Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Chapter 252 Thermal and Electronic Properties of Rare Earth Compounds at High Pressure
Y. Uwatoko*, I. Umehara┼, M. Ohashi╬, T. Nakano§, G. Oomi¶||
* The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
┼ Department of Physics, Faculty of Engineering, Yokohama National University, Yokohama, Japan
╬ Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
§ Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Ikarashi, Niigata, Japan
¶ Department of Physics, Kyushu University, Hakozaki, Fukuoka, Japan
|| Department of Education and Creation Engineering, Kurume Institute of technology, Kamitsu-machi, Kurume, Fukuoka, Japan
Abstract
Electronic properties of rare earth metals, alloys and intermetallic compounds have attracted a lot of attention not only from the viewpoint of fundamental aspects but also from the application. These materials show a wide variety of electronic and magnetic properties, such as magnetic order, superconductivity, intermediate valence, Kondo effect and so forth. In this chapter we introduce a lot of experimental studies about the effect of pressure on the thermal, structural and electronic properties of rare earth compounds, in which the electronic states are marginal due to unstable 4f electrons. We describe the present status in this research area. In section 2, the relations between crystal structure and electronic and magnetic state by using X-ray and neutron diffraction under pressure are reported. Effect of pressure on the thermal properties mainly for heavy fermions are reported in section 3. Novel pressure-induced electronic phase transitions such as the crossover in the electronic states and superconductivity are introduced for several heavy fermion materials in section 4. In the last section 5, we show miscellaneous examples which are found recently for amorphous state rare earth compounds and rare earth magnetic multilayers.
Abbreviations
a thermal expansion coefficient
amag the magnetic contribution to a
? electronic specific heat coefficient
eF Fermi energy
? the compressibility
?i linear compressibilities along i-axis (i = a, b, or c)
? resistivity
t wave vector
?s angular frequency
?(0) superconducting gap at T = 0
G´ Grüneisen parameter
?l/l linear thermal expansion
?mag energy gap of antiferromagnetic magnon
ØD Debye temperature
A coefficient of T2 term in resistivity
AFM antiferromagnetism
B0 bulk modulus
B0´ pressure derivative of bulk modulus
BCS Bardeen-Cooper-Schrieffer
BT the isothermal bulk modulus
C heat capacity
Cac alternating current specific heat
CEF crystalline electric field
CK concentrated Kondo
Cs heat capacity of superconductivity
CV the specific heat at constant volume
D(E) density of state at energy E
E energy
FRP fiber-reinforced plastic
FWHM full width at half maximum
g0 the degeneracy factor of ground state
g1 the degeneracy factor of exited sate
H magnetic field
reduced Planck constant or Dirac constant
HF heavy fermion
hpp high-pressure phase
HRC Rockwell hardness in C-scale
IC incommensurate
kB Boltzmann constant
lpp low-pressure phase
MPMS magnetic property measurement system
n electronic density
ND neutron diffraction
NMR nuclear magnetic resonance
P pressure
Pc critical pressure
Q wave vector
q1 propagation vector
R gas constant
SC superconductivity
T temperature
T0 a characteristic temperature
TC Curie temperature
Tc superconducting transition temperature
TF the temperature where electron becomes in Fermi liquid state
TK Kondo temperature
Tmax temperature showing resistance maximum
TN Néel temperature
TPT topological phase transition
Tsf spin fluctuation temperature
U internal energy
V volume of unit cell
V0 volume at ambient pressure
The physical properties of condensed matter are dominated by interactions between particles or quasiparticles. Among them, the electron correlations are the most important interactions in determining the electronic and magnetic properties of condensed matter. In other words, the understanding of the mechanisms of electron correlations in condensed matter is one of the most basic problems in solid-state physics. High-Tc superconductivity (SC) and novel physical properties of rare earth compounds are thought to originate from strong electron correlations in f- and d-electron systems. In alloys and intermetallic compounds, including rare earth elements, many anomalous physical properties such as Kondo effect, magnetic ordering, SC, and other have been observed. These phenomena are closely connected to the electron correlations between localized 4f electrons and conduction electrons.
It has been well known that physical properties of materials on the border of magnetic instability are strongly dependent on external parameters such as external pressure, magnetic fields, and chemical composition. Novel electronic properties of rare earth compounds are due to the existence of localized 4f electrons, which generally speaking, have strong electron correlations and unstable electronic states. These properties are also expected from the anomalous pressure-temperature phase diagram of rare earth elements, in which numerous phase transitions are observed at low temperature and at high pressure. The heavy fermion (HF) compounds, which are a group of Kondo compounds that have extremely large specific heat coefficients, are typical examples having unstable electronic states, and it is well known that their physical properties are affected strongly by a change of magnetic field and external pressure.
In this chapter, we present the structural and thermal properties of rare earth compounds under high pressure in connection with their electronic and magnetic properties. Pressure is an excellent tool facilitating many types of phase transitions, including quantum phase transitions (QPTs) in condensed matter. There is a large body of research describing physical properties of condensed matter under high pressure in relationship not only to magnetic and electronic properties but also to structural properties. Because of size constrains, we confine our discussion to the present status of research in thermal and electronic aspects of physical properties of rare earth compounds, in which almost all examples are or may potentially be highly correlated compounds including rare...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.