloride with Silver Cyanide [Seite 234]
1.8.2.1.14 - 18.4.45.14 S-Sulfanyl Derivatives of Thiocarbonate O-Esters [Seite 234]
1.8.2.1.14.1 - 18.4.45.14.1 Synthesis of S-Sulfanyl Derivatives of Thiocarbonate O-Esters [Seite 234]
1.8.2.1.14.1.1 - 18.4.45.14.1.1 Method 1: Reactions of (Methoxycarbonyl)sulfenyl Chloride [Seite 234]
1.8.2.1.14.1.1.1 - 18.4.45.14.1.1.1 Variation 1: With Silver(I) Thiocyanate [Seite 234]
1.8.2.1.14.1.1.2 - 18.4.45.14.1.1.2 Variation 2: With Bis(trifluoromethanethiolato)mercury(II) [Seite 234]
1.8.2.1.15 - 18.4.45.15 S-Amino Thiocarbonate O-Esters [Seite 235]
1.8.2.1.15.1 - 18.4.45.15.1 Synthesis of S-Amino Thiocarbonate O-Esters [Seite 235]
1.8.2.1.15.1.1 - 18.4.45.15.1.1 Method 1: Hydrolysis of an Isocyanate Derivative [Seite 235]
1.8.2.1.16 - 18.4.45.16 Acyclic Dithiocarbonate S,S-Diesters [Seite 235]
1.8.2.1.16.1 - 18.4.45.16.1 Synthesis of Acyclic Dithiocarbonate S,S-Diesters [Seite 235]
1.8.2.1.16.1.1 - 18.4.45.16.1.1 Method 1: Reaction of Thiols with Carbon Dioxide [Seite 235]
1.8.2.1.17 - 18.4.45.17 Cyclic Dithiocarbonate S,S-Diesters [Seite 236]
1.8.2.1.17.1 - 18.4.45.17.1 Synthesis of Cyclic Dithiocarbonate S,S-Diesters [Seite 236]
1.8.2.1.17.1.1 - 18.4.45.17.1.1 Method 1: Reaction of Dithiols with 1,1'-Carbonyldiimidazole [Seite 236]
1.8.2.1.17.1.2 - 18.4.45.17.1.2 Method 2: Oxidation of Cyclic Trithiocarbonates [Seite 237]
1.8.2.1.17.1.3 - 18.4.45.17.1.3 Method 3: Reaction of an Epoxide and Carbon Disulfide under High Pressure [Seite 237]
1.8.2.1.17.2 - 18.4.45.17.2 Applications of Cyclic Dithiocarbonate S,S-Diesters in Organic Synthesis [Seite 237]
1.8.2.1.17.2.1 - 18.4.45.17.2.1 Method 1: Ring Enlargement of 1,3-Dithian-2-one with Lithium Acetylides [Seite 237]
1.8.2.1.17.2.2 - 18.4.45.17.2.2 Method 2: Synthesis of Tetrathiafulvalenes [Seite 238]
1.8.2.1.18 - 18.4.45.18 Acyclic Selenocarbonate O,Se-Diesters [Seite 238]
1.8.2.1.18.1 - 18.4.45.18.1 Synthesis of Acyclic Selenocarbonate O,Se-Diesters [Seite 238]
1.8.2.1.18.1.1 - 18.4.45.18.1.1 Method 1: Two-Step Sequence Using Derivatives of Carbonic Acid and Diphenyl Diselenide [Seite 239]
1.8.2.1.18.1.1.1 - 18.4.45.18.1.1.1 Variation 1: Using 1,1'-Carbonyldiimidazole [Seite 239]
1.8.2.1.18.1.1.2 - 18.4.45.18.1.1.2 Variation 2: Using Bis(trichloromethyl) Carbonate [Seite 239]
1.8.2.1.18.1.2 - 18.4.45.18.1.2 Method 2: Reaction of Lithium Enolates with Selenium/Carbon Monoxide [Seite 239]
1.8.2.1.19 - 18.4.45.19 Acyclic Tellurocarbonate O,Te-Diesters [Seite 240]
1.8.2.1.19.1 - 18.4.45.19.1 Synthesis of Acyclic Tellurocarbonate O,Te-Diesters [Seite 240]
1.9 - Volume 26: Ketones [Seite 248]
1.9.1 - 26.9 Product Class 9: Enones [Seite 248]
1.9.1.1 - 26.9.5 Enones [Seite 248]
1.9.1.1.1 - 26.9.5.1 ß,.-Unsaturated Ketones [Seite 248]
1.9.1.1.1.1 - 26.9.5.1.1 Synthesis of ß,.-Unsaturated Ketones [Seite 248]
1.9.1.1.1.1.1 - 26.9.5.1.1.1 Method 1: Oxidation of Homoallylic Alcohols [Seite 248]
1.9.1.1.1.1.2 - 26.9.5.1.1.2 Method 2: Allylation of Acyl Compounds and Nitriles by Allyl Derivatives [Seite 250]
1.9.1.1.1.1.2.1 - 26.9.5.1.1.2.1 Variation 1: Allylation of Acyl Chlorides by Allylsilanes and Acyl Cyanides by Allyl Bromides [Seite 250]
1.9.1.1.1.1.2.2 - 26.9.5.1.1.2.2 Variation 2: Transition-Metal-Catalyzed Allylation of Acylsilanes and Acylstannanes by Allyl Trifluoroacetates, and Acylzirconocenes by Allyl Halides and 4-Toluenesulfonates [Seite 251]
1.9.1.1.1.1.2.3 - 26.9.5.1.1.2.3 Variation 3: Barbier-Type Allylation of Nitriles by Allyl Bromides [Seite 253]
1.9.1.1.1.1.3 - 26.9.5.1.1.3 Method 3: Tin- and Boron-Mediated Allylation of a-Halo Aryl Ketones by Allylstannanes [Seite 254]
1.9.1.1.1.1.4 - 26.9.5.1.1.4 Method 4: Alkenylation of Enol Ethers by Alkenyl and Alkynyl Reagents [Seite 256]
1.9.1.1.1.1.4.1 - 26.9.5.1.1.4.1 Variation 1: Alkenylation of Silyl Enol Ethers by an Alkenylbismuth Reagent [Seite 256]
1.9.1.1.1.1.4.2 - 26.9.5.1.1.4.2 Variation 2: Gallium-Mediated Alkenylation of Silyl Enol Ethers by (Trimethylsilyl)acetylenes [Seite 256]
1.9.1.1.1.1.5 - 26.9.5.1.1.5 Method 5: Transition-Metal-Catalyzed Alkenylation of Ketones and Ketone Derivatives by Alkenyl Halides and Trifluoromethanesulfonates [Seite 257]
1.9.1.1.1.1.5.1 - 26.9.5.1.1.5.1 Variation 1: Palladium-Catalyzed Intramolecular Alkenylation of Ketones by Alkenyl Halides [Seite 258]
1.9.1.1.1.1.5.2 - 26.9.5.1.1.5.2 Variation 2: Palladium- and Nickel-Catalyzed Intermolecular Alkenylation of Ketones by Alkenyl Halides and Trifluoromethanesulfonates [Seite 262]
1.9.1.1.1.1.5.3 - 26.9.5.1.1.5.3 Variation 3: Palladium-Catalyzed Alkenylation of Enol Acetates by Alkenyl Bromides [Seite 264]
1.9.1.1.1.1.5.4 - 26.9.5.1.1.5.4 Variation 4: Palladium-Catalyzed Alkenylation of Enol Ethers by Alkenyl Halides and Trifluoromethanesulfonates [Seite 264]
1.9.1.1.1.1.6 - 26.9.5.1.1.6 Method 6: Nickel-Catalyzed Enantioselective Alkenylation of a-Bromo Ketones by Alkenylzirconocenes [Seite 266]
1.9.1.1.1.1.7 - 26.9.5.1.1.7 Method 7: Ruthenium-Catalyzed Hydroacylation of Dienes by Aldehydes and Alcohols [Seite 267]
1.9.1.1.1.1.8 - 26.9.5.1.1.8 Method 8: Ruthenium-Catalyzed Hydration Dimerization of Ethynylbenzenes [Seite 269]
1.9.1.1.1.1.9 - 26.9.5.1.1.9 Method 9: Alkenylation of Ketones by Terminal Alkynes [Seite 270]
1.9.1.1.1.1.9.1 - 26.9.5.1.1.9.1 Variation 1: Tin-Mediated Alkenylation of Ketones by Terminal Alkynes [Seite 270]
1.9.1.1.1.1.9.2 - 26.9.5.1.1.9.2 Variation 2: Superbase-Mediated Alkenylation of Ketones by Ethynylbenzenes [Seite 271]
1.9.2 - 26.12 Product Class 12: Seven-Membered and Larger-Ring Cyclic Ketones [Seite 274]
1.9.2.1 - 26.12.1 Synthesis of Product Class 12 [Seite 277]
1.9.2.1.1 - 26.12.1.1 Method 1: Intramolecular Cyclization Reactions [Seite 277]
1.9.2.1.1.1 - 26.12.1.1.1 Variation 1: Cyclization of Suberic Acid and Related Ester Derivatives [Seite 277]
1.9.2.1.1.2 - 26.12.1.1.2 Variation 2: Ziegler Cyclization of Dinitriles [Seite 279]
1.9.2.1.1.3 - 26.12.1.1.3 Variation 3: Acyloin Condensation of Diesters [Seite 280]
1.9.2.1.1.4 - 26.12.1.1.4 Variation 4: Intramolecular Michael Addition Reactions [Seite 282]
1.9.2.1.1.5 - 26.12.1.1.5 Variation 5: Intramolecular Radical Cyclization Reactions [Seite 284]
1.9.2.1.1.6 - 26.12.1.1.6 Variation 6: Intramolecular Wittig/Horner-Wadsworth-Emmons and Related Reactions [Seite 286]
1.9.2.1.1.7 - 26.12.1.1.7 Variation 7: Ring-Closing Metathesis [Seite 288]
1.9.2.1.1.8 - 26.12.1.1.8 Variation 8: Transition-Metal-Catalyzed Cross-Coupling Reactions [Seite 293]
1.9.2.1.2 - 26.12.1.2 Method 2: Cycloaddition Reactions [Seite 294]
1.9.2.1.2.1 - 26.12.1.2.1 Variation 1: [5 + 2]-Cycloaddition Reactions [Seite 294]
1.9.2.1.2.2 - 26.12.1.2.2 Variation 2: [4 + 3] Cycloaddition Reactions [Seite 301]
1.9.2.1.2.3 - 26.12.1.2.3 Variation 3: [6 + 4] Cycloadditions of Tropones with Dienes [Seite 305]
1.9.2.1.3 - 26.12.1.3 Method 3: Ring Enlargement [Seite 308]
1.9.2.1.3.1 - 26.12.1.3.1 Variation 1: Pinacol and Pinacol-Type Rearrangements [Seite 308]
1.9.2.1.3.2 - 26.12.1.3.2 Variation 2: Ring Enlargement of [4.1.0] Bicyclic Ring Systems [Seite 315]
1.9.2.1.3.3 - 26.12.1.3.3 Variation 3: Ring Enlargement of [3.2.0] Bicyclic Ring Systems [Seite 318]
1.9.2.1.3.4 - 26.12.1.3.4 Variation 4: Ring Enlargement of [10.3.0] Bicyclic Ring Systems [Seite 320]
1.9.2.1.3.5 - 26.12.1.3.5 Variation 5: Electrocyclic Ring Expansions [Seite 321]
1.9.3 - 26.13 Product Class 13: a-Aryl and a-Hetaryl Ketones [Seite 332]
1.9.3.1 - 26.13.1 Synthesis of Product Class 13 [Seite 332]
1.9.3.1.1 - 26.13.1.1 Arylation of Ketones and Ketone Enolates by Aryl and Hetaryl Halides [Seite 332]
1.9.3.1.1.1 - 26.13.1.1.1 Method 1: Arylation of Ketones Using the SNAr Mechanism [Seite 332]
1.9.3.1.1.2 - 26.13.1.1.2 Method 2: Arylation of Ketones and Ketone Enolates Using the SRN1 Mechanism [Seite 333]
1.9.3.1.1.3 - 26.13.1.1.3 Method 3: Palladium-Catalyzed Arylation of Ketones [Seite 337]
1.9.3.1.1.3.1 - 26.13.1.1.3.1 Variation 1: Nonenantioselective Arylation [Seite 337]
1.9.3.1.1.3.2 - 26.13.1.1.3.2 Variation 2: Enantioselective Arylation [Seite 365]
1.9.3.1.1.4 - 26.13.1.1.4 Method 4: Nickel-Catalyzed Arylation of Ketones [Seite 370]
1.9.3.1.1.4.1 - 26.13.1.1.4.1 Variation 1: Nonenantioselective Arylation [Seite 370]
1.9.3.1.1.4.2 - 26.13.1.1.4.2 Variation 2: Enantioselective Arylation [Seite 371]
1.9.3.1.2 - 26.13.1.2 Arylation of ß-Diketones by Aryl Halides [Seite 374]
1.9.3.1.2.1 - 26.13.1.2.1 Method 1: Copper-Catalyzed Arylation [Seite 374]
1.9.3.1.3 - 26.13.1.3 Arylation of Enol Ethers by Aryl and Hetaryl Halides [Seite 375]
1.9.3.1.3.1 - 26.13.1.3.1 Method 1: UV-Mediated Arylation Using the SN1 Mechanism [Seite 375]
1.9.3.1.3.2 - 26.13.1.3.2 Method 2: Palladium-Catalyzed Arylation [Seite 376]
1.9.3.1.3.2.1 - 26.13.1.3.2.1 Variation 1: Nonstereoselective Arylation [Seite 376]
1.9.3.1.3.2.2 - 26.13.1.3.2.2 Variation 2: Stereoselective Arylation [Seite 382]
1.9.3.1.4 - 26.13.1.4 Arylation of Enol Esters by Aryl and Hetaryl Halides [Seite 385]
1.9.3.1.4.1 - 26.13.1.4.1 Method 1: Palladium-Catalyzed Arylation [Seite 385]
1.9.3.1.5 - 26.13.1.5 Arylation of Ketones by Aryl Sulfonates [Seite 388]
1.9.3.1.5.1 - 26.13.1.5.1 Method 1: Palladium-Catalyzed Arylation [Seite 388]
1.9.3.1.5.1.1 - 26.13.1.5.1.1 Variation 1: Nonenantioselective Arylation [Seite 388]
1.9.3.1.5.1.2 - 26.13.1.5.1.2 Variation 2: Enantioselective Arylation [Seite 392]
1.9.3.1.5.2 - 26.13.1.5.2 Method 2: Nickel-Catalyzed Enantioselective Arylation [Seite 393]
1.9.3.1.6 - 26.13.1.6 Arylation of Enol Acetates by Arenediazonium Salts [Seite 394]
1.9.3.1.6.1 - 26.13.1.6.1 Method 1: Base-Mediated Arylation [Seite 394]
1.9.3.1.6.2 - 26.13.1.6.2 Method 2: Ruthenium-Catalyzed Arylation Using Blue Light [Seite 395]
1.9.3.1.7 - 26.13.1.7 Arylation of a-Halo Ketones by Arylboron Reagents [Seite 396]
1.9.3.1.7.1 - 26.13.1.7.1 Method 1: Base-Mediated Arylation by 9-Phenyl-9-borabicyclo[3.3.1]nonane [Seite 396]
1.9.3.1.7.2 - 26.13.1.7.2 Method 2: Nickel-Catalyzed Arylation by Arylboronic Acids [Seite 397]
1.9.3.1.8 - 26.13.1.8 Carbonylative Arylation of Benzyl Halides by Arylboron Reagents [Seite 398]
1.9.3.1.8.1 - 26.13.1.8.1 Method 1: Palladium-Catalyzed Carbonylative Arylation by Arylboronic Acids [Seite 398]
1.9.3.1.8.2 - 26.13.1.8.2 Method 2: Palladium-Catalyzed Carbonylative Arylation by Aryltrifluoroborates [Seite 399]
1.9.3.1.9 - 26.13.1.9 Arylation of Ketones by Arylbismuth Reagents [Seite 400]
1.9.3.1.9.1 - 26.13.1.9.1 Method 1: Multiple Arylation by Triphenylbismuth(V) Carbonate [Seite 400]
1.9.3.1.10 - 26.13.1.10 Arylation of Ketones and a-Chloro Ketones by Nitroarenes Using Nucleophilic Aromatic Substitution Mechanisms [Seite 401]
1.9.3.1.10.1 - 26.13.1.10.1 Method 1: Arylation of Ketones Using the Oxidative Nucleophilic Substitution of Hydrogen Mechanism [Seite 401]
1.9.3.1.10.2 - 26.13.1.10.2 Method 2: Arylation of a-Chloro Ketones Using the Vicarious Nucleophilic Substitution Mechanism [Seite 402]
1.9.3.2 - 26.13.2 Conclusions [Seite 403]
1.10 - Volume 32: X--Ene--X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene--Hal, and Ene--O Compounds [Seite 406]
1.10.1 - 32.4 Product Class 4: Haloalkenes [Seite 406]
1.10.1.1 - 32.4.3 Haloalkenes [Seite 406]
1.10.1.1.1 - 32.4.3.1 Fluoroalkenes [Seite 406]
1.10.1.1.1.1 - 32.4.3.1.1 Synthesis from Aldehydes and Ketones [Seite 406]
1.10.1.1.1.1.1 - 32.4.3.1.1.1 Method 1: Reaction with Fluoro Sulfones [Seite 406]
1.10.1.1.1.1.2 - 32.4.3.1.1.2 Method 2: Reaction with a-Fluoroalkanoic Esters [Seite 417]
1.10.1.1.1.1.2.1 - 32.4.3.1.1.2.1 Variation 1: Base-Mediated Addition to Carbonyl Compounds [Seite 417]
1.10.1.1.1.1.2.2 - 32.4.3.1.1.2.2 Variation 2: Reductive Addition to Carbonyl Compounds [Seite 418]
1.10.1.1.1.1.2.3 - 32.4.3.1.1.2.3 Variation 3: Palladium-Catalyzed Addition to Aldehydes [Seite 420]
1.10.1.1.1.2 - 32.4.3.1.2 Synthesis from Allenes and Alkynes [Seite 420]
1.10.1.1.1.2.1 - 32.4.3.1.2.1 Method 1: Hydroxyfluorination of Allenes [Seite 420]
1.10.1.1.1.2.2 - 32.4.3.1.2.2 Method 2: Transition-Metal-Catalyzed Fluorination of Alkynes and Allenes [Seite 422]
1.10.1.1.1.2.2.1 - 32.4.3.1.2.2.1 Variation 1: Transition-Metal-Catalyzed Hydrofluorination [Seite 422]
1.10.1.1.1.2.2.2 - 32.4.3.1.2.2.2 Variation 2: Transition-Metal-Catalyzed Electrophilic Fluorination [Seite 424]
1.10.1.1.1.3 - 32.4.3.1.3 Synthesis from Allyl Fluorides [Seite 426]
1.10.1.1.1.3.1 - 32.4.3.1.3.1 Method 1: Nucleophilic or Reductive Displacement of Allylic gem-Difluorides [Seite 426]
1.10.1.1.1.4 - 32.4.3.1.4 Synthesis from Other Fluoroalkenes [Seite 429]
1.10.1.1.1.4.1 - 32.4.3.1.4.1 Method 1: Synthesis by Reductive Defluorination [Seite 429]
1.10.1.1.1.4.1.1 - 32.4.3.1.4.1.1 Variation 1: Transition-Metal-Mediated Hydrodefluorination [Seite 429]
1.10.1.1.1.4.1.2 - 32.4.3.1.4.1.2 Variation 2: Defluorination of Silylfluorostyrenes [Seite 430]
1.10.1.1.1.4.2 - 32.4.3.1.4.2 Method 2: Palladium-Catalyzed Cross Coupling of Vinyl Fluorides [Seite 432]
1.10.1.1.1.4.2.1 - 32.4.3.1.4.2.1 Variation 1: Stille-Type Cross Coupling [Seite 432]
1.10.1.1.1.4.2.2 - 32.4.3.1.4.2.2 Variation 2: Suzuki-Type Cross Coupling [Seite 434]
1.10.1.1.1.4.2.3 - 32.4.3.1.4.2.3 Variation 3: Negishi-Type Cross Coupling [Seite 435]
1.10.1.1.1.4.2.4 - 32.4.3.1.4.2.4 Variation 4: Direct C-H Fluoroalkenylation [Seite 436]
1.10.1.1.1.4.2.5 - 32.4.3.1.4.2.5 Variation 5: Palladium-Catalyzed C-F Activation [Seite 437]
1.10.1.1.1.4.2.6 - 32.4.3.1.4.2.6 Variation 6: Mizoroki-Heck-Type Cross Coupling [Seite 437]
1.10.1.1.1.4.2.7 - 32.4.3.1.4.2.7 Variation 7: Palladium-Catalyzed Carbonylation [Seite 438]
1.10.1.1.1.4.3 - 32.4.3.1.4.3 Method 3: Reductive Cyclization of 1,1-Difluoro-1,6-enynes [Seite 439]
1.10.1.1.1.4.4 - 32.4.3.1.4.4 Method 4: Addition of (Fluorovinyl)silanes to Carbonyl Compounds [Seite 439]
1.10.1.1.1.4.5 - 32.4.3.1.4.5 Method 5: Synthesis from (Fluoroalkenyl)iodonium Salts [Seite 440]
1.10.1.1.1.5 - 32.4.3.1.5 Synthesis from Methylene- and Vinylidenecyclopropanes [Seite 442]
1.10.1.1.1.5.1 - 32.4.3.1.5.1 Method 1: Ring Opening of Methylene- and Vinylidenecyclopropanes [Seite 442]
1.10.1.1.1.6 - 32.4.3.1.6 Synthesis from 2-Fluoroalkanols [Seite 442]
1.10.1.1.1.7 - 32.4.3.1.7 Synthesis from Thiocarboxylic Acid Derivatives [Seite 443]
1.11 - Volume 34: Fluorine [Seite 448]
1.11.1 - 34.9 Product Class 9: ß-Fluoro Alcohols [Seite 448]
1.11.1.1 - 34.9.2 ß-Fluoro Alcohols [Seite 448]
1.11.1.1.1 - 34.9.2.1 Method 1: Synthesis by Ring Opening of Epoxides [Seite 449]
1.11.1.1.1.1 - 34.9.2.1.1 Variation 1: With Boron Trifluoride-Diethyl Ether Complex [Seite 449]
1.11.1.1.1.2 - 34.9.2.1.2 Variation 2: With Tetrafluoroboric Acid-Diethyl Ether Complex [Seite 451]
1.11.1.1.1.3 - 34.9.2.1.3 Variation 3: With Benzoyl Fluoride in the Presence of a Chiral Lewis Acid [Seite 455]
1.11.1.1.2 - 34.9.2.2 Method 2: Synthesis by Reduction of a-Fluoro Carbonyl Compounds [Seite 458]
1.11.1.1.2.1 - 34.9.2.2.1 Variation 1: With Achiral Reducing Agents [Seite 458]
1.11.1.1.2.2 - 34.9.2.2.2 Variation 2: With Chiral Reducing Agents [Seite 463]
1.11.1.1.3 - 34.9.2.3 Method 3: Synthesis by Fluoromethylation of Carbonyl Compounds [Seite 466]
1.11.1.1.3.1 - 34.9.2.3.1 Variation 1: With 2-Fluoro-1,3-benzodithiole 1,1,3,3-Tetraoxide [Seite 467]
1.11.1.1.3.2 - 34.9.2.3.2 Variation 2: With Fluorobis(phenylsulfonyl)methane [Seite 469]
1.11.1.1.4 - 34.9.2.4 Method 4: Synthesis by Hydroxyfluorination of Alkenes [Seite 470]
1.11.1.1.4.1 - 34.9.2.4.1 Variation 1: With Selectfluor in Water [Seite 470]
1.11.1.1.4.2 - 34.9.2.4.2 Variation 2: With Selectfluor in the Presence of a Chiral Phosphoric Acid [Seite 471]
1.12 - Author Index [Seite 476]
1.13 - Abbreviations [Seite 498]
1.14 - List of All Volumes [Seite 504]
2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides (Update 2013)
J. Hannedouche
2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions
This section deals with the syntheses and catalytic applications of rare-earth complexes with oxidation state +2 or +3 in the direct addition of an amine onto an unactivated carbon–carbon triple or double bond, the so-called hydroamination reaction. The term “rare earth” refers to the group 3 metal elements including scandium, yttrium, and the lanthanide series from lanthanum to lutetium, and is abbreviated Ln. This section is not intended to comprehensively review all title complexes of the product subclasses but only those which find applications as catalysts in the hydroamination reaction. Typical complexes of the product subclass contain at least one kinetically labile, σ-bonded bis(trimethylsilyl)amido, bis(dimethylsilyl)amido, diisopropylamido, bis(trimethylsilyl)methyl, trimethylsilyl, or methyl ligand which, under the hydroamination reaction conditions, is promptly protonated by the amino substrate to generate a new metal amide species. This species will further react with the alkyne or the alkene functionality through a σ-insertive or noninsertive mechanism to deliver the hydroamination product.[1–6] With few exceptions, the relative reactivity of rare-earth complexes in hydroamination is poorly influenced by the nature of the σ-bonded ligand [except for the less basic bis(dimethylsilyl)amido ligand][7,8] and is mainly governed by the ionic size of the metal and the steric/electronic properties of the ancillary ligand(s). The metal ionic radius increases going from scandium (the smallest) to lanthanum (the largest), and from lutetium to cerium.[9] Due to the higher reactivity and electron density of alkynes relative to alkenes, the hydroamination of alkynes is more readily achieved than that of alkenes. As a general trend, the rate of cyclohydroamination reaction is consistent with classical, stereoelectronically controlled cyclization processes; strictly speaking, the rate of formation of five-membered rings is higher than that of six- and, to a higher extent, seven-membered rings.
Almost all of the complexes described in this product class should be synthesized, handled, and stored under an inert atmosphere using Schlenk or glovebox techniques. All solvents should be dried and degassed prior to use. With some exceptions, most of the catalytic applications are conducted in an NMR tube under inert atmosphere, and the reported yields are determined by NMR spectroscopy or gas chromatography using an internal standard. The hydroamination reactions are performed in noncoordinative aliphatic or aromatic solvents. The relevant literature up until mid-2012 has been covered.
2.12.16.1.1 Rare-Earth(II) Complexes
Rare-earth complexes in oxidation state +2 are much less widely explored for catalytic hydroamination than those in the +3 oxidation state despite there being convenient routes to synthesize such lower-oxidation-state complexes. The most successful approach to these divalent complexes is salt metathesis of tetrahydrofuran-solvated ytterbium(II), europium(II), and samarium(II) iodide with potassium reagents. Although poorly investigated, ytterbium(II) and samarium(II) complexes nevertheless demonstrate the ability to catalyze the intramolecular hydroamination of alkynes and alkenes. Under the catalytic conditions, oxidation of the divalent lanthanide complexes to trivalent species is postulated.
2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes
2.12.16.1.1.1.1 Method 1: Salt Metathesis
Tetrahydrofuran-solvated europium(II) and ytterbium(II) iodide are reacted with potassium complex 1 and potassium hexamethyldisilazanide in a 1:1:1 molar ratio (▶ Scheme 1).[10] After removal of potassium iodide by filtration and crystallization, bis(tetrahydrofuran)-solvated {[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}ytterbium(II) 2 (Ln = Yb) and its europium(II) analogue are obtained as tiny brown (36% yield) and red crystals (17% yield), respectively. The use of iodide and potassium reagents in the course of the syntheses avoids coordination of lighter alkali halides such as lithium chloride.
An analogous procedure is applied for the preparation of bis(phosphorimidoyl)-methanide–ytterbium(II) iodide complex 4 as red crystals from potassium salt 3.[11] Complexes 2 and 4 are characterized by standard analytical and spectroscopic techniques, and their solid-state structures have been established by single-crystal X-ray diffraction. Solid-state analysis of complex 4 reveals that the ytterbium center is six coordinated with a long methanide carbon—metal bond. Bis(η5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5) is prepared by a metathetic reaction between diiodobis(tetrahydrofuran)samarium(II) and potassium pentamethylcyclopentadienide.[12] Recrystallization from a tetrahydrofuran solution affords large purple crystals of a disolvate. X-ray crystallographic analysis of complex 5 confirms the structure typical of bent metallocenes.
▶ Scheme 1 Syntheses of Ytterbium(II), Europium(II), and Organosamarium(II) Complexes[10–12]
Ln Yield (%) Ref Eu 17 [
10] Yb 36 [
10]
[Bis(trimethylsilyl)amido]{isopropyl[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}bis(tetrahydrofuran)ytterbium(II)(2, Ln = Yb); Typical Procedure:[10]
THF was condensed at −196 °C onto a mixture of YbI2(THF)2 (0.5 mmol), complex 1 (0.121 g, 0.5 mmol), and KHMDS (0.100 g, 0.5 mmol). The mixture was then stirred for 36 h at rt. The red soln was filtered to remove KI, and then the solvent was removed under reduced pressure. Finally, the remaining powder was washed with pentane and crystallized (THF/pentane 1:3) to give tiny brown crystals; yield: 0.110 g (36%).
Bis(η5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5):[12]
K(Cp*) (5.43 g, 31.2 mmol) was added to a stirred soln of SmI2(THF)2 (7.78 g, 14.2 mmol) in THF (75 mL) in a 125-mL Erlenmeyer flask. The color of the soln rapidly changed from blue-green to purple as off-white solids (KI) were formed. After 4 h at rt, the THF was removed by rotary evaporation and toluene (100 mL) was added. The resulting soln of product 5 with suspended potassium salts was stirred vigorously for 10 h and then filtered. The solvent was removed from the filtrate by rotary evaporation, leaving solid (Cp*)2Sm(THF)n (1 ≤ n ≤ 2). The degree of solvation was conveniently monitored by integration of the absorptions in the NMR spectrum in benzene-d6. Dissolving this solid in THF and then removing the solvent by rotary evaporation gave product 5; yield: 5.95 g (74%). Recrystallization (sat. THF soln at 30 °C, cooled to −25 °C overnight) gave large purple crystals; yield: 5.52 g in two crops (69%).
2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis
2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes
Well-defined [bis(phosphorimidoyl)methanido]ytterbium(II) iodide complex 4 (see ▶ Section 2.12.16.1.1.1.1) is applied as catalyst for the cyclohydroamination of pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine under mild to harsh conditions. In the presence of catalytic amounts of complex 4, pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine undergo highly regioselective cyclization to give 3,4-dihydro-2H-pyrrole derivatives 6 as the sole product (▶ Scheme 2). The best turnover frequency is reached with 2.8 mol% of complex 4 for the reaction of pent-4-yn-1-amine at 120 °C. Sluggish activity is observed at room temperature. A color change of the reaction mixture from red to yellow at the initial stage of the catalysis indicates in situ oxidation of ytterbium(II) to ytterbium(III).
▶ Scheme 2 Catalytic Cyclohydroamination of Pent-4-yn-1-amine and 5-Phenylpent-4-yn-1-amine[11]
R1 mol% of 4 Conditions TOF
a (h−1) Yield
b (%) Ref H 2.8 120 °C, 3 h 11.9 >95 [
11] H 1.4 60 °C, 192 h 0.22 60 [
11] Ph 5.3 120 °C, 6 h 3.15 >95 [
11] Ph 5.3 60 °C, 108 h 0.14 80 [
11] a TOF = turnover frequency. b Determined by 1H NMR spectroscopy.
3,4-Dihydro-2H-pyrroles 6; General Procedure:[11]
Tetrahydrofuran-solvated...