Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integratingthese large-scale heterogeneous data sets into one learning model.
This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for validation. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. The book categorizes different levels of integrations, ranging from early, middle, or late-stage among multi-view models. The underlying models target different objectives, such as knowledge discovery, pattern recognition, disease-related biomarkers, and validation tools for multi-omics data.
Finally, the book emphasizes practical applications and case studies, making it an essential resource for researchers and practitioners looking to apply machine learning to their multi-omics data sets. The book covers data preprocessing, feature selection, and model evaluation, providing readers with a practical guide to implementing machine learning techniques on various multi-omics data sets.
Abedalrhman Alkhateeb earned his Bachelor's degree in Computer Science from the University of Jordan, Amman, Jordan, in 2004, and his MSc and Ph.D. in Computer Science from the University of Windsor, Canada, in 2011 and 2018, respectively. He is currently an Assistant Professor at Princess Sumaya University for Technology in Amman, Jordan. Previously, he served as an Assistant Professor and Mitacs Accelerate Postdoctoral Fellow at the University of Windsor, Canada. His research interests include machine learning, deep learning, bioinformatics, and health informatics.
Chapter 1: Introduction to Multiomics Technology, Ahmed Hajyasien.- Chapter 2: Multi-omics Data Integration Applications and Structures, Ammar El-Hassa.- Chapter 3: Machine learning approaches for multi-omics data integration in medicine, Fatma Hilal Yagin.- Chapter 4: Multimodal methods for knowledge discovery from bulk and single-cell multi-omics data, Yue Li, Gregory Fonseca, and Jun Ding.- Chapter 5: Negative sample selection for miRNA-disease association prediction models, Yulian Ding, Fei Wang, Yuchen Zhang, Fang-Xiang Wu.- Chapter 6: Prediction and Analysis of Key Genes in Prostate Cancer via MRMR Enhanced Similarity Preserving Criteria and Pathway Enrichment Methods, Robert Benjamin Eshun, Hugette Naa Ayele Aryee, Marwan U. Bikdash, and A.K.M Kamrul Islam.- Chapter 7: Graph-Based Machine Learning Approaches for Pangenomics, Indika Kahanda, Joann Mudge, Buwani Manuweera, Thiruvarangan Ramaraj, Alan Cleary, and Brendan Mumey.- Chapter 8: Multiomics-based tensor decomposition for characterizing breast cancer heterogeneity,.- Qian Liu, Shujun Huang, Zhongyuan Zhang, Ted M. Lakowski, Wei Xu and Pingzhao Hu.- Chapter 9: Multi-Omics Databases, Hania AlOmari, Abedalrhman Alkhateeb, and Bassam Hammo.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.