This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators.
The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible.
The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators.
The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-containedtext, which is complemented by end-of-chapter problems.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Springer International Publishing
Illustrationen
21
23 farbige Abbildungen, 21 s/w Abbildungen
XIII, 166 p. 44 illus., 23 illus. in color.
ISBN-13
978-3-319-25607-8 (9783319256078)
DOI
10.1007/978-3-319-25607-8
Schweitzer Klassifikation
The Su-Schrieffer-Heeger (SSH) model.- Berry phase, Chern Number.- Polarization and Berry Phase.- Adiabatic charge pumping, Rice-Mele model.- Current operator and particle pumping.- Two-dimensional Chern insulators - the Qi-Wu-Zhang model.- Continuum model of localized states at a domain wall.- Time-reversal symmetric two-dimensional topological insulators - the Bernevig-Hughes-Zhang model.-The Z2 invariant of two-dimensional topological insulators.- Electrical conduction of edge states.