1 - Science of Synthesis: Knowledge Updates 2013/2 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 18]
1.6 - Table of Contents [Seite 20]
1.7 - Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10-8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) [Seite 36]
1.7.1 - 1.1 Product Class 1: Organometallic Complexes of Nickel [Seite 36]
1.7.1.1 - 1.1.5 Organometallic Complexes of Nickel [Seite 36]
1.7.1.1.1 - 1.1.5.1 Nickel Complexes of 1,3-Dienes [Seite 36]
1.7.1.1.1.1 - 1.1.5.1.1 Method 1: Applications in Diene-Diene Cycloadditions [Seite 36]
1.7.1.1.1.2 - 1.1.5.1.2 Method 2: Diene-Aldehyde Reductive Coupling [Seite 38]
1.7.1.1.1.2.1 - 1.1.5.1.2.1 Variation 1: Triethylsilane-Mediated Reactions [Seite 38]
1.7.1.1.1.2.2 - 1.1.5.1.2.2 Variation 2: Triethylborane-Mediated Reactions [Seite 39]
1.7.1.1.1.2.3 - 1.1.5.1.2.3 Variation 3: Organoaluminum-Mediated Reactions [Seite 40]
1.7.1.1.1.2.4 - 1.1.5.1.2.4 Variation 4: Bismetalative Reductive Coupling Mediated by Main Group Bimetallic Reagents [Seite 42]
1.7.1.1.1.2.5 - 1.1.5.1.2.5 Variation 5: Reductive Coupling of Dienes with Other Carbonyl Compounds or Imines [Seite 44]
1.7.1.1.1.3 - 1.1.5.1.3 Method 3: Addition of Main Group Elements to Dienes [Seite 47]
1.7.1.1.1.3.1 - 1.1.5.1.3.1 Variation 1: Hydroelement Addition to Dienes [Seite 47]
1.7.1.1.1.3.2 - 1.1.5.1.3.2 Variation 2: Interelement Addition to Dienes [Seite 48]
1.7.1.1.1.3.3 - 1.1.5.1.3.3 Variation 3: Main Group Element/Carbon Nucleophile Addition to Dienes [Seite 49]
1.7.1.1.1.3.4 - 1.1.5.1.3.4 Variation 4: Addition of C--H Bonds to Dienes [Seite 50]
1.7.1.1.2 - 1.1.5.2 Nickel-Allyl Complexes [Seite 51]
1.7.1.1.2.1 - 1.1.5.2.1 Method 1: Oxidative Addition of But-3-enenitriles in the Presence of Lewis Acids [Seite 51]
1.7.1.1.2.2 - 1.1.5.2.2 Method 2: Oxidative Addition of Allylic Chalcogenides [Seite 52]
1.7.1.1.2.3 - 1.1.5.2.3 Method 3: Oxidative Heterocoupling of Carbonyl Compounds and Dienes [Seite 53]
1.7.1.1.2.4 - 1.1.5.2.4 Method 4: Reaction of Nickel-Allyl Complexes with Main Group Organometallics [Seite 53]
1.7.1.1.2.5 - 1.1.5.2.5 Method 5: Alkyne Insertion with Nickel-Allyl Complexes [Seite 54]
1.7.1.1.2.5.1 - 1.1.5.2.5.1 Variation 1: But-3-enenitrile-Derived Nickel-Allyl Complexes [Seite 55]
1.7.1.1.2.5.2 - 1.1.5.2.5.2 Variation 2: Allyl Chalcogenide Derived Nickel-Allyl Complexes [Seite 56]
1.7.1.1.2.5.3 - 1.1.5.2.5.3 Variation 3: Nickel-Allyl Complexes Derived from Dimerization of 1,3-Dienes [Seite 56]
1.7.1.1.2.5.4 - 1.1.5.2.5.4 Variation 4: Nickel-Allyl Complexes Derived from Dienes and Carbonyl Compounds [Seite 57]
1.7.1.1.3 - 1.1.5.3 Nickel-Alkyne Complexes [Seite 58]
1.7.1.1.3.1 - 1.1.5.3.1 Method 1: Coupling of Alkynes with Carbon Dioxide [Seite 58]
1.7.1.1.3.2 - 1.1.5.3.2 Method 2: Coupling of Alkynes with Carbonyl Compounds [Seite 60]
1.7.1.1.3.2.1 - 1.1.5.3.2.1 Variation 1: Coupling of Alkynes with Aldehydes and Ketones [Seite 60]
1.7.1.1.3.2.2 - 1.1.5.3.2.2 Variation 2: Coupling of Alkynes with Aldimines [Seite 61]
1.7.1.1.3.2.3 - 1.1.5.3.2.3 Variation 3: Coupling of Alkynes with Unsaturated Carbonyl Compounds [Seite 63]
1.7.1.1.3.3 - 1.1.5.3.3 Method 3: Reductive Coupling of Alkynes with Epoxides [Seite 65]
1.7.1.1.3.4 - 1.1.5.3.4 Method 4: [2 +2+ 2] Cycloaddition with Heterocumulene Partners [Seite 66]
1.7.1.1.3.5 - 1.1.5.3.5 Method 5: Reactions of Nickel-Alkyne Complexes with Strained Ring Systems [Seite 68]
1.7.1.1.3.6 - 1.1.5.3.6 Method 6: Addition of Main Group Elements to Alkynes [Seite 70]
1.7.1.1.3.6.1 - 1.1.5.3.6.1 Variation 1: Hydroelement Additions to Alkynes [Seite 70]
1.7.1.1.3.6.2 - 1.1.5.3.6.2 Variation 2: Carbon-Main Group Element Additions to Alkynes [Seite 72]
1.7.1.1.3.6.3 - 1.1.5.3.6.3 Variation 3: Direct Carbon-Hydrogen Additions to Alkynes [Seite 74]
1.7.1.1.3.6.4 - 1.1.5.3.6.4 Variation 4: Direct Carbon-Carbon Additions to Alkynes [Seite 75]
1.7.1.1.3.7 - 1.1.5.3.7 Method 7: Nickel-Aryne Complexes [Seite 76]
1.7.1.1.4 - 1.1.5.4 Nickel-Alkene Complexes [Seite 78]
1.7.1.1.4.1 - 1.1.5.4.1 Method 1: Alkene Hydrocyanation [Seite 78]
1.7.1.1.4.2 - 1.1.5.4.2 Method 2: Alkene Polymerization [Seite 78]
1.7.1.1.4.3 - 1.1.5.4.3 Method 3: Alkene Hydroamination [Seite 79]
1.7.1.1.4.4 - 1.1.5.4.4 Method 4: Alkene Hydrophosphinylation [Seite 80]
1.7.1.1.4.5 - 1.1.5.4.5 Method 5: Alkene Carboxylation [Seite 81]
1.7.1.1.4.6 - 1.1.5.4.6 Method 6: Direct Alkene Addition [Seite 81]
1.7.1.1.4.6.1 - 1.1.5.4.6.1 Variation 1: Direct Hydroalkenylation [Seite 81]
1.7.1.1.4.6.2 - 1.1.5.4.6.2 Variation 2: Direct Hydroalkylation [Seite 82]
1.7.1.1.4.7 - 1.1.5.4.7 Method 7: Coupling of Alkenes and Aldehydes [Seite 83]
1.7.1.1.4.8 - 1.1.5.4.8 Method 8: Alkene Rearrangements [Seite 84]
1.7.1.1.4.8.1 - 1.1.5.4.8.1 Variation 1: Allylic Isomerization [Seite 85]
1.7.1.1.4.8.2 - 1.1.5.4.8.2 Variation 2: Isomerization of Vinylcyclopropanes and Analogous Compounds [Seite 85]
1.7.1.1.5 - 1.1.5.5 Nickel-Allene Complexes [Seite 86]
1.7.1.1.5.1 - 1.1.5.5.1 Method 1: Allene Oligomerization [Seite 87]
1.7.1.1.5.2 - 1.1.5.5.2 Method 2: Allene Carboxylation [Seite 87]
1.7.1.1.5.3 - 1.1.5.5.3 Method 3: Reductive Coupling of Allenes and Aldehydes [Seite 88]
1.7.1.1.5.4 - 1.1.5.5.4 Method 4: Coupling of Allenes and a,ß-Unsaturated Carbonyl Compounds [Seite 90]
1.7.2 - 1.2 Product Class 2: Organometallic Complexes of Palladium [Seite 98]
1.7.2.1 - 1.2.6 High-Valent Palladium in Catalysis [Seite 98]
1.7.2.1.1 - 1.2.6.1 C--H Activation/Functionalization of Arenes and Alkanes [Seite 101]
1.7.2.1.1.1 - 1.2.6.1.1 Method 1: Functionalization of Aromatic C--H Bonds [Seite 102]
1.7.2.1.1.1.1 - 1.2.6.1.1.1 Variation 1: C--C Bond Construction [Seite 102]
1.7.2.1.1.1.2 - 1.2.6.1.1.2 Variation 2: C--O Bond Construction [Seite 107]
1.7.2.1.1.1.3 - 1.2.6.1.1.3 Variation 3: C--X Bond Construction (X = Halo) [Seite 109]
1.7.2.1.1.1.4 - 1.2.6.1.1.4 Variation 4: C--N Bond Construction [Seite 112]
1.7.2.1.1.2 - 1.2.6.1.2 Method 2: Functionalization of Aliphatic C--H Bonds [Seite 113]
1.7.2.1.1.2.1 - 1.2.6.1.2.1 Variation 1: C--C Bond Construction [Seite 113]
1.7.2.1.1.2.2 - 1.2.6.1.2.2 Variation 2: C--O Bond Construction [Seite 115]
1.7.2.1.1.2.3 - 1.2.6.1.2.3 Variation 3: C--X Bond Construction (X = Halo) [Seite 117]
1.7.2.1.1.2.4 - 1.2.6.1.2.4 Variation 4: C--N Bond Construction [Seite 118]
1.7.2.1.2 - 1.2.6.2 Difunctionalization of Alkenes [Seite 120]
1.7.2.1.2.1 - 1.2.6.2.1 Method 1: C--O Bond Construction from High-Valent Palladium Centers [Seite 120]
1.7.2.1.2.1.1 - 1.2.6.2.1.1 Variation 1: Initiated by Aminopalladation [Seite 120]
1.7.2.1.2.1.2 - 1.2.6.2.1.2 Variation 2: Initiated by Oxypalladation [Seite 125]
1.7.2.1.2.2 - 1.2.6.2.2 Method 2: C--N Bond Construction from High-Valent Palladium Centers [Seite 126]
1.7.2.1.2.2.1 - 1.2.6.2.2.1 Variation 1: Initiated by Aminopalladation [Seite 126]
1.7.2.1.2.2.2 - 1.2.6.2.2.2 Variation 2: Initiated by Fluoropalladation [Seite 129]
1.7.2.1.2.3 - 1.2.6.2.3 Method 3: C--X Bond Construction (X = Halo) from High-Valent Palladium Centers [Seite 130]
1.7.2.1.2.3.1 - 1.2.6.2.3.1 Variation 1: Initiated by Aminopalladation [Seite 130]
1.7.2.1.2.3.2 - 1.2.6.2.3.2 Variation 2: Initiated by Carbopalladation [Seite 132]
1.7.2.1.2.4 - 1.2.6.2.4 Method 4: C--C Bond Construction from High-Valent Palladium Centers [Seite 134]
1.7.2.1.2.4.1 - 1.2.6.2.4.1 Variation 1: Initiated by Aminopalladation [Seite 135]
1.7.2.1.2.4.2 - 1.2.6.2.4.2 Variation 2: Initiated by Oxypalladation-Insertion [Seite 135]
1.7.2.1.2.4.3 - 1.2.6.2.4.3 Variation 3: Initiated by Arylpalladation [Seite 137]
1.8 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 144]
1.8.1 - 4.4 Product Class 4: Silicon Compounds [Seite 144]
1.8.1.1 - 4.4.5 Product Subclass 5: Disilanes and Oligosilanes [Seite 144]
1.8.1.1.1 - 4.4.5.1 Disilanes [Seite 145]
1.8.1.1.1.1 - 4.4.5.1.1 Method 1: Synthesis by Formation of Si--Si Bonds [Seite 149]
1.8.1.1.1.1.1 - 4.4.5.1.1.1 Variation 1: Reductive Coupling of Triorganosilyl Halides [Seite 149]
1.8.1.1.1.1.2 - 4.4.5.1.1.2 Variation 2: Dehydrogenative Coupling of Hydrosilanes [Seite 151]
1.8.1.1.1.1.3 - 4.4.5.1.1.3 Variation 3: Coupling of Silyl Halides with Silyl Anions [Seite 152]
1.8.1.1.1.2 - 4.4.5.1.2 Method 2: Synthesis by Cleavage of Si--C Bonds [Seite 153]
1.8.1.1.1.2.1 - 4.4.5.1.2.1 Variation 1: Demethylating Chlorination [Seite 153]
1.8.1.1.1.2.2 - 4.4.5.1.2.2 Variation 2: Dearylation and Dealkylation with Strong Acids [Seite 154]
1.8.1.1.1.3 - 4.4.5.1.3 Method 3: Synthesis by Functionalization of Si--X Bonds [Seite 156]
1.8.1.1.1.3.1 - 4.4.5.1.3.1 Variation 1: Hydrogenation with Lithium Aluminum Hydride [Seite 156]
1.8.1.1.2 - 4.4.5.2 Oligosilanes [Seite 157]
1.8.1.1.2.1 - 4.4.5.2.1 Method 1: Synthesis by Formation of Si--Si Bonds [Seite 159]
1.8.1.1.2.1.1 - 4.4.5.2.1.1 Variation 1: Wurtz-Type Coupling [Seite 160]
1.8.1.1.2.2 - 4.4.5.2.2 Method 2: Synthesis by Cleavage of Si--Si Bonds and Subsequent Derivatization [Seite 161]
1.8.1.1.2.2.1 - 4.4.5.2.2.1 Variation 1: Silyl Anion Formation [Seite 161]
1.8.1.1.2.2.2 - 4.4.5.2.2.2 Variation 2: Anion Hydrolysis to Hydrosilanes [Seite 162]
1.8.1.1.2.2.3 - 4.4.5.2.2.3 Variation 3: Halogenation [Seite 162]
1.8.1.1.2.3 - 4.4.5.2.3 Method 3: Synthesis by Alkylation and Arylation [Seite 163]
1.8.1.1.2.3.1 - 4.4.5.2.3.1 Variation 1: Reactions Using Silyl Anions [Seite 163]
1.8.1.1.2.3.2 - 4.4.5.2.3.2 Variation 2: Reactions Using Silyl Halides [Seite 165]
1.8.1.1.2.3.3 - 4.4.5.2.3.3 Variation 3: Cross Coupling [Seite 166]
1.8.1.1.2.4 - 4.4.5.2.4 Method 4: Synthesis by Hydrosilylation [Seite 167]
1.8.1.1.2.5 - 4.4.5.2.5 Method 5: Synthesis by Silyl Ether Formation [Seite 168]
1.8.1.1.2.6 - 4.4.5.2.6 Method 6: Synthesis by Cleavage of Si--C Bonds [Seite 169]
1.8.1.2 - 4.4.9 Product Subclass 9: Silylzinc Reagents [Seite 176]
1.8.1.2.1 - Synthesis of Product Subclass 9 [Seite 176]
1.8.1.2.1.1 - 4.4.9.1 Method 1: Synthesis from a Triorganosilyl Anion Source and Zinc(II) Reagents [Seite 176]
1.8.1.2.1.1.1 - 4.4.9.1.1 Variation 1: Dialkyl(triorganosilyl)zincate Reagents from an Alkylmetal, a (Triorganosilyl)metal Reagent, and a Zinc(II) Salt [Seite 178]
1.8.1.2.1.2 - 4.4.9.2 Method 2: Synthesis of Dianion-Type Silylzincates [Seite 178]
1.8.1.2.2 - Applications of Product Subclass 9 in Organic Synthesis [Seite 179]
1.8.1.2.2.1 - 4.4.9.3 Method 3: Addition of Silyl Groups to Alkenes, Alkynes, and Epoxides [Seite 179]
1.8.1.3 - 4.4.21.13 Silylamines [Seite 186]
1.8.1.3.1 - 4.4.21.13.1 Method 1: Reaction of Chlorosilanes with Amines Bearing NH Groups [Seite 186]
1.8.1.3.1.1 - 4.4.21.13.1.1 Variation 1: Reaction of Allyltrichlorosilane with Diamines [Seite 186]
1.8.1.3.1.2 - 4.4.21.13.1.2 Variation 2: Reaction of Allyltrichlorosilane with Amino Alcohols [Seite 187]
1.8.1.3.1.3 - 4.4.21.13.1.3 Variation 3: Reaction of Silicon Tetrachloride with 1-Methyl-1H-imidazole-2(3H)-thione [Seite 187]
1.8.1.3.2 - 4.4.21.13.2 Method 2: Reaction of Silicon Tetrachloride with Silylamines [Seite 188]
1.8.1.3.3 - 4.4.21.13.3 Method 3: Reaction of Halosilanes with Lithium Amides [Seite 189]
1.8.1.3.3.1 - 4.4.21.13.3.1 Variation 1: Reaction of Silicon Tetrabromide with Lithium ß-Diketiminates [Seite 189]
1.8.1.3.3.2 - 4.4.21.13.3.2 Variation 2: Reaction of Silicon Tetrachloride or Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form Low-Coordinate Silicon Species [Seite 190]
1.8.1.3.3.3 - 4.4.21.13.3.3 Variation 3: Reaction of Trichlorosilane with N,N'-Dialkylbenzimidamide Lithium Salts To Form High-Coordinate Silicon Species [Seite 191]
1.8.1.3.3.4 - 4.4.21.13.3.4 Variation 4: Reaction of Chlorosilanes with Dilithium Tetra-4-tolylporphyrinate [Seite 192]
1.8.1.3.4 - 4.4.21.13.4 Method 4: Reaction of Halosilanes with Hetarenes or Tertiary Amines [Seite 193]
1.8.1.3.4.1 - 4.4.21.13.4.1 Variation 1: Reaction of Dichlorosilane with 2,2'-Bipyridine To Form a High-Coordinate Silicon Species [Seite 193]
1.8.1.3.4.2 - 4.4.21.13.4.2 Variation 2: Reaction of Silicon Tetrafluoride with a Triazacyclononane To Form a Cationic Silicon(IV) Species [Seite 193]
1.8.1.3.5 - 4.4.21.13.5 Method 5: Reaction of Dichlorosilanes with Hydrazonic Acid Esters and Thermal Rearrangement [Seite 194]
1.8.1.3.6 - 4.4.21.13.6 Method 6: Reaction of Di- and Trihydrosilanes with N-Heterocyclic Carbenes [Seite 194]
1.8.1.3.7 - 4.4.21.13.7 Method 7: Dehydrogenative Condensation of Hydrosilanes with Amines [Seite 195]
1.8.1.3.7.1 - 4.4.21.13.7.1 Variation 1: Ruthenium-Catalyzed Reaction of Hydrosilanes with Indoles and Carbazoles [Seite 195]
1.8.1.3.7.2 - 4.4.21.13.7.2 Variation 2: Ytterbium-Catalyzed Reaction of Hydrosilanes with Amines [Seite 196]
1.8.1.3.7.3 - 4.4.21.13.7.3 Variation 3: Zinc-Catalyzed Reaction of Hydrosilanes with Indoles [Seite 197]
1.8.1.3.7.4 - 4.4.21.13.7.4 Variation 4: Reaction of 1-Boryl-2-(hydrosilyl)benzenes with Amines [Seite 198]
1.8.1.3.8 - 4.4.21.13.8 Method 8: Preparation of Cyclic Diaminosilylenes [Seite 199]
1.8.1.3.8.1 - 4.4.21.13.8.1 Variation 1: Reduction of Dihalosilanes with Alkali Metals [Seite 199]
1.8.1.3.8.2 - 4.4.21.13.8.2 Variation 2: Dehydrochlorination Using N-Heterocyclic Carbenes [Seite 200]
1.8.1.3.9 - 4.4.21.13.9 Method 9: Reactions of (Aminosilyl)lithiums [Seite 201]
1.8.1.3.9.1 - 4.4.21.13.9.1 Variation 1: Preparation of an (Aminosilyl)pinacolborane [Seite 201]
1.8.1.3.9.2 - 4.4.21.13.9.2 Variation 2: Preparation of 1,3-Diaminotrisilanes [Seite 202]
1.8.1.4 - 4.4.22 Product Subclass 22: Silyl Phosphines [Seite 204]
1.8.1.4.1 - Synthesis of Product Subclass 22 [Seite 205]
1.8.1.4.1.1 - 4.4.22.1 Method 1: Synthesis from Silyl Hydrides [Seite 205]
1.8.1.4.1.1.1 - 4.4.22.1.1 Variation 1: By Dehydrohalogenation [Seite 205]
1.8.1.4.1.1.2 - 4.4.22.1.2 Variation 2: By Dehydrogenation with Phosphines [Seite 205]
1.8.1.4.1.1.3 - 4.4.22.1.3 Variation 3: By Hydrosilylation of P--P Bonds [Seite 206]
1.8.1.4.1.2 - 4.4.22.2 Method 2: Synthesis from Silyl Halides [Seite 207]
1.8.1.4.1.2.1 - 4.4.22.2.1 Variation 1: From Elemental Phosphorus [Seite 207]
1.8.1.4.1.2.2 - 4.4.22.2.2 Variation 2: From Phosphines [Seite 208]
1.8.1.4.1.2.3 - 4.4.22.2.3 Variation 3: From Metal Phosphides [Seite 209]
1.8.1.4.1.3 - 4.4.22.3 Method 3: Substitution by Silyllithiums [Seite 213]
1.8.1.4.1.4 - 4.4.22.4 Method 4: Synthesis from Other Silyl Phosphines [Seite 213]
1.8.1.4.1.4.1 - 4.4.22.4.1 Variation 1: By Exchange of Silyl Groups [Seite 214]
1.8.1.4.1.4.2 - 4.4.22.4.2 Variation 2: By Conversion of Phosphines [Seite 214]
1.8.1.4.1.4.3 - 4.4.22.4.3 Variation 3: By Transmetalation of Silyl Phosphines [Seite 215]
1.8.1.4.1.5 - 4.4.22.5 Method 5: Miscellaneous Methods [Seite 215]
1.8.1.4.2 - Applications of Product Subclass 22 in Organic Synthesis [Seite 216]
1.8.1.4.2.1 - 4.4.22.6 Method 6: Synthesis of Silicon-Containing Compounds [Seite 216]
1.8.1.4.2.1.1 - 4.4.22.6.1 Variation 1: Synthesis of Silyl Ethers by Substitution [Seite 216]
1.8.1.4.2.2 - 4.4.22.7 Method 7: Synthesis of Organophosphorus Compounds by Substitution [Seite 217]
1.8.1.4.2.2.1 - 4.4.22.7.1 Variation 1: Of Haloalkanes [Seite 217]
1.8.1.4.2.2.2 - 4.4.22.7.2 Variation 2: Of Haloarenes [Seite 218]
1.8.1.4.2.2.3 - 4.4.22.7.3 Variation 3: Of Halohetarenes [Seite 220]
1.8.1.4.2.2.4 - 4.4.22.7.4 Variation 4: Of Acyl Halides [Seite 221]
1.8.1.4.2.3 - 4.4.22.8 Method 8: Synthesis of Organophosphorus Compounds by Addition [Seite 221]
1.8.1.4.2.3.1 - 4.4.22.8.1 Variation 1: To Aldehydes [Seite 222]
1.8.1.4.2.3.2 - 4.4.22.8.2 Variation 2: To Alkenes [Seite 222]
1.8.1.4.2.3.3 - 4.4.22.8.3 Variation 3: To Alkynes [Seite 223]
1.8.1.4.2.3.4 - 4.4.22.8.4 Variation 4: To Epoxides [Seite 224]
1.8.1.4.2.4 - 4.4.22.9 Method 9: Synthesis of Organophosphorus Compounds by Addition-Elimination [Seite 225]
1.8.1.4.2.4.1 - 4.4.22.9.1 Variation 1: Synthesis of Phosphaalkenes [Seite 225]
1.8.1.4.2.4.2 - 4.4.22.9.2 Variation 2: Synthesis of Phosphaalkynes [Seite 226]
1.8.1.4.2.4.3 - 4.4.22.9.3 Variation 3: Synthesis of Phosphorus-Containing Heterocycles [Seite 227]
1.8.1.5 - 4.4.41.8 ß-Silyl Carbonyl Compounds [Seite 232]
1.8.1.5.1 - 4.4.41.8.1 Method 1: Silylmetalation of Alkenes [Seite 236]
1.8.1.5.1.1 - 4.4.41.8.1.1 Variation 1: Silylmetalation of a,ß-Unsaturated Carbonyl Compounds [Seite 237]
1.8.1.5.1.2 - 4.4.41.8.1.2 Variation 2: Silylmetalation-Aldolization of a,ß-Unsaturated Carbonyl Compounds [Seite 239]
1.8.1.5.1.3 - 4.4.41.8.1.3 Variation 3: Silaboration-Oxidation of meso-Methylenecyclopropanes [Seite 239]
1.8.1.5.2 - 4.4.41.8.2 Method 2: Hydrosilylation of Alkynes [Seite 240]
1.8.1.5.2.1 - 4.4.41.8.2.1 Variation 1: Hydrosilylation of Alkynyl Carbonyl Compounds [Seite 241]
1.8.1.5.2.2 - 4.4.41.8.2.2 Variation 2: Hydrosilylation-Geminal Alkylation [Seite 241]
1.8.1.5.3 - 4.4.41.8.3 Method 3: Asymmetric Conversion of a,ß-Unsaturated ß-Silyl Carbonyl Compounds into Their Saturated Counterparts [Seite 242]
1.8.1.5.3.1 - 4.4.41.8.3.1 Variation 1: Asymmetric Hydrosilylation of a,ß-Unsaturated ß-Silyl Carbonyl Compounds [Seite 243]
1.8.1.5.3.2 - 4.4.41.8.3.2 Variation 2: Asymmetric 1,4-Addition of Carbon Nucleophiles to a,ß-Unsaturated ß-Silyl Carbonyl Compounds [Seite 243]
1.8.1.5.3.3 - 4.4.41.8.3.3 Variation 3: 1,4-Addition of Carbon Nucleophiles to Alkynyl ß-Silyl Carbonyl Compounds [Seite 245]
1.8.1.5.4 - 4.4.41.8.4 Method 4: Rearrangements and Silyl Migration [Seite 246]
1.9 - Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles [Seite 250]
1.9.1 - 17.5 Product Class 5: Seven-Membered Hetarenes with Two or More Heteroatoms [Seite 250]
1.9.1.1 - 17.5.4 Seven-Membered Hetarenes with Two or More Heteroatoms [Seite 250]
1.9.1.1.1 - 17.5.4.1 1,2-Diazepines [Seite 254]
1.9.1.1.1.1 - 17.5.4.1.1 Synthesis by Ring-Closure Reactions [Seite 255]
1.9.1.1.1.1.1 - 17.5.4.1.1.1 Method 1: Condensation of 1,5-Diketones with Hydrazine [Seite 255]
1.9.1.1.1.1.1.1 - 17.5.4.1.1.1.1 Variation 1: Condensation of 1,5-Diketones, 1,5-Keto Acids, or 1,5-Keto Esters with Hydrazine [Seite 255]
1.9.1.1.1.1.1.2 - 17.5.4.1.1.1.2 Variation 2: Condensation of Imidazothiadiazole Aldehydes with Hydrazine [Seite 256]
1.9.1.1.1.1.1.3 - 17.5.4.1.1.1.3 Variation 3: Cyclization of Indol-2-ylacetates and Indole-2-carboxylates with Hydrazine [Seite 257]
1.9.1.1.1.2 - 17.5.4.1.2 Synthesis by Ring Transformation [Seite 258]
1.9.1.1.1.2.1 - 17.5.4.1.2.1 By Ring Enlargement [Seite 258]
1.9.1.1.1.2.1.1 - 17.5.4.1.2.1.1 Method 1: Reaction of Benzocyclobutenones and Diazomethylene Compounds [Seite 258]
1.9.1.1.1.2.1.2 - 17.5.4.1.2.1.2 Method 2: Synthesis from Benzoselenopyrylium Salts and Hydrazine [Seite 261]
1.9.1.1.1.3 - 17.5.4.1.3 Synthesis by Substituent Modification [Seite 262]
1.9.1.1.1.3.1 - 17.5.4.1.3.1 By Replacement of Oxygen or Sulfur [Seite 262]
1.9.1.1.1.3.1.1 - 17.5.4.1.3.1.1 Method 1: Synthesis of Amidines from Benzodiazepinethiones [Seite 262]
1.9.1.1.1.3.1.2 - 17.5.4.1.3.1.2 Method 2: Synthesis of Amidines from Benzodiazepinones and Primary or Secondary Amines Catalyzed by Titanium(IV) Chloride [Seite 263]
1.9.1.1.2 - 17.5.4.2 1,3-Diazepines [Seite 264]
1.9.1.1.2.1 - 17.5.4.2.1 Synthesis by Ring-Closure Reactions [Seite 265]
1.9.1.1.2.1.1 - 17.5.4.2.1.1 Method 1: Synthesis from 2-(2-Isocyanophenyl)acetamides and Sulfur via Isothiocyanate Intermediates [Seite 265]
1.9.1.1.2.1.2 - 17.5.4.2.1.2 Method 2: Synthesis from 4-Hydroxy-2H-1-benzopyran-2-one, Cyanoguanidine, and Aromatic or Heteroaromatic Aldehydes Using Molecular Iodine as Catalyst [Seite 266]
1.9.1.1.2.1.3 - 17.5.4.2.1.3 Method 3: Synthesis from a Substituted Aminopyridine and Trichloroacetyl Isocyanate [Seite 267]
1.9.1.1.2.1.4 - 17.5.4.2.1.4 Method 4: Synthesis from a Substituted Imidazol-5-amine and Triethyl Orthoformate [Seite 269]
1.9.1.1.2.1.5 - 17.5.4.2.1.5 Method 5: Synthesis from a Substituted Imidazole-4,5-dicarboxylate and Guanidine [Seite 269]
1.9.1.1.3 - 17.5.4.3 1,4-Diazepines [Seite 270]
1.9.1.1.3.1 - 17.5.4.3.1 Synthesis by Ring-Closure Reactions [Seite 270]
1.9.1.1.3.1.1 - 17.5.4.3.1.1 Method 1: Synthesis from Benzene-1,2-diamines, Meldrum's Acid, and Isocyanides [Seite 270]
1.9.1.1.3.1.2 - 17.5.4.3.1.2 Method 2: Synthesis from Benzene-1,2-diamines and 1,3-Dicarbonyl Compounds [Seite 272]
1.9.1.1.3.1.3 - 17.5.4.3.1.3 Method 3: Synthesis from Pyridine-2,3-diamine and 1,1,1-Trichlorobut-3-en-2-ones [Seite 276]
1.9.1.1.3.1.4 - 17.5.4.3.1.4 Method 4: Synthesis from Benzene-1,2-diamines, Diketene, Dialkyl Acetylenedicarboxylates, and Trialkyl Phosphites [Seite 276]
1.9.1.1.3.1.5 - 17.5.4.3.1.5 Method 5: Synthesis from Benzene-1,2-diamines and 4-Halogenated N-Substituted 2-Oxo-1,2-dihydropyridine-3-carbodithioates [Seite 277]
1.9.1.1.3.1.6 - 17.5.4.3.1.6 Method 6: Reductive Lactamization of Alkyl 2-[(2-Nitrophenyl)amino]benzoates [Seite 278]
1.9.1.1.3.1.7 - 17.5.4.3.1.7 Method 7: Copper-Catalyzed Cyclization of 2-Iodoaniline Compounds [Seite 279]
1.9.1.1.3.1.8 - 17.5.4.3.1.8 Method 8: Palladium-Catalyzed Intramolecular Carbonylation-Lactamization [Seite 280]
1.9.1.1.3.1.9 - 17.5.4.3.1.9 Method 9: Palladium-Catalyzed Intramolecular Amination of N-Alkyl-2-amino-N-(2-iodophenyl)benzamides [Seite 281]
1.9.1.1.3.1.10 - 17.5.4.3.1.10 Method 10: Copper-Catalyzed Cyclization of 2-Halobenzoic Acids with Benzene-1,2-diamine [Seite 282]
1.9.1.1.3.1.11 - 17.5.4.3.1.11 Method 11: Intramolecular Aza-Wittig Reaction [Seite 283]
1.9.1.1.3.1.12 - 17.5.4.3.1.12 Method 12: Synthesis from 2-Aminobenzophenones and Bromoacetyl Bromide or Chloroacetyl Chloride [Seite 285]
1.9.1.1.3.1.13 - 17.5.4.3.1.13 Method 13: Bischler-Napieralski Cyclocondensation [Seite 288]
1.9.1.1.3.1.14 - 17.5.4.3.1.14 Method 14: Buchwald Amination-Cyclization [Seite 291]
1.9.1.1.3.2 - 17.5.4.3.2 Synthesis by Ring Transformation [Seite 294]
1.9.1.1.3.2.1 - 17.5.4.3.2.1 By Ring Enlargement [Seite 294]
1.9.1.1.3.2.1.1 - 17.5.4.3.2.1.1 Method 1: Synthesis from a-Amino Acids and Isatoic Acid Anhydride or Analogues [Seite 294]
1.9.1.1.3.3 - 17.5.4.3.3 Synthesis by Substituent Modification [Seite 295]
1.9.1.1.3.3.1 - 17.5.4.3.3.1 By Replacement of Chlorine [Seite 295]
1.9.1.1.3.3.1.1 - 17.5.4.3.3.1.1 Method 1: Metal-Catalyzed Coupling of Chloro-5H-dibenzo[b,e][1,4]diazepines with Organozinc or -magnesium Compounds [Seite 295]
1.10 - Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4 [Seite 300]
1.10.1 - 18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes [Seite 300]
1.10.1.1 - 18.1.7 Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes [Seite 300]
1.10.1.1.1 - 18.1.7.1 Cyanogen Halides [Seite 300]
1.10.1.1.1.1 - 18.1.7.1.1 Applications of Cyanogen Halides in Organic Synthesis [Seite 300]
1.10.1.1.1.1.1 - 18.1.7.1.1.1 Method 1: Electrophilic Cyanation [Seite 300]
1.10.1.1.1.1.2 - 18.1.7.1.1.2 Method 2: Formation of Cyanooxiranes from Ketones [Seite 301]
1.10.1.1.2 - 18.1.7.2 Cyanates and Their Sulfur, Selenium, and Tellurium Analogues [Seite 302]
1.10.1.1.2.1 - 18.1.7.2.1 Synthesis of Thiocyanates [Seite 302]
1.10.1.1.2.1.1 - 18.1.7.2.1.1 Method 1: Nucleophilic Reactions from Thiocyanate Salts [Seite 302]
1.10.1.1.2.1.1.1 - 18.1.7.2.1.1.1 Variation 1: Thiocyanates from Alcohols and Protected Alcohols [Seite 302]
1.10.1.1.2.1.1.2 - 18.1.7.2.1.1.2 Variation 2: Ring Opening of Epoxides To Give ß-Hydroxy Thiocyanates [Seite 303]
1.10.1.1.2.1.1.3 - 18.1.7.2.1.1.3 Variation 3: Oxidative a-Thiocyanation of Ketones [Seite 304]
1.10.1.1.2.1.1.4 - 18.1.7.2.1.1.4 Variation 4: Oxidative Thiocyanation of Aromatic Compounds [Seite 305]
1.10.1.1.2.1.2 - 18.1.7.2.1.2 Method 2: Thiocyanates by Ring Opening of Epoxides and Aziridines with Trimethylsilyl Isothiocyanate [Seite 306]
1.10.1.1.2.1.3 - 18.1.7.2.1.3 Method 3: Thiocyanates from Acyl Isothiocyanates [Seite 306]
1.10.1.1.2.1.4 - 18.1.7.2.1.4 Method 4: Cyanation of Thiols Using N-Cyano Heterocycles [Seite 307]
1.10.1.1.2.2 - 18.1.7.2.2 Applications of Thiocyanates in Organic Synthesis [Seite 307]
1.10.1.1.2.2.1 - 18.1.7.2.2.1 Method 1: 1,3-Oxathiolan-2-imines from Phenacyl Thiocyanates [Seite 308]
1.10.1.1.3 - 18.1.7.3 Sulfonyl Cyanides [Seite 308]
1.10.1.1.3.1 - 18.1.7.3.1 Applications of Sulfonyl Cyanides in Organic Synthesis [Seite 308]
1.10.1.1.3.1.1 - 18.1.7.3.1.1 Method 1: Diaryl Sulfides from Sulfonyl Cyanides [Seite 308]
1.10.1.1.3.1.2 - 18.1.7.3.1.2 Method 2: Allyl Sulfones from Sulfonyl Cyanides and Allylic Alcohols [Seite 309]
1.10.1.1.3.1.3 - 18.1.7.3.1.3 Method 3: Synthesis of Aryl 4-Hydroxypyridin-2-yl Sulfones [Seite 310]
1.10.1.1.4 - 18.1.7.4 Cyanamides and Their Derivatives [Seite 310]
1.10.1.1.4.1 - 18.1.7.4.1 Synthesis of Cyanamides and Their Derivatives [Seite 310]
1.10.1.1.4.1.1 - 18.1.7.4.1.1 Method 1: Substitution of Cyanamides [Seite 310]
1.10.1.1.4.1.1.1 - 18.1.7.4.1.1.1 Variation 1: Acylation and Arylation of Cyanamides [Seite 310]
1.10.1.1.4.1.1.2 - 18.1.7.4.1.1.2 Variation 2: Reaction of Cyanamides with Isocyanates, Isothiocyanates, Thioamides, or Nitriles Yielding Cyanoureas or Cyanoimidamides [Seite 311]
1.10.1.1.4.1.2 - 18.1.7.4.1.2 Method 2: Cyanation of Amides Using Cyanogen Halides [Seite 313]
1.10.1.1.4.1.3 - 18.1.7.4.1.3 Method 3: Oxidative Elimination from Dithiocarbamates and Thioureas [Seite 314]
1.10.1.1.4.1.4 - 18.1.7.4.1.4 Method 4: Reaction of Isocyanates and Isothiocyanates with Hexamethyldisilazanide [Seite 314]
1.10.1.1.4.1.5 - 18.1.7.4.1.5 Method 5: Synthesis from Dialkylamino-Substituted Acetamides by a Hofmann-Like Rearrangement [Seite 315]
1.10.1.1.4.2 - 18.1.7.4.2 Applications of Cyanamides and Their Derivatives in Organic Synthesis [Seite 316]
1.10.1.1.4.2.1 - 18.1.7.4.2.1 Method 1: Cyanation of Amines, Thiols, and CH-Acidic Compounds [Seite 316]
1.10.1.1.4.2.2 - 18.1.7.4.2.2 Method 2: Synthesis of N,N-Dialkyl-4,5-dihydro-1H-imidazol-2-amines and N,N-Dialkyl-1H-imidazol-2-amines [Seite 317]
1.10.1.1.4.2.3 - 18.1.7.4.2.3 Method 3: Chlorination with N-tert-Butyl-N-chlorocyanamide [Seite 318]
1.10.1.1.4.2.4 - 18.1.7.4.2.4 Method 4: Cyclotrimerization of Alkynes or Diynes with Cyanamides To Give Pyridin-2-amines [Seite 319]
1.10.2 - 18.11 Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives [Seite 324]
1.10.2.1 - 18.11.10 Seleno- and Tellurocarbonic Acids and Derivatives [Seite 324]
1.10.2.1.1 - 18.11.10.1 Selenocarbamates [Seite 324]
1.10.2.1.1.1 - 18.11.10.1.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Lithium Alkaneselenolates, Areneselenolates, Alkanethiolates, or Arenethiolates [Seite 324]
1.10.2.1.1.2 - 18.11.10.1.2 Method 2: Reaction of Isoselenocyanates with Nucleophiles [Seite 325]
1.10.2.1.1.2.1 - 18.11.10.1.2.1 Variation 1: Reaction of Alkyl or Aryl Isoselenocyanates with Sodium Hydroselenide [Seite 325]
1.10.2.1.1.2.2 - 18.11.10.1.2.2 Variation 2: Reaction of Acyl Isoselenocyanates with Alcohols, Thiols, or Selenols [Seite 326]
1.10.2.1.1.2.3 - 18.11.10.1.2.3 Variation 3: Reaction of Acryloyl Isoselenocyanates with Sodium Hydroselenide [Seite 327]
1.10.2.1.1.2.4 - 18.11.10.1.2.4 Variation 4: Reaction of Isoselenocyanates with Sodium Alkoxides [Seite 327]
1.10.2.1.1.2.5 - 18.11.10.1.2.5 Variation 5: Reaction of Isoselenocyanates with Sodium Hydroselenide and Acryloyl Chlorides [Seite 328]
1.10.2.1.1.2.6 - 18.11.10.1.2.6 Variation 6: Reaction of Isocyanates with Bis(dimethylaluminum) Selenide and Sodium Alkoxides [Seite 330]
1.10.2.1.1.2.7 - 18.11.10.1.2.7 Variation 7: Nucleophilic Addition of N-Protected Amino Thiols to Isoselenocyanates [Seite 331]
1.10.2.1.2 - 18.11.10.2 Selenosemicarbazides and Selenosemicarbazones [Seite 332]
1.10.2.1.2.1 - 18.11.10.2.1 Method 1: Reaction of Isoselenocyanates with Hydrazine Derivatives [Seite 332]
1.10.2.1.2.1.1 - 18.11.10.2.1.1 Variation 1: Reaction of Acyl Isoselenocyanates with Phenylhydrazine [Seite 332]
1.10.2.1.2.1.2 - 18.11.10.2.1.2 Variation 2: Reaction of Trityl Isoselenocyanate with Hydrazine [Seite 333]
1.10.2.1.2.2 - 18.11.10.2.2 Method 2: Reaction of Carbonyl Compounds with Selenosemicarbazides [Seite 334]
1.10.2.1.2.2.1 - 18.11.10.2.2.1 Variation 1: Reaction of Aldehydes with Selenosemicarbazides [Seite 334]
1.10.2.1.2.2.2 - 18.11.10.2.2.2 Variation 2: Reaction of Cyclohexanone with Hydrazine Hydrate and Potassium Selenocyanate [Seite 335]
1.10.2.1.3 - 18.11.10.3 Selenoureas [Seite 337]
1.10.2.1.3.1 - 18.11.10.3.1 Method 1: Reaction of N,N-Dimethylselenocarbamoyl Chloride with Amines [Seite 337]
1.10.2.1.3.2 - 18.11.10.3.2 Method 2: Reaction of Viehe's Salt with an Amine and Tetraethylammonium Tetraselenotungstate [Seite 338]
1.10.2.1.3.3 - 18.11.10.3.3 Method 3: Reaction of Triethyl Orthoformate with Elemental Selenium and a Primary or Secondary Amine [Seite 338]
1.10.2.1.3.4 - 18.11.10.3.4 Method 4: Reaction of N,N-Disubstituted Cyanamides with Sodium Selenide [Seite 340]
1.10.2.1.3.5 - 18.11.10.3.5 Method 5: Reaction of Isoselenocyanates with an Amine [Seite 341]
1.10.2.1.3.5.1 - 18.11.10.3.5.1 Variation 1: Reaction of Isoselenocyanates with Protected and Unprotected Glycosylamines [Seite 341]
1.10.2.1.3.5.2 - 18.11.10.3.5.2 Variation 2: Reaction of Phenyl Isoselenocyanate with 2-Aminobenzonitriles [Seite 346]
1.10.2.1.3.5.3 - 18.11.10.3.5.3 Variation 3: Reaction of Isoselenocyanates with Azetidinones under Basic Conditions [Seite 347]
1.10.2.1.3.5.4 - 18.11.10.3.5.4 Variation 4: Reaction of 4-Isoselenocyanato-2,2,6,6-tetramethylpiperidin-1-oxyl with Amines [Seite 349]
1.10.2.1.3.5.5 - 18.11.10.3.5.5 Variation 5: Reaction of Aryl Isoselenocyanates with Dimethylamine [Seite 351]
1.10.2.1.3.5.6 - 18.11.10.3.5.6 Variation 6: Reaction of D-Glucosamine Hydrochloride or D-Mannosamine Hydrochloride with Aryl Isoselenocyanates [Seite 352]
1.10.2.1.3.5.7 - 18.11.10.3.5.7 Variation 7: Reaction of Trityl Isoselenocyanate with a Primary Amine [Seite 354]
1.10.2.1.3.5.8 - 18.11.10.3.5.8 Variation 8: Reaction of Isoselenocyanates Bearing Protected Amino Groups with Amines [Seite 354]
1.10.2.1.3.6 - 18.11.10.3.6 Method 6: Reaction of Acyl Isoselenocyanates with Amines [Seite 356]
1.10.2.1.3.6.1 - 18.11.10.3.6.1 Variation 1: Reaction of In Situ Generated Acyl Isoselenocyanates with Arylamines [Seite 356]
1.10.2.1.3.6.2 - 18.11.10.3.6.2 Variation 2: Reaction of In Situ Generated Acyl Isoselenocyanates with Alkylamines [Seite 357]
1.10.2.1.3.6.3 - 18.11.10.3.6.3 Variation 3: One-Pot Reaction of Aroyl Chlorides with Potassium Selenocyanate and Secondary Arylamines [Seite 357]
1.10.2.1.3.7 - 18.11.10.3.7 Method 7: Selenation of Isocyanates with In Situ Generated Bis(dimethylaluminum) Selenide and Subsequent Treatment with Amines [Seite 358]
1.10.2.1.3.8 - 18.11.10.3.8 Method 8: Reaction of Imidoyl Isoselenocyanates with Aromatic 2-Amino N-Heterocycles [Seite 360]
1.10.2.1.3.9 - 18.11.10.3.9 Method 9: Reaction of 1-Methylimidazolium Salts with Selenium Powder and Potassium Carbonate [Seite 361]
1.11 - Volume 31: Arene--X (X = Hal, O, S, Se, Te, N, P) [Seite 364]
1.11.1 - 31.42 Product Class 42: Arylphosphines and Derivatives [Seite 364]
1.11.1.1 - 31.42.1 Synthesis of Product Class 42 [Seite 364]
1.11.1.1.1 - 31.42.1.1 Method 1: Synthesis by Nucleophilic Substitution at an Electrophilic Phosphorus Atom [Seite 364]
1.11.1.1.1.1 - 31.42.1.1.1 Variation 1: Using Organometallic Reagents Prepared from Organic Halides [Seite 364]
1.11.1.1.1.2 - 31.42.1.1.2 Variation 2: Using Carbanions Prepared by Reduction of Aryl--O Bonds [Seite 367]
1.11.1.1.1.3 - 31.42.1.1.3 Variation 3: Using Carbanions Prepared by Halogen-Metal Exchange [Seite 367]
1.11.1.1.1.4 - 31.42.1.1.4 Variation 4: Using Carbanions Prepared by Deprotonation of Acidic C--H Groups [Seite 369]
1.11.1.1.1.5 - 31.42.1.1.5 Variation 5: Using Carbanions Prepared by Directed ortho-Metalation [Seite 371]
1.11.1.1.1.6 - 31.42.1.1.6 Variation 6: Using Activated Silanes [Seite 373]
1.11.1.1.1.7 - 31.42.1.1.7 Variation 7: By Miscellaneous Methods [Seite 373]
1.11.1.1.2 - 31.42.1.2 Method 2: Synthesis by Nucleophilic Substitution with Phosphorus Nucleophiles [Seite 374]
1.11.1.1.2.1 - 31.42.1.2.1 Variation 1: Using Phosphorus Nucleophiles Generated by Deprotonation of P--H Bonds [Seite 374]
1.11.1.1.2.2 - 31.42.1.2.2 Variation 2: Using Phosphorus Nucleophiles Generated by Reduction of P--X Bonds (X = Halogen) [Seite 376]
1.11.1.1.2.3 - 31.42.1.2.3 Variation 3: Using Phosphorus Nucleophiles Generated by Reduction of Aryl--P Bonds [Seite 377]
1.11.1.1.2.4 - 31.42.1.2.4 Variation 4: Using Neutral Phosphorus Nucleophiles in the Absence of Base [Seite 378]
1.11.1.1.2.5 - 31.42.1.2.5 Variation 5: Using Silylphosphines [Seite 379]
1.11.1.1.3 - 31.42.1.3 Method 3: Synthesis by Transition-Metal-Catalyzed Coupling Reactions [Seite 379]
1.11.1.1.3.1 - 31.42.1.3.1 Variation 1: Reactions Catalyzed by Palladium Complexes [Seite 380]
1.11.1.1.3.2 - 31.42.1.3.2 Variation 2: Reactions Catalyzed by Nickel Complexes [Seite 382]
1.11.1.1.3.3 - 31.42.1.3.3 Variation 3: Reactions Catalyzed by Copper Complexes [Seite 384]
1.11.1.1.3.4 - 31.42.1.3.4 Variation 4: Reactions Catalyzed by Other Transition-Metal Complexes [Seite 384]
1.11.1.1.4 - 31.42.1.4 Method 4: Synthesis by Addition to Multiple Bonds [Seite 384]
1.11.1.1.4.1 - 31.42.1.4.1 Variation 1: Reactions Involving Uncatalyzed Addition [Seite 385]
1.11.1.1.4.2 - 31.42.1.4.2 Variation 2: Addition Reactions Mediated by Radical Initiators [Seite 386]
1.11.1.1.4.3 - 31.42.1.4.3 Variation 3: Addition Reactions Catalyzed by Transition-Metal Complexes [Seite 387]
1.11.1.1.4.4 - 31.42.1.4.4 Variation 4: Addition to Conjugated Alkenes [Seite 388]
1.11.1.1.4.5 - 31.42.1.4.5 Variation 5: Addition to Carbonyl or Imino Groups [Seite 390]
1.11.1.1.5 - 31.42.1.5 Method 5: Synthesis by Decomplexation of Metal-Phosphine Complexes [Seite 392]
1.11.1.1.6 - 31.42.1.6 Method 6: Synthesis by Deprotection of Arylphosphine-Borane Complexes [Seite 394]
1.11.1.1.7 - 31.42.1.7 Method 7: Synthesis by Reduction of Arylphosphine Sulfides [Seite 395]
1.11.1.1.7.1 - 31.42.1.7.1 Variation 1: Using Raney Nickel [Seite 396]
1.11.1.1.7.2 - 31.42.1.7.2 Variation 2: Using Radical Reagents [Seite 397]
1.11.1.1.7.3 - 31.42.1.7.3 Variation 3: Using Phosphorus(III) Compounds [Seite 397]
1.11.1.1.8 - 31.42.1.8 Method 8: Synthesis by Reduction of Arylphosphine Oxides [Seite 398]
1.11.1.1.8.1 - 31.42.1.8.1 Variation 1: Using Silanes [Seite 399]
1.11.1.1.8.2 - 31.42.1.8.2 Variation 2: Using Aluminum Hydrides [Seite 401]
1.11.1.1.8.3 - 31.42.1.8.3 Variation 3: Using Titanium Complexes as Catalysts [Seite 404]
1.11.1.1.8.4 - 31.42.1.8.4 Variation 4: Using Boranes [Seite 405]
1.11.1.1.9 - 31.42.1.9 Method 9: Synthesis by Modification of a Parent Arylphosphine [Seite 406]
1.11.1.1.9.1 - 31.42.1.9.1 Variation 1: Modification of a Functional Group [Seite 406]
1.11.1.1.9.2 - 31.42.1.9.2 Variation 2: Modification of the Carbon Skeleton [Seite 409]
1.11.1.2 - 31.42.2 Applications of Product Class 42 in Organic Synthesis [Seite 410]
1.12 - Volume 39: Sulfur, Selenium, and Tellurium [Seite 426]
1.12.1 - 39.18 Product Class 18: Alkaneselenols [Seite 426]
1.12.1.1 - 39.18.2 Alkaneselenols [Seite 426]
1.12.1.1.1 - 39.18.2.1 Synthesis of Alkaneselenols [Seite 426]
1.12.1.1.1.1 - 39.18.2.1.1 Method 1: Reaction of Alkylating Agents with Alkali Metal Selenides [Seite 426]
1.12.1.1.1.2 - 39.18.2.1.2 Method 2: Reduction of Dialkyl Diselenides and Alkyl Selenocyanates [Seite 427]
1.12.1.1.1.2.1 - 39.18.2.1.2.1 Variation 1: Reduction of Dialkyl Diselenides Mediated by Trialkyltin Hydrides: A Radical Route [Seite 428]
1.12.1.1.1.2.2 - 39.18.2.1.2.2 Variation 2: Reduction of Dialkyl Diselenides with Hydrides [Seite 429]
1.12.1.1.1.2.3 - 39.18.2.1.2.3 Variation 3: Reduction of Dialkyl Diselenides with Zinc under Biphasic Conditions [Seite 429]
1.12.1.1.1.2.4 - 39.18.2.1.2.4 Variation 4: Reduction of Selenocyanates [Seite 430]
1.12.1.1.1.3 - 39.18.2.1.3 Method 3: Reduction of Elemental Selenium with Alkyl Grignard or Alkyllithium Compounds Followed by Protonation [Seite 432]
1.12.1.1.2 - 39.18.2.2 Applications of Alkaneselenols in Organic Synthesis [Seite 432]
1.12.1.1.2.1 - 39.18.2.2.1 Method 1: Oxidation: Synthesis of Diselenides [Seite 432]
1.12.1.1.2.2 - 39.18.2.2.2 Method 2: Reaction with Alkyl and Aryl Halides [Seite 433]
1.12.1.1.2.3 - 39.18.2.2.3 Method 3: Nucleophilic Substitution of Alcohols and Enol Ethers [Seite 434]
1.12.1.1.2.4 - 39.18.2.2.4 Method 4: Synthesis of Diselenoacetals [Seite 436]
1.12.1.1.2.4.1 - 39.18.2.2.4.1 Variation 1: Diselenoacetal Formation Using Selenols and Protic Acids [Seite 436]
1.12.1.1.2.4.2 - 39.18.2.2.4.2 Variation 2: Diselenoacetal Formation Using Selenols and Lewis Acids [Seite 437]
1.12.1.1.2.5 - 39.18.2.2.5 Method 5: Michael-Type Addition Reactions [Seite 438]
1.12.2 - 39.19 Product Class 19: Acyclic Alkaneselenolates [Seite 442]
1.12.2.1 - 39.19.1.2 Alkaneselenolates of Group 1, 2, and 13-15 Metals [Seite 442]
1.12.2.1.1 - 39.19.1.2.1 Arsenic Alkaneselenolates [Seite 442]
1.12.2.1.1.1 - 39.19.1.2.1.1 Method 1: Reaction of a 2-Arsapropene with Methaneselenol [Seite 442]
1.12.2.1.2 - 39.19.1.2.2 Silicon Alkaneselenolates [Seite 442]
1.12.2.1.2.1 - 39.19.1.2.2.1 Method 1: Reaction of a Lithium Silaneselenolate with an Alkyl Halide [Seite 443]
1.12.2.1.3 - 39.19.1.2.3 Germanium Alkaneselenolates [Seite 444]
1.12.2.1.3.1 - 39.19.1.2.3.1 Method 1: Reaction of Selenols with Halogermanes [Seite 444]
1.12.2.1.4 - 39.19.1.2.4 Tin Alkaneselenolates [Seite 445]
1.12.2.1.4.1 - 39.19.1.2.4.1 Method 1: Reaction of Alkaneselenolates Generated In Situ with Chlorostannanes [Seite 445]
1.12.2.1.5 - 39.19.1.2.5 Lead Alkaneselenolates [Seite 445]
1.12.2.1.5.1 - 39.19.1.2.5.1 Method 1: Reaction of Sodium Selenolates with Lead(II) Acetate [Seite 446]
1.12.2.1.6 - 39.19.1.2.6 Boron Alkaneselenolates [Seite 446]
1.12.2.1.6.1 - 39.19.1.2.6.1 Method 1: Reaction of a Lithium Trihydroborate with Titanocene Pentaselenide [Seite 446]
1.12.2.1.7 - 39.19.1.2.7 Aluminum Alkaneselenolates [Seite 447]
1.12.2.1.8 - 39.19.1.2.8 Indium Alkaneselenolates [Seite 447]
1.12.2.1.8.1 - 39.19.1.2.8.1 Method 1: Reaction of Indium(I) Iodide with Diselenides [Seite 448]
1.12.2.1.9 - 39.19.1.2.9 Magnesium Alkaneselenolates [Seite 448]
1.12.2.1.9.1 - 39.19.1.2.9.1 Method 1: Reaction of Grignard Reagents with Elemental Selenium [Seite 448]
1.12.2.1.10 - 39.19.1.2.10 Lithium Alkaneselenolates [Seite 449]
1.12.2.1.10.1 - 39.19.1.2.10.1 Synthesis of Lithium Alkaneselenolates [Seite 449]
1.12.2.1.10.1.1 - 39.19.1.2.10.1.1 Method 1: Reduction of Dialkyl Diselenides [Seite 449]
1.12.2.1.10.1.2 - 39.19.1.2.10.1.2 Method 2: Insertion of Elemental Selenium into a C--Li Bond [Seite 450]
1.12.2.1.10.1.3 - 39.19.1.2.10.1.3 Method 3: Reaction of Lithium Enolates with Elemental Selenium [Seite 451]
1.12.2.1.10.2 - 39.19.1.2.10.2 Applications of Lithium Alkaneselenolates in Organic Synthesis [Seite 451]
1.12.2.1.10.2.1 - 39.19.1.2.10.2.1 Method 1: Nucleophilic Substitution of Leaving Groups [Seite 451]
1.12.2.1.10.2.2 - 39.19.1.2.10.2.2 Method 2: Hydroselenation of Alkynes [Seite 453]
1.12.2.1.11 - 39.19.1.2.11 Sodium Alkaneselenolates [Seite 454]
1.12.2.1.11.1 - 39.19.1.2.11.1 Synthesis of Sodium Alkaneselenolates [Seite 454]
1.12.2.1.11.1.1 - 39.19.1.2.11.1.1 Method 1: Deprotonation of Selenols [Seite 454]
1.12.2.1.11.1.2 - 39.19.1.2.11.1.2 Method 2: Reduction of Diselenides and Selenocyanates [Seite 454]
1.12.2.1.11.2 - 39.19.1.2.11.2 Applications of Sodium Alkaneselenolates in Organic Synthesis [Seite 455]
1.12.2.1.11.2.1 - 39.19.1.2.11.2.1 Method 1: Nucleophilic Substitution of Leaving Groups [Seite 455]
1.12.2.1.11.2.2 - 39.19.1.2.11.2.2 Method 2: Ring Opening of Cyclopropanes [Seite 456]
1.12.2.1.12 - 39.19.1.2.12 Potassium Alkaneselenolates [Seite 456]
1.12.2.1.12.1 - 39.19.1.2.12.1 Method 1: Reduction of Dialkyl Diselenides Using Hydrazine Hydrate and Potassium Hydroxide [Seite 457]
1.12.2.1.13 - 39.19.1.2.13 Cesium Alkaneselenolates [Seite 457]
1.12.2.1.13.1 - 39.19.1.2.13.1 Method 1: Reaction of Acyl Selenides with Cesium Carbonate and Amines [Seite 457]
1.13 - Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines [Seite 462]
1.13.1 - 40.1 Product Class 1: Amino Compounds [Seite 462]
1.13.1.1 - 40.1.1.5.4.5 Substitution on the Amine Nitrogen [Seite 462]
1.13.1.1.1 - 40.1.1.5.4.5.1 Dealkylation Reactions of Amines [Seite 462]
1.13.1.1.1.1 - 40.1.1.5.4.5.1.1 Method 1: The von Braun Reaction with Cyanogen Bromide [Seite 462]
1.13.1.1.1.2 - 40.1.1.5.4.5.1.2 Method 2: Photolytic Dealkylation [Seite 464]
1.13.1.1.1.3 - 40.1.1.5.4.5.1.3 Method 3: Reductive Cleavage of the C--N Bond [Seite 469]
1.13.1.1.1.4 - 40.1.1.5.4.5.1.4 Method 4: Sequential N-Demethylation-N-Acylation with Palladium(II) Acetate and Acetic Anhydride [Seite 471]
1.13.1.1.1.5 - 40.1.1.5.4.5.1.5 Method 5: Cleavage of the C--N Bond Using Solid-Supported Reagents [Seite 473]
1.13.1.1.1.6 - 40.1.1.5.4.5.1.6 Method 6: The Polonovski Reaction [Seite 475]
1.13.1.1.1.7 - 40.1.1.5.4.5.1.7 Method 7: Reaction with Dialkyl Azodicarboxylates [Seite 479]
1.13.1.1.2 - 40.1.1.5.4.5.2 Replacement of Oxygen Functionalities [Seite 479]
1.13.1.1.2.1 - 40.1.1.5.4.5.2.1 Method 1: Reactions of Ammonia with Alcoholic Hydroxy Groups [Seite 480]
1.13.1.1.2.2 - 40.1.1.5.4.5.2.2 Method 2: Reactions of Primary or Secondary Amines with Alcoholic Hydroxy Groups [Seite 483]
1.13.1.1.2.3 - 40.1.1.5.4.5.2.3 Method 3: Direct Amination with Sulfonamides [Seite 489]
1.13.1.1.3 - 40.1.1.5.4.5.3 Replacement of Nitrogen Functionalities [Seite 490]
1.13.1.1.3.1 - 40.1.1.5.4.5.3.1 Method 1: Condensation of Primary Amines [Seite 491]
1.14 - Author Index [Seite 498]
1.15 - Abbreviations [Seite 528]
1.16 - List of All Volumes [Seite 534]
Abstracts
R. M. Stolley and J. Louie
This chapter is an update to the earlier Science of Synthesis contribution describing the organometallic complexes of nickel. This update highlights the applications of organometallic complexes of nickel, building on the general trends of organonickel chemistry described in the previous contribution. Within this update, particular emphasis is placed on nickel-mediated oxidative and reductive coupling reactions, carbon—heteroatom bond-forming reactions, annulation, and strong-bond activation reactions. This update focuses mainly on literature from 2003 to 2012.
Keywords: nickel · reductive coupling · oxidative coupling · heterocoupling · oxidative addition · homocoupling · cyclization · carbon—heteroatom bonds · allylic · alkyne · 1,3-dienes · C—H bond activation · insertion · isomerization · carboxylation
P. Chen, G. Liu, K. M. Engle, and J.-Q. Yu
This chapter documents recent studies of palladium-catalyzed organic transformations in which a high-valent palladium intermediate is involved in the formation of a new chemical bond. The interest in these reactions has focused mainly on C—H activation and the difunctionalization of alkenes.
Keywords: high-valent palladium complexes · C—H activation · alkenes · difunctionalization · oxidation · reductive elimination
C. Marschner and J. Baumgartner
This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the preparation and synthetic use of disilanes. This update is extended by coverage of synthetically useful oligosilanes.
Keywords: silicon compounds · disilanes · oligosilanes · silylation · protecting groups · radicals · Si—Si bonds · Si—C bonds
A. Durand, I. Hemeon, and R. D. Singer
This chapter is a revision of the contribution on silylzinc reagents published in 2001, which describes the preparation and application of triorganosilylzinc compounds. Homo silylzinc reagents, such as bis(triphenylsilyl)zinc(II) [(Ph3Si)2Zn] and lithium tris[dimethyl(phenyl)silyl]zincate [(PhMe2Si)3ZnLi], as well as hetero or mixed silylzinc reagents, such as lithium [dimethyl(phenyl)silyl]dimethylzincate [(PhMe2Si)ZnMe2Li] and (biphenyl-2,2′-diolato)(tert-butyl)[dimethyl(phenyl)silyl]zincates {M2Zn(t-Bu)[(2-OC6H4)2](SiMe2Ph); M = Li, MgCl}, are prepared with relative ease and are utilized in a variety of synthetic applications. These reagents react under a variety of conditions with unsaturated organic substrates to afford synthetically useful triorganosilylated species.
Keywords: bis(triorganosilyl)zincs · dialkyl(triorganosilyl)zincates · dianionic silylzincates · catalysis · vinylsilanes · 3-(triorganosilyl) ketones · allylsilanes
A. Kawachi
This review, which updates the original Section 4.4.21, published in 2001, discusses the preparation of silylamines bearing dicoordinate, tricoordinate, tetracoordinate, and pentacoordinate silicon centers. Reaction of chlorosilanes with primary or secondary amines is one of the most conventional methods for the syntheses of these compounds. Reactions of halosilanes with lithium amides, lithium β-diketiminates, and other metalated nitrogen species are also useful. A more recent advance is the dehydrogenative condensation of hydrosilanes with primary or secondary amines using transition-metal or Lewis acid catalysts.
Keywords: silylamines · halosilanes · hydrosilanes · amines · diamines · amino alcohols · amides · dehydrogenative condensation · dehydrochlorination · transition-metal-catalyzed reactions
M. Hayashi
This chapter is a revision of the earlier Science of Synthesis contribution, published in 2001, describing methods for the synthesis of silyl phosphines and their applications in organic synthesis. In contrast to the earlier contribution, in which the applications of silyl phosphines were described only very briefly, in this revision the applications of silyl phosphines are classified and summarized and include recent improvements, especially with regard to P—C bond formation.
Keywords: silyl phosphines · phosphines · phosphorus compounds · phosphaalkenes · phosphaalkynes · phosphorus heterocycles · silyl ethers
F. Nahra and O. Riant
β-Silyl carbonyl or carboxy compounds are attractive synthetic intermediates. They are important building blocks for various synthetic transformations, thus allowing the construction of more complex molecules. The position of the silyl group far from the carbonyl group allows for numerous transformations on the latter, giving access in some cases to complex natural products. Moreover, the installation of the silyl group on these intermediates in an enantioselective manner has been the subject of numerous investigations, mainly due to its subsequent influence on the adjacent addition of other groups. Finally, the possibility of converting these silyl groups into various other functional groups renders these intermediates valuable tools in the organic chemist's arsenal.
Keywords: β-silyl carbonyl · silylmetalation · hydrosilylation · silyl migration · asymmetric addition
J. Zhang
This update deals with important general methods for the synthesis of diazepines, benzodiazepines, and dibenzodiazepines that have not been discussed in the earlier Science of Synthesis Section 17.5 or in Houben–Weyl, Vol. E 9d. Literature published up to 2011 is reviewed.
Keywords: diazepines · benzodiazepines · dibenzodiazepines · diazepinones · ring closure · condensation reactions · copper-catalyzed cyclization · palladium-catalyzed cyclization
J. Podlech
This chapter is an update to the earlier Science of Synthesis contribution on the preparation of cyanogen halides, cyanates, thiocyanates, sulfonyl cyanides, and cyanamides, as well as their application in organic synthesis. It focuses on the literature published in the period 2003–2012.
Keywords: cyanogen halides · thiocyanates · sulfonyl cyanides · cyanamides · cyanation · thiocyanation
K. Shimada
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of seleno- and tellurocarbonic acids and their derivatives. It focuses on the literature published in the period 2002–2012.
Keywords: bis(dimethylaluminum) selenide · N,N-dialkylcyanamides · N,N-dimethylselenocarbamoyl chloride · elemental selenium · isoselenocyanates · potassium selenocyanate · selenocarbamates · selenosemicarbazides · selenosemicarbazones · selenoureas · sodium hydroselenide · Viehe's salt
M. Stankevič and K. M. Pietrusiewicz
This manuscript is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of arylphosphines. Classical routes to arylphosphines involve the formation of the required C—P bonds from P-electrophilic, P-nucleophilic, and P-radical precursors. Newer methods are based on hydrophosphination and coupling processes catalyzed by transition-metal complexes. Methods involving reductions and decomplexations of tetracoordinate phosphorus precursors and modifications of the carbon skeleton in existing arylphosphines are also included.
Keywords: aryl compounds · C—P bonds · coupling reactions · deoxygenation · desulfurization · nucleophilic substitution · nucleophilic addition · phosphines · phosphorus compounds · radical addition · transition metals
C. Santi
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkaneselenols. It focuses on the literature published in the period 2001–2012; some applications of alkaneselenols in organic synthesis are also...