1 - Science of Synthesis: Knowledge Updates 2012/2 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 18]
1.6 - Table of Contents [Seite 20]
1.7 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 42]
1.7.1 - 4.4 Product Class 4: Silicon Compounds [Seite 42]
1.7.1.1 - 4.4.25.11 Acylsilanes [Seite 42]
1.7.1.1.1 - 4.4.25.11.1 Synthesis of Acylsilanes [Seite 42]
1.7.1.1.1.1 - 4.4.25.11.1.1 Method 1: Synthesis of Simple Acylsilanes [Seite 42]
1.7.1.1.1.1.1 - 4.4.25.11.1.1.1 Variation 1: Hydrolysis of Acetals [Seite 42]
1.7.1.1.1.1.2 - 4.4.25.11.1.1.2 Variation 2: Oxidation of Organocuprates [Seite 44]
1.7.1.1.1.1.3 - 4.4.25.11.1.1.3 Variation 3: Nucleophilic Substitution of Morpholine Amides [Seite 48]
1.7.1.1.1.1.4 - 4.4.25.11.1.1.4 Variation 4: Additional Synthetic Methods [Seite 49]
1.7.1.1.1.2 - 4.4.25.11.1.2 Method 2: Synthesis of Bis(acylsilanes) [Seite 51]
1.7.1.1.1.3 - 4.4.25.11.1.3 Method 3: Synthesis of a-Oxo Acylsilanes [Seite 54]
1.7.1.1.1.4 - 4.4.25.11.1.4 Method 4: Synthesis of a,ß-Unsaturated Acylsilanes [Seite 56]
1.7.1.1.1.5 - 4.4.25.11.1.5 Method 5: Synthesis of a-Amino Acylsilanes [Seite 57]
1.7.1.1.2 - 4.4.25.11.2 Applications of Acylsilanes [Seite 59]
1.7.1.1.2.1 - 4.4.25.11.2.1 Method 1: Applications of Simple Acylsilanes [Seite 59]
1.7.1.1.2.1.1 - 4.4.25.11.2.1.1 Variation 1: Nucleophilic Addition [Seite 59]
1.7.1.1.2.1.2 - 4.4.25.11.2.1.2 Variation 2: Nucleophilic Addition with Brook Rearrangement [Seite 68]
1.7.1.1.2.1.3 - 4.4.25.11.2.1.3 Variation 3: Acylsilanes as Acyl Anion Precursors [Seite 81]
1.7.1.1.2.1.4 - 4.4.25.11.2.1.4 Variation 4: Enolate and Enol Ether Reactions [Seite 94]
1.7.1.1.2.1.5 - 4.4.25.11.2.1.5 Variation 5: Photochemistry [Seite 95]
1.7.1.1.2.1.6 - 4.4.25.11.2.1.6 Variation 6: Miscellaneous Applications [Seite 99]
1.7.1.1.2.2 - 4.4.25.11.2.2 Method 2: Applications of Bis(acylsilanes) [Seite 103]
1.7.1.1.2.3 - 4.4.25.11.2.3 Method 3: Applications of a-Oxo Acylsilanes [Seite 106]
1.7.1.1.2.4 - 4.4.25.11.2.4 Method 4: Applications of a,ß-Unsaturated Acylsilanes [Seite 117]
1.8 - Volume 8: Compounds of Group 1 (Li . Cs) [Seite 126]
1.8.1 - 8.1 Product Class 1: Lithium Compounds [Seite 126]
1.8.1.1 - 8.1.34 Asymmetric Lithiation [Seite 126]
1.8.1.1.1 - 8.1.34.1 Method 1: Deprotonation in a Position a to a Heteroatom [Seite 128]
1.8.1.1.1.1 - 8.1.34.1.1 Variation 1: Enantioselective Deprotonation of Carbamates and Their Analogues [Seite 128]
1.8.1.1.1.2 - 8.1.34.1.2 Variation 2: Enantioselective Deprotonation of Phosphorylated Derivatives [Seite 134]
1.8.1.1.1.3 - 8.1.34.1.3 Variation 3: Enantioselective Deprotonation of Ureas [Seite 138]
1.8.1.1.1.4 - 8.1.34.1.4 Variation 4: Enantioselective Deprotonation of Phosphoramidates [Seite 140]
1.8.1.1.1.5 - 8.1.34.1.5 Variation 5: Enantioselective Deprotonation Followed by Transmetalation [Seite 141]
1.8.1.1.1.6 - 8.1.34.1.6 Variation 6: Enantioselective Deprotonation Followed by Cyclization [Seite 147]
1.8.1.1.1.7 - 8.1.34.1.7 Variation 7: Enantioselective Deprotonation Followed by Wittig Rearrangement [Seite 150]
1.8.1.1.1.8 - 8.1.34.1.8 Variation 8: Diastereoselective Deprotonation of Carbamates [Seite 155]
1.8.1.1.1.9 - 8.1.34.1.9 Variation 9: Diastereoselective and Enantioselective Deprotonations of Epoxides or Aziridines [Seite 159]
1.8.1.1.1.10 - 8.1.34.1.10 Variation 10: Catalytic Enantioselective Deprotonation [Seite 161]
1.8.1.1.2 - 8.1.34.2 Method 2: Deprotonation in a Position Lacking an a-Heteroatom [Seite 166]
1.8.1.1.2.1 - 8.1.34.2.1 Variation 1: Diastereoselective Deprotonation in a Benzylic Position [Seite 166]
1.8.1.1.2.2 - 8.1.34.2.2 Variation 2: Enantioselective Deprotonation in a Benzylic Position [Seite 167]
1.8.1.1.2.3 - 8.1.34.2.3 Variation 3: Diastereoselective Deprotonation of Metallocene Derivatives [Seite 169]
1.8.1.1.2.4 - 8.1.34.2.4 Variation 4: Enantioselective Deprotonation of Metallocene Derivatives [Seite 171]
1.8.1.1.3 - 8.1.34.3 Method 3: Tin-Lithium Exchange [Seite 173]
1.8.1.1.4 - 8.1.34.4 Method 4: Reductive Lithiation [Seite 176]
1.8.1.1.5 - 8.1.34.5 Method 5: Carbometalation [Seite 177]
1.8.1.1.5.1 - 8.1.34.5.1 Variation 1: Enantioselective Intermolecular Carbolithiation [Seite 177]
1.8.1.1.5.2 - 8.1.34.5.2 Variation 2: Enantioselective and Diastereoselective Intramolecular Carbolithiation [Seite 180]
1.9 - Volume 13: Five-Membered Hetarenes with Three or More Heteroatoms [Seite 190]
1.9.1 - 13.32 Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues [Seite 190]
1.9.1.1 - 13.32.1 Product Subclass 1: 1,2,3-Trithioles [Seite 190]
1.9.1.1.1 - 13.32.1.1 Synthesis by Ring-Closure Reactions [Seite 191]
1.9.1.1.1.1 - 13.32.1.1.1 By Formation of Two S--S Bonds [Seite 191]
1.9.1.1.1.1.1 - 13.32.1.1.1.1 Method 1: Synthesis from Metal Enedithiolates with Thionyl Chloride [Seite 191]
1.9.1.1.1.2 - 13.32.1.1.2 By Formation of Two C--S Bonds [Seite 191]
1.9.1.1.1.2.1 - 13.32.1.1.2.1 Method 1: Synthesis from Alkynes with Sulfur [Seite 191]
1.9.1.1.2 - 13.32.1.2 Synthesis by Ring Transformation [Seite 192]
1.9.1.1.2.1 - 13.32.1.2.1 Method 1: Formal Germanium/Sulfur Exchange of a 1,3,2-Dithiagermole with Thionyl Chloride [Seite 192]
1.9.1.1.2.2 - 13.32.1.2.2 Method 2: Formal Ring Expansion with the Insertion of an Extra Sulfur Atom [Seite 193]
1.9.1.2 - 13.32.2 Product Subclass 2: 1,2,3-Benzotrithioles and Other Ring-Fused Analogues [Seite 194]
1.9.1.2.1 - 13.32.2.1 Synthesis by Ring-Closure Reactions [Seite 195]
1.9.1.2.1.1 - 13.32.2.1.1 By Formation of Two S--S Bonds and One C--C Bond [Seite 195]
1.9.1.2.1.1.1 - 13.32.2.1.1.1 Method 1: Electrochemical Reduction of Carbon Disulfide [Seite 195]
1.9.1.2.1.2 - 13.32.2.1.2 By Formation of Two S--S Bonds [Seite 196]
1.9.1.2.1.2.1 - 13.32.2.1.2.1 Method 1: Synthesis from Arene-1,2-dithiols [Seite 196]
1.9.1.2.1.2.1.1 - 13.32.2.1.2.1.1 Variation 1: Reactions with Sulfur Dichloride [Seite 196]
1.9.1.2.1.2.1.2 - 13.32.2.1.2.1.2 Variation 2: Reactions with Thionyl Chloride [Seite 196]
1.9.1.2.1.2.1.3 - 13.32.2.1.2.1.3 Variation 3: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid [Seite 197]
1.9.1.2.1.2.2 - 13.32.2.1.2.2 Method 2: Synthesis from Metal Enedithiolates with Sulfur Dichloride [Seite 198]
1.9.1.2.1.2.2.1 - 13.32.2.1.2.2.1 Variation 1: Reactions with Lithium or Sodium Enedithiolates [Seite 198]
1.9.1.2.1.2.2.2 - 13.32.2.1.2.2.2 Variation 2: Reactions with Zinc Enedithiolates [Seite 199]
1.9.1.2.1.3 - 13.32.2.1.3 By Formation of Two C--S Bonds [Seite 200]
1.9.1.2.1.3.1 - 13.32.2.1.3.1 Method 1: Synthesis from 1,2-Dibromoarenes with Sulfur [Seite 200]
1.9.1.2.1.3.1.1 - 13.32.2.1.3.1.1 Variation 1: Reactions in Liquid Ammonia [Seite 200]
1.9.1.2.1.3.1.2 - 13.32.2.1.3.1.2 Variation 2: Reaction in Diazabicycloundecene [Seite 201]
1.9.1.2.2 - 13.32.2.2 Synthesis by Ring Transformation [Seite 201]
1.9.1.2.2.1 - 13.32.2.2.1 Method 1: Synthesis from 1,3,2-Dithiametalloles [Seite 201]
1.9.1.2.2.1.1 - 13.32.2.2.1.1 Variation 1: Reactions of 1,3,2-Benzodithiatitanoles with Sulfur Dichloride [Seite 202]
1.9.1.2.2.1.2 - 13.32.2.2.1.2 Variation 2: Reactions of 1,3,2-Benzodithiastannoles with Sulfur Dichloride [Seite 202]
1.9.1.2.2.1.3 - 13.32.2.2.1.3 Variation 3: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride [Seite 203]
1.9.1.2.2.1.4 - 13.32.2.2.1.4 Variation 4: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Sodium Iodide, and Perchloric Acid [Seite 204]
1.9.1.2.2.1.5 - 13.32.2.2.1.5 Variation 5: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide [Seite 206]
1.9.1.2.2.2 - 13.32.2.2.2 Method 2: Synthesis from 1,2,3-Benzochalcogenadiazoles with Sulfur [Seite 207]
1.9.1.2.2.2.1 - 13.32.2.2.2.1 Variation 1: Reactions of 1,2,3-Benzothiadiazoles [Seite 207]
1.9.1.2.2.2.2 - 13.32.2.2.2.2 Variation 2: Reactions with 1,2,3-Benzoselenadiazoles [Seite 207]
1.9.1.2.2.3 - 13.32.2.2.3 Method 3: Synthesis from 1,3-Benzodithiol-2-ones [Seite 208]
1.9.1.2.2.3.1 - 13.32.2.2.3.1 Variation 1: Reactions with Sodium Hydrogen Sulfide [Seite 208]
1.9.1.2.2.3.2 - 13.32.2.2.3.2 Variation 2: Reactions with an Alkyllithium and Sulfur Dichloride [Seite 209]
1.9.1.2.2.3.3 - 13.32.2.2.3.3 Variation 3: Reactions with a Sodium Alkoxide and Sulfur Dichloride [Seite 210]
1.9.1.2.2.4 - 13.32.2.2.4 Method 4: Synthesis from 1,3-Benzodithiole-2-thiones [Seite 210]
1.9.1.2.2.5 - 13.32.2.2.5 Method 5: Ring Contraction [Seite 211]
1.9.1.2.2.5.1 - 13.32.2.2.5.1 Variation 1: Synthesis from 1,3,5,2,4-Benzotrithiadiazepines by Thermolysis [Seite 211]
1.9.1.2.2.5.2 - 13.32.2.2.5.2 Variation 2: Synthesis from Benzopentathiepins [Seite 212]
1.9.1.2.3 - 13.32.2.3 Synthesis by Substituent Modification [Seite 213]
1.9.1.2.3.1 - 13.32.2.3.1 One-Electron Oxidation [Seite 213]
1.9.1.2.3.1.1 - 13.32.2.3.1.1 Method 1: Synthesis from 1,2,3-Benzotrithioles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts [Seite 213]
1.9.1.2.3.2 - 13.32.2.3.2 Addition Reactions [Seite 214]
1.9.1.2.3.2.1 - 13.32.2.3.2.1 Method 1: Synthesis from 1,2,3-Benzotrithioles by Oxidation [Seite 214]
1.9.1.2.3.3 - 13.32.2.3.3 Rearrangement of Substituents [Seite 215]
1.9.1.2.3.3.1 - 13.32.2.3.3.1 Method 1: Synthesis from 1,2,3-Benzotrithiole 2-Oxides by Photochemical Rearrangement [Seite 215]
1.9.1.3 - 13.32.3 Product Subclass 3: 1,2,3-Benzodithiaselenoles [Seite 216]
1.9.1.3.1 - 13.32.3.1 Synthesis by Ring-Closure Reactions [Seite 217]
1.9.1.3.1.1 - 13.32.3.1.1 By Formation of One S--S and One S--Se Bond [Seite 217]
1.9.1.3.1.1.1 - 13.32.3.1.1.1 Method 1: Synthesis from 2-(Chlorosulfonyl)benzeneselenenyl Bromide and Thioacetamide [Seite 217]
1.9.1.3.2 - 13.32.3.2 Synthesis by Ring Transformation [Seite 217]
1.9.1.3.2.1 - 13.32.3.2.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles [Seite 217]
1.9.1.3.2.1.1 - 13.32.3.2.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia [Seite 217]
1.9.1.3.2.1.2 - 13.32.3.2.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid [Seite 218]
1.9.1.4 - 13.32.4 Product Subclass 4: 1,3,2-Benzodithiaselenoles [Seite 219]
1.9.1.4.1 - 13.32.4.1 Synthesis by Ring-Closure Reactions [Seite 219]
1.9.1.4.1.1 - 13.32.4.1.1 By Formation of Two S--Se Bonds [Seite 219]
1.9.1.4.1.1.1 - 13.32.4.1.1.1 Method 1: Reactions of Arene-1,2-dithiols with Selenium Dioxide [Seite 219]
1.9.1.4.2 - 13.32.4.2 Synthesis by Ring Transformation [Seite 220]
1.9.1.4.2.1 - 13.32.4.2.1 Method 1: Reactions of 1,3,2-Benzodithiastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide [Seite 220]
1.9.1.5 - 13.32.5 Product Subclass 5: 1,2,3-Benzothiadiselenoles [Seite 221]
1.9.1.5.1 - 13.32.5.1 Synthesis by Ring Transformation [Seite 221]
1.9.1.5.1.1 - 13.32.5.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide [Seite 221]
1.9.1.5.1.2 - 13.32.5.1.2 Method 2: Ring Contraction of Dibenzo-1,2,5,6- and 1,5,2,6-Dithiadiselenocins by Photolysis [Seite 222]
1.9.1.6 - 13.32.6 Product Subclass 6: 2,1,3-Benzothiadiselenoles [Seite 222]
1.9.1.6.1 - 13.32.6.1 Synthesis by Ring Transformation [Seite 222]
1.9.1.6.1.1 - 13.32.6.1.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles [Seite 222]
1.9.1.6.1.1.1 - 13.32.6.1.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia [Seite 222]
1.9.1.6.1.1.2 - 13.32.6.1.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid [Seite 223]
1.9.1.6.1.2 - 13.32.6.1.2 Method 2: Synthesis from 1,2,3-Benzotriselenoles with Sulfur [Seite 224]
1.9.1.7 - 13.32.7 Product Subclass 7: 1,2,3-Benzotriselenoles [Seite 224]
1.9.1.7.1 - 13.32.7.1 Synthesis by Ring-Closure Reactions [Seite 224]
1.9.1.7.1.1 - 13.32.7.1.1 By Formation of Two Se--Se Bonds [Seite 224]
1.9.1.7.1.1.1 - 13.32.7.1.1.1 Method 1: Synthesis from Dilithium Arene-1,2-diselenolates with Selenium Tetrachloride [Seite 224]
1.9.1.7.1.1.2 - 13.32.7.1.1.2 Method 2: Synthesis from Benzene-1,2-diselenenyl Dichloride with Selenium [Seite 225]
1.9.1.7.1.2 - 13.32.7.1.2 By Formation of Two Se--C Bonds [Seite 225]
1.9.1.7.1.2.1 - 13.32.7.1.2.1 Method 1: Synthesis from 1,2-Dibromoarenes with Selenium [Seite 225]
1.9.1.7.1.2.2 - 13.32.7.1.2.2 Method 2: Reactions of Tribenzo-1,4,7-trimercuronins with Selenium [Seite 226]
1.9.1.7.2 - 13.32.7.2 Synthesis by Ring Transformation [Seite 227]
1.9.1.7.2.1 - 13.32.7.2.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles [Seite 227]
1.9.1.7.2.1.1 - 13.32.7.2.1.1 Variation 1: Reactions with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide [Seite 227]
1.9.1.7.2.1.2 - 13.32.7.2.1.2 Variation 2: Reaction with Selenium Tetrachloride [Seite 228]
1.9.1.7.2.2 - 13.32.7.2.2 Method 2: Reactions of 1,2,3-Benzoselenadiazoles with Selenium [Seite 228]
1.9.1.7.2.3 - 13.32.7.2.3 Method 3: By Ring Contraction [Seite 228]
1.9.1.7.2.3.1 - 13.32.7.2.3.1 Variation 1: Synthesis from Dibenzo-1,2,5,6-tetraselenocins by Photolysis [Seite 228]
1.9.1.7.2.3.2 - 13.32.7.2.3.2 Variation 2: Synthesis from Dibenzo-1,2,5,6-tetraselenocin with Diselenium Dichloride [Seite 229]
1.9.1.7.3 - 13.32.7.3 Synthesis by Substituent Modification [Seite 229]
1.9.1.7.3.1 - 13.32.7.3.1 One-Electron Oxidation [Seite 229]
1.9.1.7.3.1.1 - 13.32.7.3.1.1 Method 1: Synthesis from 1,2,3-Benzotriselenoles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts [Seite 229]
1.9.1.8 - 13.32.8 Product Subclass 8: 1,2,3-Benzodithiatelluroles [Seite 230]
1.9.1.8.1 - 13.32.8.1 Synthesis by Ring Transformation [Seite 230]
1.9.1.8.1.1 - 13.32.8.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Sulfur Dichloride [Seite 230]
1.9.1.9 - 13.32.9 Product Subclass 9: 1,3,2-Dithiatelluroles and 1,3,2-Benzodithiatelluroles [Seite 231]
1.9.1.9.1 - 13.32.9.1 Synthesis by Ring-Closure Reactions [Seite 231]
1.9.1.9.1.1 - 13.32.9.1.1 By Formation of Two S--Te Bonds [Seite 231]
1.9.1.9.1.1.1 - 13.32.9.1.1.1 Method 1: Synthesis from Arene-1,2-dithiols with Tellurium Tetrachloride [Seite 231]
1.9.1.9.1.1.2 - 13.32.9.1.1.2 Method 2: Synthesis from Metal Enedithiolates [Seite 232]
1.9.1.9.1.1.2.1 - 13.32.9.1.1.2.1 Variation 1: Reactions with Tellurium Tetrahalides [Seite 232]
1.9.1.9.1.1.2.2 - 13.32.9.1.1.2.2 Variation 2: Reactions with Sodium Tellurapentathionate [Seite 232]
1.9.1.9.2 - 13.32.9.2 Synthesis by Ring Transformation [Seite 233]
1.9.1.9.2.1 - 13.32.9.2.1 Method 1: Synthesis from 1,3,2-Benzodithiastannoles with Tellurium Tetrachloride [Seite 233]
1.9.1.10 - 13.32.10 Product Subclass 10: 1,2,3-Benzothiaselenatelluroles [Seite 234]
1.9.1.10.1 - 13.32.10.1 Synthesis by Ring Transformation [Seite 234]
1.9.1.10.1.1 - 13.32.10.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Selenium Oxychloride [Seite 234]
1.9.1.11 - 13.32.11 Product Subclass 11: 1,3,2-Benzothiaselenatelluroles [Seite 235]
1.9.1.11.1 - 13.32.11.1 Synthesis by Ring Transformation [Seite 235]
1.9.1.11.1.1 - 13.32.11.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Tellurium Tetrachloride [Seite 235]
1.9.1.12 - 13.32.12 Product Subclass 12: 2,1,3-Benzothiaselenatelluroles [Seite 235]
1.9.1.12.1 - 13.32.12.1 Synthesis by Ring Transformation [Seite 235]
1.9.1.12.1.1 - 13.32.12.1.1 Method 1: Synthesis from a 1,3,2-Benzoselenatelluratitanole with Sulfur Dichloride [Seite 235]
1.9.1.13 - 13.32.13 Product Subclass 13: 1,2,3-Benzodiselenatelluroles [Seite 236]
1.9.1.13.1 - 13.32.13.1 Synthesis by Ring Transformation [Seite 236]
1.9.1.13.1.1 - 13.32.13.1.1 Method 1: Synthesis from 1,3,2-Benzoselenatelluratitanoles with Selenium Oxychloride [Seite 236]
1.9.1.14 - 13.32.14 Product Subclass 14: 1,3,2-Benzodiselenatelluroles [Seite 236]
1.9.2 - 13.33 Product Class 33: 1,2,4-Triazolium Salts [Seite 240]
1.9.2.1 - 13.33.1 Synthesis by Ring-Closure Reactions [Seite 241]
1.9.2.1.1 - 13.33.1.1 By Formation of Two N--C Bonds [Seite 241]
1.9.2.1.1.1 - 13.33.1.1.1 Formation of the N2--C3 and N4--C5 Bonds [Seite 241]
1.9.2.1.1.1.1 - 13.33.1.1.1.1 Method 1: Reaction of an Imidoyl Chloride with an N-Formylhydrazine [Seite 241]
1.9.2.1.1.2 - 13.33.1.1.2 Formation of the N1--C5 and N4--C5 Bonds [Seite 242]
1.9.2.1.1.2.1 - 13.33.1.1.2.1 Method 1: Reaction of an a-Aminohydrazone with a Trialkyl Orthoformate [Seite 242]
1.9.2.1.1.2.1.1 - 13.33.1.1.2.1.1 Variation 1: Reaction Using a One-Pot Protocol [Seite 242]
1.9.2.1.1.2.1.2 - 13.33.1.1.2.1.2 Variation 2: Reaction Using an Electron-Deficient Arylhydrazine [Seite 243]
1.9.2.1.1.2.1.3 - 13.33.1.1.2.1.3 Variation 3: Synthesis of N-Mesityl-Substituted Triazolium Salts [Seite 244]
1.9.2.1.1.2.1.4 - 13.33.1.1.2.1.4 Variation 4: Reaction Using Dimethyl Sulfate as the Amide-Activating Agent [Seite 246]
1.9.2.1.1.2.1.5 - 13.33.1.1.2.1.5 Variation 5: Synthesis of 2-Alkyl-[1,2,4]triazolo[4,3-a]pyridinium Salts [Seite 247]
1.9.2.1.1.2.1.6 - 13.33.1.1.2.1.6 Variation 6: Synthesis of 2-Aryl-[1,2,4]triazolo[4,3-a]pyridinium Salts [Seite 248]
1.9.2.2 - 13.33.2 Synthesis by Ring Transformation [Seite 248]
1.9.2.2.1 - 13.33.2.1 Formal Exchange of Ring Members with Retention of Ring Size [Seite 248]
1.9.2.2.1.1 - 13.33.2.1.1 Method 1: Synthesis from 1,3,4-Oxadiazolium Salts [Seite 248]
1.9.2.2.1.2 - 13.33.2.1.2 Method 2: Synthesis from 1,3,4-Thiadiazolium Salts [Seite 250]
1.9.2.3 - 13.33.3 Synthesis by Substituent Modification [Seite 251]
1.9.2.3.1 - 13.33.3.1 Addition Reactions [Seite 251]
1.9.2.3.1.1 - 13.33.3.1.1 Addition of Organic Groups [Seite 251]
1.9.2.3.1.1.1 - 13.33.3.1.1.1 Method 1: Alkylation Using an Alkyl Chloride, Bromide, or Iodide [Seite 251]
1.9.2.3.1.1.2 - 13.33.3.1.1.2 Method 2: Alkylation Using a Trialkyloxonium Tetrafluoroborate [Seite 251]
1.9.2.3.2 - 13.33.3.2 Modification of Substituents [Seite 252]
1.9.2.3.2.1 - 13.33.3.2.1 Method 1: Paal-Knorr Pyrrole Synthesis Using an Amine-Functionalized Triazolium Salt [Seite 252]
1.9.2.3.2.2 - 13.33.3.2.2 Method 2: Modification by Anion Exchange [Seite 253]
1.9.2.3.2.2.1 - 13.33.3.2.2.1 Variation 1: Of 1,2,4-Triazolium Halides [Seite 253]
1.9.2.3.2.2.2 - 13.33.3.2.2.2 Variation 2: With Silver Salts [Seite 254]
1.9.3 - 13.34 Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds [Seite 256]
1.9.3.1 - 13.34.1 Product Subclass 1: 1,2,3,5-Dithiadiazolium Salts and Related Compounds [Seite 258]
1.9.3.1.1 - 13.34.1.1 Synthesis by Ring-Closure Reactions [Seite 259]
1.9.3.1.1.1 - 13.34.1.1.1 By Formation of One S--S and Two S--N Bonds [Seite 259]
1.9.3.1.1.1.1 - 13.34.1.1.1.1 Method 1: Synthesis from Amidines Using Sulfur Halides [Seite 259]
1.9.3.1.1.1.1.1 - 13.34.1.1.1.1.1 Variation 1: Reaction of Amidinium Salts with Sulfur Dichloride and 1,8-Diazabicyclo[5.4.0]undec-7-ene [Seite 259]
1.9.3.1.1.1.1.2 - 13.34.1.1.1.1.2 Variation 2: Reaction of Amidinium Salts with Sulfur Monochloride [Seite 260]
1.9.3.1.1.1.1.3 - 13.34.1.1.1.1.3 Variation 3: Reaction of N,N,N'-Tris(trimethylsilyl)amidines with Sulfur Dichloride [Seite 260]
1.9.3.1.1.1.2 - 13.34.1.1.1.2 Method 2: Reaction of Amidoximes with Sulfur Dichloride [Seite 261]
1.9.3.1.1.2 - 13.34.1.1.2 By Formation of One S--S, One S--N, and One N--C Bond [Seite 262]
1.9.3.1.1.2.1 - 13.34.1.1.2.1 Method 1: Synthesis from Nitriles [Seite 262]
1.9.3.1.1.2.1.1 - 13.34.1.1.2.1.1 Variation 1: Reaction with Sulfur Dichloride and Ammonium Chloride [Seite 262]
1.9.3.1.1.2.1.2 - 13.34.1.1.2.1.2 Variation 2: Reaction with Trithiazyl Trichloride [Seite 263]
1.9.3.1.1.2.2 - 13.34.1.1.2.2 Method 2: Synthesis from Azines Using Trithiazyl Trichloride [Seite 263]
1.9.3.1.1.3 - 13.34.1.1.3 By Formation of One S--S and Two N--C Bonds [Seite 264]
1.9.3.1.1.3.1 - 13.34.1.1.3.1 Method 1: Synthesis from Alkenes Using Trithiazyl Trichloride [Seite 264]
1.9.3.1.2 - 13.34.1.2 Synthesis by Ring Transformation [Seite 264]
1.9.3.1.2.1 - 13.34.1.2.1 Method 1: Synthesis by One-Electron Reduction Using Zinc/Copper or Triphenylstibine [Seite 264]
1.9.3.1.2.2 - 13.34.1.2.2 Method 2: Synthesis from 1,3-Dichloro-1,3,2,4,6-dithiatriazines by Thermolytic Ring Contraction [Seite 265]
1.9.3.2 - 13.34.2 Product Subclass 2: 1,3,2,4-Dithiadiazolium Salts and Related Compounds [Seite 266]
1.9.3.2.1 - 13.34.2.1 Synthesis by Ring-Closure Reactions [Seite 267]
1.9.3.2.1.1 - 13.34.2.1.1 By Formation of One S--N and One S--C Bond [Seite 267]
1.9.3.2.1.1.1 - 13.34.2.1.1.1 Method 1: Synthesis from Nitriles with Dithionitronium Hexafluoroarsenate [Seite 267]
1.9.3.2.1.2 - 13.34.2.1.2 By Formation of One S--N and One N--C Bond [Seite 269]
1.9.3.2.1.2.1 - 13.34.2.1.2.1 Method 1: Synthesis from Bifunctional Acyl Chlorides with an N,N'-Bis(trimethylsilyl)sulfur Diimide [Seite 269]
1.9.3.2.2 - 13.34.2.2 Synthesis by Ring Transformation [Seite 270]
1.9.3.2.2.1 - 13.34.2.2.1 Method 1: Synthesis by One-Electron Reduction Using Triphenylstibine [Seite 270]
1.9.3.2.2.2 - 13.34.2.2.2 Method 2: Synthesis from a Dithiadiazastannole Using Carbonyl Difluoride [Seite 270]
1.9.3.2.3 - 13.34.2.3 Synthesis by Substituent Modification [Seite 271]
1.9.3.2.3.1 - 13.34.2.3.1 Method 1: Synthesis by O-Alkylation Using Methyl Fluorosulfonate [Seite 271]
1.10 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 274]
1.10.1 - 16.4 Product Class 4: 1,4-Dithiins [Seite 274]
1.10.1.1 - 16.4.6 1,4-Dithiins [Seite 274]
1.10.1.1.1 - 16.4.6.1 Synthesis by Ring-Closure Reactions [Seite 276]
1.10.1.1.1.1 - 16.4.6.1.1 By Formation of Four S--C Bonds [Seite 276]
1.10.1.1.1.1.1 - 16.4.6.1.1.1 Fragments C--C, C--C, and Two S Fragments [Seite 276]
1.10.1.1.1.1.1.1 - 16.4.6.1.1.1.1 Method 1: Synthesis from (Z)-1,2-Dichloroethene and Sodium Sulfide [Seite 276]
1.10.1.1.1.1.1.2 - 16.4.6.1.1.1.2 Method 2: Synthesis from Alkynes and Sulfur [Seite 277]
1.10.1.1.1.2 - 16.4.6.1.2 By Formation of Two S--C Bonds [Seite 277]
1.10.1.1.1.2.1 - 16.4.6.1.2.1 Fragments C--C--S--C--C and S [Seite 277]
1.10.1.1.1.2.1.1 - 16.4.6.1.2.1.1 Method 1: Synthesis from 1-Bromo-4-phenoxybut-2-yne and Sodium Sulfide [Seite 277]
1.10.1.1.1.2.2 - 16.4.6.1.2.2 Fragments S--C--C--S and C--C [Seite 278]
1.10.1.1.1.2.2.1 - 16.4.6.1.2.2.1 Method 1: Synthesis from 1,2-Dihydroxyarenes and 1,2-Dithiols [Seite 278]
1.10.1.1.1.2.2.2 - 16.4.6.1.2.2.2 Method 2: Synthesis from 1,2,3,4,5-Benzopentathiepin and Active Methylene Compounds [Seite 279]
1.10.1.1.1.2.2.3 - 16.4.6.1.2.2.3 Method 3: Synthesis from 1,2,3,4,5-Pentathiepins and Alkynes [Seite 280]
1.10.1.1.1.2.3 - 16.4.6.1.2.3 Fragments S--C--C and S--C--C [Seite 281]
1.10.1.1.1.2.3.1 - 16.4.6.1.2.3.1 Method 1: Thermolysis of 1,2,3-Thiadiazoles [Seite 281]
1.10.1.1.1.2.3.2 - 16.4.6.1.2.3.2 Method 2: Synthesis from 4-(Alkylamino)-4-oxobutanoic Acids and Thionyl Chloride [Seite 283]
1.10.1.1.1.3 - 16.4.6.1.3 By Formation of One S--C Bond [Seite 284]
1.10.1.1.1.3.1 - 16.4.6.1.3.1 Fragment S--C--C--S--C--C [Seite 284]
1.10.1.1.1.3.1.1 - 16.4.6.1.3.1.1 Method 1: Synthesis from 2-Chloro-1-phenylethane-1,1-dithiol and Sodium Sulfide [Seite 284]
1.10.1.1.1.3.1.2 - 16.4.6.1.3.1.2 Method 2: Synthesis from 1,8-Diketones [Seite 285]
1.10.1.1.2 - 16.4.6.2 Synthesis by Ring Transformation [Seite 286]
1.10.1.1.2.1 - 16.4.6.2.1 By Ring Contraction [Seite 286]
1.10.1.1.2.1.1 - 16.4.6.2.1.1 Method 1: Synthesis by Photolysis of Unsaturated 18-Membered Thia-Crown Ethers [Seite 286]
1.10.1.1.2.1.2 - 16.4.6.2.1.2 Method 2: Synthesis by Pummerer Dehydration of 3,8-Dihydro-1,2,5,6-dithiadiazocine 1-Oxides [Seite 286]
1.10.1.1.3 - 16.4.6.3 Aromatization-Type Reactions [Seite 287]
1.10.1.1.3.1 - 16.4.6.3.1 By Elimination [Seite 287]
1.10.1.1.3.1.1 - 16.4.6.3.1.1 Method 1: Synthesis from 2-Chloro- and 2,3-Dichloro-1,4-dithianes [Seite 287]
1.10.1.1.3.1.2 - 16.4.6.3.1.2 Method 2: Synthesis from 1,4-Dithiane-2,5-diol [Seite 288]
1.10.1.1.4 - 16.4.6.4 Synthesis by Substituent Modification [Seite 289]
1.10.1.1.4.1 - 16.4.6.4.1 Substitution of Existing Substituents [Seite 289]
1.10.1.1.4.1.1 - 16.4.6.4.1.1 Of Hydrogen [Seite 289]
1.10.1.1.4.1.1.1 - 16.4.6.4.1.1.1 Method 1: Introduction of Alkyl and Carboxamide Groups by Radical Substitution [Seite 289]
1.10.1.1.4.2 - 16.4.6.4.2 Rearrangement of Substituents [Seite 291]
1.10.1.1.4.2.1 - 16.4.6.4.2.1 Method 1: Isomerization of 1,4-Dithiins via Ring-Opening-Ring-Closing Reactions [Seite 291]
1.10.1.1.4.3 - 16.4.6.4.3 Modification of Substituents [Seite 292]
1.10.1.1.4.3.1 - 16.4.6.4.3.1 Modification of Sulfur Substituents [Seite 292]
1.10.1.1.4.3.1.1 - 16.4.6.4.3.1.1 Method 1: Ring Opening of Acenaphtho[1,2-b][1,3]dithiolo[4,5-e][1,4]dithiin-9-one with Potassium tert-Butoxide [Seite 292]
1.10.1.1.4.3.1.2 - 16.4.6.4.3.1.2 Method 2: Synthesis of Tin Dithiolates from Ketones by Grignard Reaction [Seite 293]
1.10.2 - 16.18 Product Class 18: Pyridopyridazines [Seite 296]
1.10.2.1 - 16.18.7 Pyridopyridazines [Seite 296]
1.10.2.1.1 - 16.18.7.1 Pyrido[2,3-c]pyridazines [Seite 298]
1.10.2.1.1.1 - 16.18.7.1.1 Synthesis by Ring-Closure Reactions [Seite 298]
1.10.2.1.1.1.1 - 16.18.7.1.1.1 By Formation of One N--C and One C--C Bond [Seite 298]
1.10.2.1.1.1.1.1 - 16.18.7.1.1.1.1 Method 1: Cyclization of 3-Aminopyridazine-4-carbonitrile with Malonates [Seite 298]
1.10.2.1.1.1.2 - 16.18.7.1.1.2 By Formation of One N--N Bond [Seite 298]
1.10.2.1.1.1.2.1 - 16.18.7.1.1.2.1 Method 1: Annulation of 3-(2-Nitrophenyl)quinolin-2-amine [Seite 298]
1.10.2.1.2 - 16.18.7.2 Pyrido[2,3-d]pyridazines [Seite 300]
1.10.2.1.2.1 - 16.18.7.2.1 Synthesis by Ring-Closure Reactions [Seite 300]
1.10.2.1.2.1.1 - 16.18.7.2.1.1 By Formation of Two N--C Bonds [Seite 300]
1.10.2.1.2.1.1.1 - 16.18.7.2.1.1.1 Method 1: Condensation of Hydrazine with a Dicarbonyl-Functionalized Piperidinone Scaffold [Seite 300]
1.10.2.1.2.1.1.2 - 16.18.7.2.1.1.2 Method 2: Condensation of Hydrazine with 2-Formylquinoline-3-carboxylate [Seite 301]
1.10.2.1.2.1.1.3 - 16.18.7.2.1.1.3 Method 3: Incorporating a (2-Formylpyridin-3-yl)copper Reagent in Pyrido[2,3-d]pyridazine Synthesis [Seite 302]
1.10.2.1.2.1.1.4 - 16.18.7.2.1.1.4 Method 4: Suzuki Cross Coupling of Chloro(methoxy)pyridazin-3(2H)-ones [Seite 304]
1.10.2.1.2.1.1.5 - 16.18.7.2.1.1.5 Method 5: Condensation of 5,6-Dicarbonyl-Functionalized Pyridinones with Hydrazine [Seite 305]
1.10.2.1.2.1.2 - 16.18.7.2.1.2 By Formation of One N--C and One C--C Bond [Seite 307]
1.10.2.1.2.1.2.1 - 16.18.7.2.1.2.1 Method 1: Condensation of Acetone with 5-Acetyl-4-amino-6-phenylpyridazin-3(2H)-one [Seite 307]
1.10.2.1.2.2 - 16.18.7.2.2 Synthesis by Ring Transformation [Seite 308]
1.10.2.1.2.2.1 - 16.18.7.2.2.1 By Ring Enlargement [Seite 308]
1.10.2.1.2.2.1.1 - 16.18.7.2.2.1.1 Method 1: Condensation of Hydrazine with Pyridine-2,3-dicarboxylic Anhydride and 3-Benzoylpicolinic Acid [Seite 308]
1.10.2.1.2.2.1.2 - 16.18.7.2.2.1.2 Method 2: Condensation of Hydrazine with Pyrrolo[3,4-c]pyridinone [Seite 311]
1.10.2.1.3 - 16.18.7.3 Pyrido[3,2-c]pyridazines [Seite 313]
1.10.2.1.3.1 - 16.18.7.3.1 Synthesis by Ring-Closure Reactions [Seite 313]
1.10.2.1.3.1.1 - 16.18.7.3.1.1 By Formation of One N--N Bond [Seite 313]
1.10.2.1.3.1.1.1 - 16.18.7.3.1.1.1 Method 1: Condensation and Reduction of 2-Amino-2'-nitrobiaryls [Seite 313]
1.10.2.1.4 - 16.18.7.4 Pyrido[3,4-c]pyridazines [Seite 313]
1.10.2.1.4.1 - 16.18.7.4.1 Synthesis by Ring-Closure Reactions [Seite 313]
1.10.2.1.4.1.1 - 16.18.7.4.1.1 By Formation of One N--N and One N--C Bond [Seite 313]
1.10.2.1.4.1.1.1 - 16.18.7.4.1.1.1 Method 1: Intramolecular Diazo Coupling of 4-Hetarylpyridin-3-amines [Seite 313]
1.10.2.1.5 - 16.18.7.5 Pyrido[3,4-d]pyridazines [Seite 315]
1.10.2.1.5.1 - 16.18.7.5.1 Synthesis by Ring Transformation [Seite 315]
1.10.2.1.5.1.1 - 16.18.7.5.1.1 By Ring Enlargement [Seite 315]
1.10.2.1.5.1.1.1 - 16.18.7.5.1.1.1 Method 1: Condensation of Hydrazine with 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-dione [Seite 315]
1.10.2.1.5.1.1.2 - 16.18.7.5.1.1.2 Method 2: Ring Expansion of Pyrazolopyridines [Seite 316]
1.10.2.1.5.1.1.3 - 16.18.7.5.1.1.3 Method 3: Insertion of Hydrazine into (Z)-3-Benzylidenefuro[3,4-c]pyridin-1(3H)-ones [Seite 317]
1.10.2.1.6 - 16.18.7.6 Pyrido[4,3-c]pyridazines [Seite 319]
1.10.2.1.6.1 - 16.18.7.6.1 Synthesis by Ring-Closure Reactions [Seite 319]
1.10.2.1.6.1.1 - 16.18.7.6.1.1 By Formation of One N--C and One C--C Bond [Seite 319]
1.10.2.1.6.1.1.1 - 16.18.7.6.1.1.1 Method 1: Fusion of an Aminouracil with a Chloropyridazinecarbonitrile or Pyridazines Having Vicinal Chloro and Carbonyl Groups [Seite 319]
1.10.3 - 16.19 Product Class 19: Pyridopyrimidines [Seite 322]
1.10.3.1 - 16.19.5 Pyridopyrimidines [Seite 322]
1.10.3.1.1 - 16.19.5.1 Pyrido[2,3-d]pyrimidines [Seite 323]
1.10.3.1.1.1 - 16.19.5.1.1 By Formation of Three N--C Bonds and One C--C Bond [Seite 323]
1.10.3.1.1.1.1 - 16.19.5.1.1.1 Method 1: Cyclization of Acrylates, Functionalized Nitriles, and Guanidines or Amidines [Seite 323]
1.10.3.1.1.2 - 16.19.5.1.2 By Formation of One N--C and Two C--C Bonds [Seite 324]
1.10.3.1.1.2.1 - 16.19.5.1.2.1 Method 1: Cyclization of 2-Heterosubstituted 6-Aminopyrimidin-4(3H)-ones, Aldehydes, and Active Methylene Compounds [Seite 324]
1.10.3.1.1.3 - 16.19.5.1.3 By Formation of Two N--C Bonds [Seite 328]
1.10.3.1.1.3.1 - 16.19.5.1.3.1 Method 1: Cyclization of 2-Nitrogen-Functionalized Nicotinamides [Seite 328]
1.10.3.1.1.4 - 16.19.5.1.4 By Formation of One N--C and One C--C Bond [Seite 332]
1.10.3.1.1.4.1 - 16.19.5.1.4.1 Method 1: Cyclization of Pyrimidin-4-amines with a,ß-Unsaturated Carbonyl Compounds and Related Species [Seite 332]
1.10.3.1.1.5 - 16.19.5.1.5 By Formation of One N--C Bond [Seite 336]
1.10.3.1.1.5.1 - 16.19.5.1.5.1 Method 1: Dehydrative Cyclization of 2-Acetamidonicotinamides [Seite 336]
1.10.3.1.1.5.2 - 16.19.5.1.5.2 Method 2: Cyclization of 5-(4-Aminopyrimidin-5-yl)-1H-imidazole-4-carbonitriles [Seite 337]
1.10.3.1.1.6 - 16.19.5.1.6 By Formation of One C--C Bond [Seite 338]
1.10.3.1.1.6.1 - 16.19.5.1.6.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 4-(2-Bromobenzylamino)pyrimidines [Seite 338]
1.10.3.1.2 - 16.19.5.2 Pyrido[3,2-d]pyrimidines [Seite 339]
1.10.3.1.2.1 - 16.19.5.2.1 By Formation of Three N--C Bonds [Seite 339]
1.10.3.1.2.1.1 - 16.19.5.2.1.1 Method 1: Cycloamination of 3-Isocyanatopyridine-2-carboxylates [Seite 339]
1.10.3.1.2.2 - 16.19.5.2.2 By Formation of One C--C Bond [Seite 341]
1.10.3.1.2.2.1 - 16.19.5.2.2.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 5-(2-Halobenzylamino)pyrimidines [Seite 341]
1.10.3.1.3 - 16.19.5.3 Pyrido[3,4-d]pyrimidines [Seite 342]
1.10.3.1.3.1 - 16.19.5.3.1 By Formation of Two N--C Bonds [Seite 342]
1.10.3.1.3.1.1 - 16.19.5.3.1.1 Method 1: Cyclization of 3-Nitrogen-Functionalized Pyridine-4-carboxylic Acids with Nitrogen-Containing Compounds [Seite 342]
1.10.3.1.3.2 - 16.19.5.3.2 By Formation of One N--C and One C--C Bond [Seite 342]
1.10.3.1.3.2.1 - 16.19.5.3.2.1 Method 1: Suzuki Coupling/Condensation of 5-Bromopyrimidine-4-carboxylates with (2-Aminophenyl)boronic Acids [Seite 342]
1.10.3.1.4 - 16.19.5.4 Pyrido[4,3-d]pyrimidines [Seite 343]
1.10.3.1.4.1 - 16.19.5.4.1 By Formation of Two N--C Bonds and One C--C Bond [Seite 343]
1.10.3.1.4.1.1 - 16.19.5.4.1.1 Method 1: Cyclization of 1-Benzylpiperidin-4-one, Nitriles, and Trifluoromethanesulfonic Anhydride [Seite 343]
1.10.3.1.4.2 - 16.19.5.4.2 By Formation of Two N--C Bonds [Seite 344]
1.10.3.1.4.2.1 - 16.19.5.4.2.1 Method 1: Cyclization of 4-(Arylethynyl)pyrimidine-5-carbaldehydes with tert-Butylamine [Seite 344]
1.10.3.1.4.2.2 - 16.19.5.4.2.2 Method 2: Cycloamination of N-(3-Acetylpyridin-4-yl)formimidates with Primary Amines [Seite 345]
1.10.4 - 16.21 Product Class 21: Pteridines and Related Structures [Seite 348]
1.10.4.1 - 16.21.4 Pteridines and Related Structures [Seite 348]
1.10.4.1.1 - 16.21.4.1 Synthesis by Ring-Closure Reactions [Seite 348]
1.10.4.1.1.1 - 16.21.4.1.1 By Annulation to the Pyrimidine Ring [Seite 348]
1.10.4.1.1.1.1 - 16.21.4.1.1.1 By Formation of Two N--C Bonds [Seite 348]
1.10.4.1.1.1.1.1 - 16.21.4.1.1.1.1 Fragments N--C--C--N and C--C [Seite 348]
1.10.4.1.1.1.1.1.1 - 16.21.4.1.1.1.1.1 Method 1: Synthesis from Pyrimidine-4,5-diamines and Diketones [Seite 348]
1.10.4.1.1.1.1.1.2 - 16.21.4.1.1.1.1.2 Method 2: Synthesis from Pyrimidine-4,5-diamines and 1,2,3-Tricarbonyl Compounds [Seite 349]
1.10.4.1.1.1.1.1.3 - 16.21.4.1.1.1.1.3 Method 3: Synthesis from Pyrimidine-4,5-diamines and Modified 1,2-Dicarbonyl Systems [Seite 349]
1.10.4.1.1.1.1.1.4 - 16.21.4.1.1.1.1.4 Method 4: Synthesis from 5-Nitrosopyrimidin-4-amines and a,ß-Unsaturated Acyl Halides [Seite 351]
1.10.4.1.1.1.1.2 - 16.21.4.1.1.1.2 Fragments N--C--C and N--C--C [Seite 352]
1.10.4.1.1.1.1.2.1 - 16.21.4.1.1.1.2.1 Method 1: From 4-Chloro-5-nitropyrimidines and a-Aminocarbonyl Compounds (Polonovski-Boon Reaction) [Seite 352]
1.10.4.1.1.1.1.2.2 - 16.21.4.1.1.1.2.2 Method 2: From 4-Iodopyrimidin-5-amine and 1H-Pyrrole-2-carbaldehyde [Seite 353]
1.10.4.1.1.2 - 16.21.4.1.2 By Annulation to the Pyrazine Ring [Seite 354]
1.10.4.1.1.2.1 - 16.21.4.1.2.1 By Formation of Two N--C Bonds [Seite 354]
1.10.4.1.1.2.1.1 - 16.21.4.1.2.1.1 Fragments N--C--C--C--N and C [Seite 354]
1.10.4.1.1.2.1.1.1 - 16.21.4.1.2.1.1.1 Method 1: From 2,3-Disubstituted Pyrazines and One-Carbon Units [Seite 354]
1.10.4.1.2 - 16.21.4.2 Synthesis by Ring Transformation [Seite 354]
1.10.4.1.2.1 - 16.21.4.2.1 Method 1: Synthesis by Ring Contraction of Pyrimidoazepine Derivatives [Seite 354]
1.10.4.1.3 - 16.21.4.3 Synthesis by Substituent Modification [Seite 355]
1.10.4.1.3.1 - 16.21.4.3.1 Substitution of Existing Substituents [Seite 355]
1.10.4.1.3.1.1 - 16.21.4.3.1.1 Substitution of Hydrogen [Seite 355]
1.10.4.1.3.1.1.1 - 16.21.4.3.1.1.1 Method 1: N-Alkylation of Pteridinones or Their Derivatives [Seite 355]
1.10.4.1.3.1.1.2 - 16.21.4.3.1.1.2 Method 2: Direct Introduction of Substituents by Nucleophilic Reactions [Seite 356]
1.10.4.1.3.1.2 - 16.21.4.3.1.2 Substitution of Heteroatoms [Seite 358]
1.10.4.1.3.1.2.1 - 16.21.4.3.1.2.1 Method 1: Substitution of Sulfur: Amination [Seite 358]
1.10.4.1.3.1.2.2 - 16.21.4.3.1.2.3 Method 2: Substitution of Halogens: Alkylation [Seite 361]
1.10.4.1.3.2 - 16.21.4.3.2 Modification of Substituents [Seite 362]
1.10.4.1.3.2.1 - 16.21.4.3.2.1 Method 1: Hydrolysis [Seite 362]
1.10.4.1.3.2.2 - 16.21.4.3.2.2 Method 2: Modification of Amine Substituents [Seite 362]
1.10.4.1.3.2.3 - 16.21.4.3.2.3 Method 3: Oxidation of Alkylsulfanyl Substituents [Seite 363]
1.10.4.1.3.3 - 16.21.4.3.3 Rearrangement of Substituents [Seite 363]
1.10.4.1.3.3.1 - 16.21.4.3.3.1 Method 1: Rearrangement of Allyl Groups [Seite 363]
1.10.5 - 16.22 Product Class 22: Other Diazinodiazines [Seite 366]
1.10.5.1 - 16.22.6 Other Diazinodiazines [Seite 366]
1.10.5.1.1 - 16.22.6.1 Pyridazinopyridazines [Seite 366]
1.10.5.1.1.1 - 16.22.6.1.1 Addition Reactions [Seite 366]
1.10.5.1.1.1.1 - 16.22.6.1.1.1 Method 1: Addition of Alkyl Groups [Seite 366]
1.10.5.1.2 - 16.22.6.2 Pyrimidopyridazines [Seite 367]
1.10.5.1.2.1 - 16.22.6.2.1 Synthesis by Ring-Closure Reactions [Seite 367]
1.10.5.1.2.1.1 - 16.22.6.2.1.1 By Annulation to an Arene [Seite 367]
1.10.5.1.2.1.1.1 - 16.22.6.2.1.1.1 By Formation of Two N--C Bonds [Seite 367]
1.10.5.1.2.1.1.1.1 - 16.22.6.2.1.1.1.1 Method 1: From Substituted Pyridazines [Seite 367]
1.10.5.1.2.1.1.1.2 - 16.22.6.2.1.1.1.2 Method 2: From Substituted Pyrimidines [Seite 368]
1.10.5.1.2.1.1.2 - 16.22.6.2.1.1.2 By Formation of One N--C and One C--C Bond [Seite 371]
1.10.5.1.2.1.1.2.1 - 16.22.6.2.1.1.2.1 Method 1: From 1,2-Dicarbonyl Compounds or a-Bromo Ketones [Seite 371]
1.10.5.1.2.1.1.3 - 16.22.6.2.1.1.3 By Formation of One N--C Bond [Seite 372]
1.10.5.1.2.1.1.3.1 - 16.22.6.2.1.1.3.1 Method 1: From 4,5-Disubstituted Pyrimidines [Seite 372]
1.10.5.1.2.2 - 16.22.6.2.2 Synthesis by Substituent Modification [Seite 373]
1.10.5.1.2.2.1 - 16.22.6.2.2.1 Substitution of Existing Substituents [Seite 373]
1.10.5.1.2.2.1.1 - 16.22.6.2.2.1.1 Method 1: By Substitution of Chlorine [Seite 373]
1.10.5.1.2.2.1.2 - 16.22.6.2.2.1.2 Method 2: By Substitution of Hydrogen [Seite 374]
1.10.5.1.2.3 - 16.22.6.2.3 Addition Reactions [Seite 374]
1.10.5.1.2.3.1 - 16.22.6.2.3.1 Method 1: Hydrogenation [Seite 374]
1.10.5.1.3 - 16.22.6.3 Pyrimidopyrimidines [Seite 375]
1.10.5.1.3.1 - 16.22.6.3.1 Synthesis by Ring-Closure Reactions [Seite 375]
1.10.5.1.3.1.1 - 16.22.6.3.1.1 By Annulation to an Arene [Seite 375]
1.10.5.1.3.1.1.1 - 16.22.6.3.1.1.1 By Formation of Two N--C Bonds [Seite 375]
1.10.5.1.3.1.1.1.1 - 16.22.6.3.1.1.1.1 Method 1: From 2,4,5-Trisubstituted Pyrimidines [Seite 375]
1.10.5.1.3.1.1.1.2 - 16.22.6.3.1.1.1.2 Method 2: From 4,5,6-Trisubstituted Pyrimidines [Seite 378]
1.10.5.1.3.1.1.1.3 - 16.22.6.3.1.1.1.3 Method 3: From 2,4,5,6-Tetrasubstituted Pyrimidines [Seite 380]
1.10.5.1.3.1.1.1.3.1 - 16.22.6.3.1.1.1.3.1 Variation 1: With a Guanidine or Thiourea [Seite 380]
1.10.5.1.3.1.1.1.3.2 - 16.22.6.3.1.1.1.3.2 Variation 2: With a Thiouronium Chloride and an Amine [Seite 381]
1.10.5.1.3.1.2 - 16.22.6.3.1.2 By Cycloaddition Reactions [Seite 382]
1.10.5.1.3.1.2.1 - 16.22.6.3.1.2.1 By Formation of Two N--C Bonds [Seite 382]
1.10.5.1.3.1.2.1.1 - 16.22.6.3.1.2.1.1 Method 1: By Diels-Alder Reaction [Seite 382]
1.10.5.1.3.1.2.2 - 16.22.6.3.1.2.2 By Formation of One N--C and One C--C Bond [Seite 382]
1.10.5.1.3.1.2.2.1 - 16.22.6.3.1.2.2.1 Method 1: By Diels-Alder Reaction [Seite 382]
1.10.5.1.3.1.2.2.1.1 - 16.22.6.3.1.2.2.1.1 Variation 1: From Methyl 6-Methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate [Seite 382]
1.10.5.1.3.1.2.2.1.2 - 16.22.6.3.1.2.2.1.2 Variation 2: From 6-Amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones [Seite 383]
1.10.5.1.3.2 - 16.22.6.3.2 Synthesis By Ring Transformation [Seite 384]
1.10.5.1.3.2.1 - 16.22.6.3.2.1 By Ring Enlargement [Seite 384]
1.10.5.1.3.2.1.1 - 16.22.6.3.2.1.1 Method 1: From Purine Skeletons [Seite 384]
1.10.5.1.3.3 - 16.22.6.3.3 Synthesis by Substituent Modification [Seite 386]
1.10.5.1.3.3.1 - 16.22.6.3.3.1 Modification of Existing Substituents [Seite 386]
1.10.5.1.3.3.1.1 - 16.22.6.3.3.1.1 Method 1: By Substitution of Chlorine [Seite 386]
1.10.5.1.3.3.1.2 - 16.22.6.3.3.1.2 Method 2: By Substitution of Sulfur-Containing Groups [Seite 387]
1.11 - Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles [Seite 390]
1.11.1 - 17.2 Product Class 2: Six-Membered Hetarenes with Three Heteroatoms [Seite 390]
1.11.1.1 - 17.2.1.9 1,2,3-Triazines and Phosphorus Analogues [Seite 390]
1.11.1.1.1 - 17.2.1.9.1 Monocyclic 1,2,3-Triazines [Seite 390]
1.11.1.1.1.1 - 17.2.1.9.1.1 Aromatization [Seite 390]
1.11.1.1.1.1.1 - 17.2.1.9.1.1.1 Method 1: Dehydrogenation and Oxidation of 2,5-Dihydro-1,2,3-triazines [Seite 390]
1.11.1.1.1.2 - 17.2.1.9.1.2 Synthesis by Substituent Modification [Seite 391]
1.11.1.1.1.2.1 - 17.2.1.9.1.2.1 Addition Reactions [Seite 391]
1.11.1.1.1.2.1.1 - 17.2.1.9.1.2.1.1 Method 1: Protonation of 1,2,3-Triazines by Tetrafluoroboric Acid [Seite 391]
1.11.1.1.1.2.1.2 - 17.2.1.9.1.2.1.2 Method 2: N-Acylation, N-Alkylation, and N-Arylation [Seite 392]
1.11.1.1.1.2.2 - 17.2.1.9.1.2.2 Modification of Substituents [Seite 394]
1.11.1.1.1.2.2.1 - 17.2.1.9.1.2.2.1 Method 1: Dipolar Cycloaddition with Dicyano(1,2,3-triazin-2-ium-2-yl)methanides [Seite 394]
1.11.1.1.1.2.2.2 - 17.2.1.9.1.2.2.2 Method 2: Dipolar Cycloaddition with 2-Ethyl-1,2,3-triazin-2-ium Salts [Seite 395]
1.11.1.1.1.3 - 17.2.1.9.1.3 Applications of Monocyclic 1,2,3-Triazines in Organic Synthesis [Seite 395]
1.11.1.1.1.3.1 - 17.2.1.9.1.3.1 Method 1: Synthesis of 2,5-Dihydro-1,2,3-triazines [Seite 395]
1.11.1.1.2 - 17.2.1.9.2 Annulated 1,2,3-Triazines [Seite 397]
1.11.1.1.2.1 - 17.2.1.9.2.1 Synthesis by Ring-Closure Reactions [Seite 397]
1.11.1.1.2.1.1 - 17.2.1.9.2.1.1 By Annulation to a Heterocycle or Carbocycle [Seite 397]
1.11.1.1.2.1.1.1 - 17.2.1.9.2.1.1.1 By Formation of Two N--N Bonds [Seite 397]
1.11.1.1.2.1.1.1.1 - 17.2.1.9.2.1.1.1.1 Method 1: Reaction of a 2-(4,5-Dihydro-1H-imidazol-2-yl)thieno[2,3-b]pyridin-3-amine with Nitrous Acid [Seite 397]
1.11.1.1.2.1.1.1.2 - 17.2.1.9.2.1.1.1.2 Method 2: Reaction of 2-Amino-1H-pyrrole-3,4-dicarboxamides with Nitrous Acid [Seite 398]
1.11.1.1.2.1.1.1.3 - 17.2.1.9.2.1.1.1.3 Method 3: Reaction of Amino-Substituted Pyridine- and Pyridazinecarboxamides with Nitrous Acid [Seite 399]
1.11.1.1.2.1.1.1.4 - 17.2.1.9.2.1.1.1.4 Method 4: Reaction of Amino-Substituted Hetarenecarbonitriles with Nitrous Acid and Hydrochloric Acid [Seite 400]
1.11.1.1.2.1.1.1.5 - 17.2.1.9.2.1.1.1.5 Method 5: Diazotization of (Aminohetaryl)azoles [Seite 404]
1.11.1.1.2.1.1.1.6 - 17.2.1.9.2.1.1.1.6 Method 6: Diazotization of 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarboxamide [Seite 405]
1.11.1.1.2.1.1.2 - 17.2.1.9.2.1.1.2 By Formation of One N--C Bond [Seite 405]
1.11.1.1.2.1.1.2.1 - 17.2.1.9.2.1.1.2.1 Method 1: Cyclization of 2-(Triaz-1-enyl)benzonitriles [Seite 405]
1.11.1.1.2.1.2 - 17.2.1.9.2.1.2 By Annulation to the 1,2,3-Triazine Ring [Seite 406]
1.11.1.1.2.1.2.1 - 17.2.1.9.2.1.2.1 By Formation of One C--C Bond [Seite 406]
1.11.1.1.2.1.2.1.1 - 17.2.1.9.2.1.2.1.1 Method 1: Condensation Reactions of Annulated 4-Hydrazino-1,2,3-triazines [Seite 406]
1.11.1.1.2.1.2.1.2 - 17.2.1.9.2.1.2.1.2 Method 2: Condensation Reactions of 4-Chloro-1,2,3-triazines [Seite 408]
1.11.1.1.2.2 - 17.2.1.9.2.2 Synthesis by Substituent Modification [Seite 410]
1.11.1.1.2.2.1 - 17.2.1.9.2.2.1 Substitution of Existing Substituents [Seite 410]
1.11.1.1.2.2.1.1 - 17.2.1.9.2.2.1.1 Of Hydrogen [Seite 410]
1.11.1.1.2.2.1.1.1 - 17.2.1.9.2.2.1.1.1 Method 1: N-Alkylation and N-Arylation [Seite 410]
1.11.1.1.2.2.1.2 - 17.2.1.9.2.2.1.2 Of Heteroatoms [Seite 410]
1.11.1.1.2.2.1.2.1 - 17.2.1.9.2.2.1.2.1 Method 1: Substitution of a 4-Chloro-Substitutent with Sulfur-Containing Groups [Seite 410]
1.11.1.1.2.2.1.2.2 - 17.2.1.9.2.2.1.2.2 Method 2: Substitution of a 4-Chloro-Substitutent with Amino or Hydrazino Groups [Seite 411]
1.11.1.1.2.2.1.2.3 - 17.2.1.9.2.2.1.2.3 Method 3: Substitution of a 4-Chloro-Substitutent with Sodium Azide [Seite 416]
1.11.1.1.2.2.1.2.4 - 17.2.1.9.2.2.1.2.4 Method 4: Substitution of a 4-Hydroxy Group by a Halogen [Seite 416]
1.11.1.1.2.2.1.2.5 - 17.2.1.9.2.2.1.2.5 Method 5: Substitution of Amino, 4-Hydrazino, and 4-(1H-1,2,4-Triazol-1-yl) Groups [Seite 417]
1.11.1.1.2.2.2 - 17.2.1.9.2.2.2 Modification of Substituents [Seite 419]
1.11.1.1.2.2.2.1 - 17.2.1.9.2.2.2.1 Method 1: Modification of Nitrogen Functionality [Seite 419]
1.11.1.2 - 17.2.2.3 1,2,4-Triazines [Seite 424]
1.11.1.2.1 - 17.2.2.3.1 Monocyclic 1,2,4-Triazines [Seite 424]
1.11.1.2.1.1 - 17.2.2.3.1.1 Synthesis by Ring-Closure Reactions [Seite 424]
1.11.1.2.1.1.1 - 17.2.2.3.1.1.1 By Formation of Three N--C Bonds [Seite 424]
1.11.1.2.1.1.1.1 - 17.2.2.3.1.1.1.1 Fragments N--N--C, C--C, and N [Seite 424]
1.11.1.2.1.1.1.1.1 - 17.2.2.3.1.1.1.1.1 Method 1: Microwave-Assisted Reaction of a-Diazo-ß-oxo Esters with Hydrazides [Seite 424]
1.11.1.2.1.1.1.1.2 - 17.2.2.3.1.1.1.1.2 Method 2: Microwave-Assisted Condensation of 1,2-Dicarbonyl Compounds, Hydrazides, and Ammonium Acetate [Seite 425]
1.11.1.2.1.1.1.1.3 - 17.2.2.3.1.1.1.1.3 Method 3: Zirconium-Catalyzed Condensation of Benzil with Hydrazides [Seite 426]
1.11.1.2.1.1.1.2 - 17.2.2.3.1.1.1.2 Fragments N--N, C--C, C--N [Seite 427]
1.11.1.2.1.1.1.2.1 - 17.2.2.3.1.1.1.2.1 Method 1: One-Pot Condensation of Amides, 1,2-Diketones, and Hydrazine [Seite 427]
1.11.1.2.1.1.2 - 17.2.2.3.1.1.2 By Formation of Two N--C Bonds [Seite 430]
1.11.1.2.1.1.2.1 - 17.2.2.3.1.1.2.1 Fragments N--N--C--N and C--C [Seite 430]
1.11.1.2.1.1.2.1.1 - 17.2.2.3.1.1.2.1.1 Method 1: Reaction of 1,2-Dicarbonyl Compounds with Amidrazones [Seite 430]
1.11.1.2.1.1.2.1.2 - 17.2.2.3.1.1.2.1.2 Method 2: Reaction of 1,2-Dicarbonyl Compounds with Semicarbazides, Thiosemicarbazides, or Selenosemicarbazides [Seite 432]
1.11.1.2.1.1.2.1.3 - 17.2.2.3.1.1.2.1.3 Method 3: Cyclization of Hydrazonoimidazolidines with a-Oxo Esters [Seite 433]
1.11.1.2.1.1.2.1.4 - 17.2.2.3.1.1.2.1.4 Method 4: Reaction of Aminoguanidines with a,a-Dihalo Ketones [Seite 434]
1.11.1.2.1.1.2.1.5 - 17.2.2.3.1.1.2.1.5 Method 5: Condensation of Thiosemicarbazide with Dialkyl Acetylenedicarboxylates [Seite 436]
1.11.1.2.1.1.2.1.6 - 17.2.2.3.1.1.2.1.6 Method 6: Reaction of a-Functionalized Acetonitriles with 1H-Tetrazol-5-amine [Seite 437]
1.11.1.2.1.1.2.2 - 17.2.2.3.1.1.2.2 Fragments N--C--C--N--N and C [Seite 438]
1.11.1.2.1.1.2.2.1 - 17.2.2.3.1.1.2.2.1 Method 1: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridine-2,6-dicarbaldehyde [Seite 438]
1.11.1.2.1.1.2.2.2 - 17.2.2.3.1.1.2.2.2 Method 2: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridinecarbaldehydes [Seite 439]
1.11.1.2.1.1.2.2.3 - 17.2.2.3.1.1.2.2.3 Method 3: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Quinoline-2-carbaldehydes [Seite 440]
1.11.1.2.1.1.3 - 17.2.2.3.1.1.3 By Formation of One N--C Bond [Seite 441]
1.11.1.2.1.1.3.1 - 17.2.2.3.1.1.3.1 Fragment C--C--N--N--C--N [Seite 441]
1.11.1.2.1.1.3.1.1 - 17.2.2.3.1.1.3.1.1 Method 1: Cyclization of Silyl-Substituted Thiosemicarbazone Acetic Acid Esters [Seite 441]
1.11.1.2.1.1.3.2 - 17.2.2.3.1.1.3.2 Fragment C--N--C--C--N--N [Seite 442]
1.11.1.2.1.1.3.2.1 - 17.2.2.3.1.1.3.2.1 Method 1: Cyclization of a,ß-Unsaturated a-Amido Hydrazides [Seite 442]
1.11.1.2.1.2 - 17.2.2.3.1.2 Annulation by the Formation of a Second Heterocyclic Ring [Seite 443]
1.11.1.2.1.2.1 - 17.2.2.3.1.2.1 Method 1: Cyclization of Hydrazides with 1,2,4-Triazin-3(2H)-ones [Seite 443]
1.11.1.2.1.2.2 - 17.2.2.3.1.2.2 Method 2: Cyclization of 6-Benzyl-5-hydrazino-1,2,4-triazin-3(2H)-one with Amidinium Salts [Seite 444]
1.11.1.2.1.2.3 - 17.2.2.3.1.2.3 Method 3: Sonagashira Coupling-Cyclization of 6-Chloro-1,2,4-triazine-3,5-diamines [Seite 445]
1.11.1.2.1.2.4 - 17.2.2.3.1.2.4 Method 4: Cyclization of 6-Acetamido-1,2,4-triazine-5-carboxylates [Seite 446]
1.11.1.2.1.2.5 - 17.2.2.3.1.2.5 Method 5: Cyclization of 3-Amino-1,2,4-triazin-5(4H)-ones with Glyoxal [Seite 447]
1.11.1.2.1.2.6 - 17.2.2.3.1.2.6 Method 6: Cyclization of 5-Azido-2,3-dimethyl-2H-pyrazolo[4,3-e][1,2,4]triazine [Seite 448]
1.11.1.2.1.2.7 - 17.2.2.3.1.2.7 Method 7: Cyclization of 5-[Hydrazono(3,4,5-trimethoxyphenyl)methyl]-1,2,4-triazin-6(1H)-ones [Seite 449]
1.11.1.2.1.3 - 17.2.2.3.1.3 Aromatization [Seite 450]
1.11.1.2.1.3.1 - 17.2.2.3.1.3.1 Method 1: Dehydration of Dihydrotriazines [Seite 450]
1.11.1.2.1.3.2 - 17.2.2.3.1.3.2 Method 2: N-Deacylation and Oxidation of Tetrahydro-1,2,4-triazine [Seite 450]
1.11.1.2.1.4 - 17.2.2.3.1.4 Synthesis by Substituent Modification [Seite 451]
1.11.1.2.1.4.1 - 17.2.2.3.1.4.1 Substitution of Existing Substituents [Seite 451]
1.11.1.2.1.4.1.1 - 17.2.2.3.1.4.1.1 Of Hydrogen [Seite 451]
1.11.1.2.1.4.1.1.1 - 17.2.2.3.1.4.1.1.1 Method 1: Reaction of 1,2,4-Triazine 4-Oxides with Terminal Alkynes [Seite 451]
1.11.1.2.1.4.1.2 - 17.2.2.3.1.4.1.2 Of Carbon Functionalities [Seite 452]
1.11.1.2.1.4.1.2.1 - 17.2.2.3.1.4.1.2.1 Method 1: Reaction of 1,2,4-Triazine-5-carbonitriles with Nucleophiles [Seite 452]
1.11.1.2.1.4.1.3 - 17.2.2.3.1.4.1.3 Of Heteroatoms [Seite 453]
1.11.1.2.1.4.1.3.1 - 17.2.2.3.1.4.1.3.1 Method 1: Reaction of Chloro-Substituted 1,2,4-Triazines with Amines [Seite 453]
1.11.1.2.1.4.1.3.2 - 17.2.2.3.1.4.1.3.2 Method 2: Reaction of Methylsulfonyl-Substituted 1,2,4-Triazines with Alkynyllithium Reagents [Seite 454]
1.11.1.2.1.4.1.3.3 - 17.2.2.3.1.4.1.3.3 Method 3: Reaction of Methylsulfanyl-Substituted 1,2,4-Triazines with Amines [Seite 455]
1.11.1.2.1.4.1.3.4 - 17.2.2.3.1.4.1.3.4 Method 4: Deamination with Preyssler's Anion [Seite 457]
1.11.1.2.1.4.2 - 17.2.2.3.1.4.2 Addition Reactions [Seite 458]
1.11.1.2.1.4.2.1 - 17.2.2.3.1.4.2.1 Method 1: Nucleophilic Addition of Cyanide to 1,2,4-Triazine 4-Oxides [Seite 458]
1.11.1.2.1.4.2.2 - 17.2.2.3.1.4.2.2 Method 2: Nucleophilic Addition of Indoles to 1,2,4-Triazine 4-Oxides [Seite 459]
1.11.1.2.1.4.2.3 - 17.2.2.3.1.4.2.3 Method 3: Nucleophilic Addition of Carboranes to 1,2,4-Triazine 4-Oxides [Seite 460]
1.11.1.2.1.4.3 - 17.2.2.3.1.4.3 Modification of Substituents [Seite 461]
1.11.1.2.1.4.3.1 - 17.2.2.3.1.4.3.1 Method 1: Methylation of 3-Thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-ones [Seite 461]
1.11.1.2.1.4.3.2 - 17.2.2.3.1.4.3.2 Method 2: N-Acylation of Ethyl 6-Amino-1,2,4-triazine-5-carboxylate [Seite 461]
1.11.1.2.1.4.3.3 - 17.2.2.3.1.4.3.3 Method 3: Displacement of an a-Hydroxy Group with a Halide [Seite 462]
1.11.1.2.1.4.3.4 - 17.2.2.3.1.4.3.4 Method 4: a-Halogen Exchange [Seite 462]
1.11.1.2.1.4.3.5 - 17.2.2.3.1.4.3.5 Method 5: Displacement of an a-Fluoride with Amines [Seite 463]
1.11.1.2.1.4.3.6 - 17.2.2.3.1.4.3.6 Method 6: Displacement of an a-Chloride with Thiols [Seite 463]
1.11.1.2.1.4.3.7 - 17.2.2.3.1.4.3.7 Method 7: Displacement of an a-Chloride with Amines [Seite 464]
1.11.1.2.1.4.3.8 - 17.2.2.3.1.4.3.8 Method 8: Displacement of an a-Chloride by Wittig Reaction [Seite 465]
1.11.1.2.1.4.3.9 - 17.2.2.3.1.4.3.9 Method 9: Ring Cleavage of Tetrazolo[1,5-b][1,2,4]triazin-7-amines [Seite 467]
1.11.1.2.1.4.3.10 - 17.2.2.3.1.4.3.10 Method 10: Palladium-Catalyzed Arylation of 1,2,4-Triazin-3-amine [Seite 468]
1.11.1.2.2 - 17.2.2.3.2 1,2,4-Benzotriazines and Related Compounds [Seite 469]
1.11.1.2.2.1 - 17.2.2.3.2.1 Synthesis by Ring-Closure Reactions [Seite 469]
1.11.1.2.2.1.1 - 17.2.2.3.2.1.1 By Formation of One N--N and One N--C Bond [Seite 469]
1.11.1.2.2.1.1.1 - 17.2.2.3.2.1.1.1 Fragments N--C--C--N and N--C [Seite 469]
1.11.1.2.2.1.1.1.1 - 17.2.2.3.2.1.1.1.1 Method 1: Reaction of 2-Nitroanilines with Cyanamide [Seite 469]
1.11.1.2.2.1.1.2 - 17.2.2.3.2.1.1.2 Fragments N--C--N and N--C--C [Seite 470]
1.11.1.2.2.1.1.2.1 - 17.2.2.3.2.1.1.2.1 Method 1: Reaction of 1-Halo-2-nitrobenzenes with Guanidine Hydrochloride [Seite 470]
1.11.1.2.2.2 - 17.2.2.3.2.2 Synthesis by Ring Transformation [Seite 470]
1.11.1.2.2.2.1 - 17.2.2.3.2.2.1 Method 1: Isomerization of Angular Triazinium Salts [Seite 470]
1.11.1.2.2.3 - 17.2.2.3.2.3 Synthesis by Substituent Modification [Seite 471]
1.11.1.2.2.3.1 - 17.2.2.3.2.3.1 Addition Reactions [Seite 471]
1.11.1.2.2.3.1.1 - 17.2.2.3.2.3.1.1 Method 1: Oxidation of 1,2,4-Benzotriazin-3-amine 1-Oxides [Seite 471]
1.11.1.3 - 17.2.3.6 1,3,5-Triazines and Phosphorus Analogues [Seite 474]
1.11.1.3.1 - 17.2.3.6.1 1,3,5-Triazines [Seite 474]
1.11.1.3.1.1 - 17.2.3.6.1.1 Synthesis by Ring-Closure Reactions [Seite 474]
1.11.1.3.1.1.1 - 17.2.3.6.1.1.1 By Formation of Three N--C Bonds [Seite 474]
1.11.1.3.1.1.1.1 - 17.2.3.6.1.1.1.1 Fragments N--C, N--C, and N--C [Seite 474]
1.11.1.3.1.1.1.1.1 - 17.2.3.6.1.1.1.1.1 Method 1: Trimerization of Dialkylcyanamides or Nitriles [Seite 474]
1.11.1.3.1.1.1.1.2 - 17.2.3.6.1.1.1.1.2 Method 2: Trimerization of Imidates [Seite 475]
1.11.1.3.1.1.1.1.3 - 17.2.3.6.1.1.1.1.3 Method 3: Reaction of Carbodiimides with Nitrilium Salts [Seite 476]
1.11.1.3.1.1.2 - 17.2.3.6.1.1.2 By Formation of Two N--C Bonds [Seite 477]
1.11.1.3.1.1.2.1 - 17.2.3.6.1.1.2.1 Fragments N--C--N--C and N--C [Seite 477]
1.11.1.3.1.1.2.1.1 - 17.2.3.6.1.1.2.1.1 Method 1: Reaction of Guanidine-1-carbonitrile with Nitriles [Seite 477]
1.11.1.3.1.1.2.2 - 17.2.3.6.1.1.2.2 Fragments N--C--N and C--N--C [Seite 479]
1.11.1.3.1.1.2.2.1 - 17.2.3.6.1.1.2.2.1 Method 1: Reaction of Isothiocyanates with Amidines or Guanidines [Seite 479]
1.11.1.3.1.1.2.2.2 - 17.2.3.6.1.1.2.2.2 Method 2: Reaction of Isothiocyanates with Sodium Hydrogen Cyanamide [Seite 480]
1.11.1.3.1.1.2.2.3 - 17.2.3.6.1.1.2.2.3 Method 3: Reaction of N-Functionalized Imidoyl Chlorides with Amidine Derivatives [Seite 481]
1.11.1.3.1.1.2.2.4 - 17.2.3.6.1.1.2.2.4 Method 4: Reaction of N-(2,2-Dichlorovinyl)benzamides with Amidines [Seite 484]
1.11.1.3.1.1.2.2.5 - 17.2.3.6.1.1.2.2.5 Method 5: Reaction of 4-Oxo-1,3-benzoxazinium Perchlorates with Guanidines [Seite 485]
1.11.1.3.1.1.2.2.6 - 17.2.3.6.1.1.2.2.6 Method 6: Reaction of Amidinium Salts with Pyrazolamines or 1,2,4-Triazolamines [Seite 486]
1.11.1.3.1.1.2.3 - 17.2.3.6.1.1.2.3 Fragments N--C--N--C--N and C [Seite 487]
1.11.1.3.1.1.2.3.1 - 17.2.3.6.1.1.2.3.1 Method 1: Reaction of Biguanides with Carboxylic Acid Derivatives [Seite 487]
1.11.1.3.1.1.2.3.2 - 17.2.3.6.1.1.2.3.2 Method 2: Reaction of Zinc(II) Bis[bis(methoxyimido)amide] with Carboxylic Acid Derivatives [Seite 490]
1.11.1.3.1.2 - 17.2.3.6.1.2 Synthesis by Substituent Modification [Seite 491]
1.11.1.3.1.2.1 - 17.2.3.6.1.2.1 Substitution of Existing Substituents [Seite 491]
1.11.1.3.1.2.1.1 - 17.2.3.6.1.2.1.1 Of Hydrogen [Seite 491]
1.11.1.3.1.2.1.1.1 - 17.2.3.6.1.2.1.1.1 Method 1: Amination [Seite 491]
1.11.1.3.1.2.1.2 - 17.2.3.6.1.2.1.2 Of Carbon Functionalities [Seite 492]
1.11.1.3.1.2.1.2.1 - 17.2.3.6.1.2.1.2.1 Method 1: Substitution of Trinitromethyl Groups [Seite 492]
1.11.1.3.1.2.1.2.2 - 17.2.3.6.1.2.1.2.2 Method 2: Substitution of Cyano Groups [Seite 493]
1.11.1.3.1.2.1.2.3 - 17.2.3.6.1.2.1.2.3 Method 3: Substitution of Bis(tert-Butoxycarbonyl)(nitro)methyl Groups [Seite 495]
1.11.1.3.1.2.1.3 - 17.2.3.6.1.2.1.3 Of Halogens by Carbon Functionalities [Seite 495]
1.11.1.3.1.2.1.3.1 - 17.2.3.6.1.2.1.3.1 Method 1: Reaction with Grignard Reagents [Seite 495]
1.11.1.3.1.2.1.3.2 - 17.2.3.6.1.2.1.3.2 Method 2: Reaction with Boronic Acids (Suzuki Coupling) [Seite 498]
1.11.1.3.1.2.1.3.3 - 17.2.3.6.1.2.1.3.3 Method 3: Reaction with Organotin Reagents [Seite 499]
1.11.1.3.1.2.1.3.4 - 17.2.3.6.1.2.1.3.4 Method 4: Reaction with Arynes [Seite 500]
1.11.1.3.1.2.1.3.5 - 17.2.3.6.1.2.1.3.5 Method 5: Reaction with Arylzinc Chlorides (Negishi Coupling) [Seite 502]
1.11.1.3.1.2.1.3.6 - 17.2.3.6.1.2.1.3.6 Method 6: Nickel-Catalyzed Ullmann Homocoupling Reactions [Seite 502]
1.11.1.3.1.2.1.3.7 - 17.2.3.6.1.2.1.3.7 Method 7: Cobalt-Catalyzed Arylation or Benzylation Reactions [Seite 503]
1.11.1.3.1.2.1.3.8 - 17.2.3.6.1.2.1.3.8 Method 8: Sonagashira Reactions [Seite 505]
1.11.1.3.1.2.1.3.9 - 17.2.3.6.1.2.1.3.9 Method 9: Cross-Coupling Reactions with Organoaluminum Compounds [Seite 505]
1.11.1.3.1.2.1.4 - 17.2.3.6.1.2.1.4 Of Halogens by Oxygen Functionalities [Seite 506]
1.11.1.3.1.2.1.4.1 - 17.2.3.6.1.2.1.4.1 Method 1: Exchange of Chlorine in 2,4,6-Trichloro-1,3,5-triazine [Seite 506]
1.11.1.3.1.2.1.4.2 - 17.2.3.6.1.2.1.4.2 Method 2: Exchange of Chlorine in Chloro-Substituted 1,3,5-Triazines [Seite 509]
1.11.1.3.1.2.1.5 - 17.2.3.6.1.2.1.5 Of Halogens by Sulfur Functionalities [Seite 509]
1.11.1.3.1.2.1.5.1 - 17.2.3.6.1.2.1.5.1 Method 1: Exchange of Chlorine for an Alkylsulfanyl Group [Seite 509]
1.11.1.3.1.2.1.5.2 - 17.2.3.6.1.2.1.5.2 Method 2: Exchange of Chlorine for an Arylsulfanyl Group [Seite 509]
1.11.1.3.1.2.1.6 - 17.2.3.6.1.2.1.6 Substitution of Halogens by Selenium or Tellurium Functionalities [Seite 510]
1.11.1.3.1.2.1.6.1 - 17.2.3.6.1.2.1.6.1 Method 1: Exchange of Chlorine with Chalcogenide Nucleophiles [Seite 510]
1.11.1.3.1.2.1.7 - 17.2.3.6.1.2.1.7 Of Halogens by Nitrogen Functionalities [Seite 510]
1.11.1.3.1.2.1.7.1 - 17.2.3.6.1.2.1.7.1 Method 1: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Monosubstitution) [Seite 510]
1.11.1.3.1.2.1.7.2 - 17.2.3.6.1.2.1.7.2 Method 2: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Trisubstitution) [Seite 511]
1.11.1.3.1.2.1.7.3 - 17.2.3.6.1.2.1.7.3 Method 3: Reaction of 2,4-Dichloro-1,3,5-triazines with Amines [Seite 513]
1.11.1.3.1.2.1.7.4 - 17.2.3.6.1.2.1.7.4 Method 4: Reaction of 2-Chloro-1,3,5-triazines with Amines [Seite 514]
1.11.1.3.1.2.1.7.5 - 17.2.3.6.1.2.1.7.5 Method 5: Reaction of 2-Chloro-1,3,5-triazines with Ureas or Thioureas [Seite 515]
1.11.1.3.1.2.1.8 - 17.2.3.6.1.2.1.8 Generation of 1,3,5-Triazine Libraries by Substitution of Chlorine by Oxygen or Nitrogen Functionalities [Seite 517]
1.11.1.3.1.2.1.8.1 - 17.2.3.6.1.2.1.8.1 Method 1: Parallel Synthesis on Solid Supports [Seite 517]
1.11.1.3.1.2.1.9 - 17.2.3.6.1.2.1.9 Of Sulfur Functionalities [Seite 518]
1.11.1.3.1.2.1.9.1 - 17.2.3.6.1.2.1.9.1 Method 1: Substitution of Sulfonyl Groups [Seite 518]
1.11.1.3.1.2.1.9.2 - 17.2.3.6.1.2.1.9.2 Method 2: Cross Coupling of Sulfanyl-Substituted 1,3,5-Triazines with Functionalized Organozinc Reagents [Seite 518]
1.11.1.3.1.2.1.9.3 - 17.2.3.6.1.2.1.9.3 Method 3: Reductive Rearrangement of 2-(Triazinylsulfanyl)benzamides [Seite 519]
1.11.1.3.1.2.2 - 17.2.3.6.1.2.2 Rearrangement of Substituents [Seite 520]
1.11.1.3.1.2.2.1 - 17.2.3.6.1.2.2.1 Method 1: Smiles Rearrangement [Seite 520]
1.11.1.3.1.2.2.2 - 17.2.3.6.1.2.2.2 Method 2: Thermal Isomerization of 2,4,6-Trialkoxy-1,3,5-triazines [Seite 521]
1.11.1.3.1.2.3 - 17.2.3.6.1.2.3 Modification of Substituents [Seite 521]
1.11.1.3.1.2.3.1 - 17.2.3.6.1.2.3.1 Method 1: S-Oxidation [Seite 521]
1.11.1.3.1.2.3.2 - 17.2.3.6.1.2.3.2 Method 2: Modification at the a-Carbon [Seite 521]
1.11.1.3.1.2.3.2.1 - 17.2.3.6.1.2.3.2.1 Variation 1: Conversion of Trinitromethyl Groups into Nitriles [Seite 521]
1.11.1.3.1.2.3.2.2 - 17.2.3.6.1.2.3.2.2 Variation 2: Conversion of Trinitromethyl Groups into Nitrile Oxides and Subsequent Heterocycle Formation [Seite 522]
1.11.1.3.1.2.3.2.3 - 17.2.3.6.1.2.3.2.3 Variation 3: Conversion of Dinitromethyl Groups into Oxadiazole 2-Oxides [Seite 525]
1.11.1.3.1.2.3.2.4 - 17.2.3.6.1.2.3.2.4 Variation 4: Conversion of Alkynyltriazines into Triazoles Using Click Chemistry [Seite 525]
1.11.1.3.1.2.3.3 - 17.2.3.6.1.2.3.3 Method 3: Reaction of Nitrogen Substituents [Seite 526]
1.11.1.3.1.2.3.3.1 - 17.2.3.6.1.2.3.3.1 Variation 1: N-Heterocycle Formation [Seite 526]
1.11.1.3.1.2.3.3.2 - 17.2.3.6.1.2.3.3.2 Variation 2: N-Alkylation [Seite 527]
1.11.1.3.1.2.3.3.3 - 17.2.3.6.1.2.3.3.3 Variation 3: Debenzylation [Seite 528]
1.11.1.3.1.2.3.3.4 - 17.2.3.6.1.2.3.3.4 Variation 4: Thiourea and Thiazole Formation [Seite 528]
1.12 - Volume 34: Fluorine [Seite 532]
1.12.1 - 34.1 Product Class 1: Fluoroalkanes [Seite 532]
1.12.1.1 - 34.1.1.7 Synthesis by Substitution of Hydrogen [Seite 532]
1.12.1.1.1 - 34.1.1.7.1 Method 1: Direct Fluorination with Elemental Fluorine [Seite 533]
1.12.1.1.2 - 34.1.1.7.2 Method 2: Reaction with Selectfluor [Seite 535]
1.13 - Author Index [Seite 540]
1.14 - Abbreviations [Seite 560]
1.15 - List of All Volumes [Seite 566]
Abstracts
M. Nahm Garrett and J. S. Johnson
This chapter is an update to the previous Science of Synthesis contribution on the synthesis and applications of acylsilanes. It covers syntheses and applications reported since 2000. Synthetic methods described herein are divided according to five target product subtypes: simple acylsilanes, bis(acylsilanes), α-oxo acylsilanes, α,β-unsaturated acylsilanes, and α-amino acylsilanes. The largest of those sections, simple acylsilanes, is further divided according to the main strategies used for their synthesis: hydrolysis of acetals, oxidation of organocuprates, and acyl substitution of carboxylic amides. The major applications of the various types of acylsilanes are also described.
Keywords: acylsilanes · dithianes · hydrolysis · cuprates · oxidation · amides · substitution · bis(acylsilanes) · nucleophilic addition · Brook rearrangement · acyl anion equivalent
J.-C. Kizirian
This section deals with processes that produce a chiral lithiated species by an asymmetric lithiation. The lithium atom can be introduced on an sp3 carbon atom (centered chirality) or an sp2 carbon atom (axial or planar chirality). The C—Li bond can be formed by one of three main methods: deprotonation (of a C—H bond), transmetalation (usually from tin), or reductive lithiation (from halo, cyano, arylsulfanyl, arylselanyl, or aryltellanyl derivatives). The configurational stability of the lithiated species determines the stereochemical pathway of the reaction, but is not a necessary condition to have a selective process. The product is formed by one of the following mechanisms: enantioselective deprotonation, dynamic thermodynamic resolution, or dynamic kinetic resolution. Furthermore, the electrophilic substitution step can take place with inversion or retention of configuration.
Keywords: lithium compounds · dynamic thermodynamic resolution · dynamic kinetic resolution · enantioselective deprotonation · diastereoselective deprotonation · Wittig rearrangement · tin–lithium exchange · reductive lithiation · carbolithiation
R. A. Aitken
This chapter covers methods for the synthesis of 1,2,3-trithioles, 1,2,3-benzotrithioles, and a range of eleven different analogues with one or more sulfur atoms replaced by selenium or tellurium. None of these ring systems has previously been included in Science of Synthesis.
Keywords: sulfur heterocycles · selenium compounds · tellurium compounds · trithioles · dithiatelluroles · benzotrithioles · benzodithiaselenoles · benzothiadiselenoles · benzotriselenoles · benzodithiatelluroles · benzothiaselenatelluroles · benzodiselenatelluroles
C. A. Gondo and J. W. Bode
A 1,2,4-triazolium salt is composed of a cationic five-membered ring associated with a negatively charged counterion. These compounds are stable precursors for N-heterocyclic carbenes (NHCs), which are used either as ligands for metal-based catalysts or as organic catalysts. In this survey, the major routes for the synthesis of 1,2,4-triazolium salts are reviewed.
Keywords: heterocycle · N-heterocyclic carbene · ligand · organocatalyst · ring-closure reactions · ring transformation · substituent modification · 1,2,4-triazolium salts
R. J. Pearson
This chapter describes the preparation of 1,2,3,5-dithiadiazolium salts and their corresponding radicals and dimers. These crystalline and brightly colored compounds are most commonly synthesized, in varying yields, by ring-closure reactions involving amidines, amidoximes, nitriles, azines, and alkenes. The synthetic routes to the less stable 1,3,2,4-isomers are also discussed, together with the conditions for their complete isomerism to the dominant 1,2,3,5-isomers.
Keywords: dithiadiazole · radical · dimerization · isomerism · ring closure · ring transformation
S. A. Kosarev
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of monocyclic 1,4-dithiins and their annulated analogues. It focuses on the literature published in the period 2003–2011.
Keywords: alkynes · chromium catalysts · dihalides · diimides · diketones · 1,4-dithiins · diols · dithianes · dithiols · sulfides · sulfinates · sulfur compounds · sulfur heterocycles · thiadiazoles · thiolates · thiophenes
S. Lou and J. Zhang
This update presents the state of the art in the synthesis of pyridopyridazine heterocyclic systems from 2001 to 2011. The synthetic methodologies are grouped based on the isomeric pyridopyridazine structures and typical experimental procedures are included. Some pyridopyridazine derivatives have been used as drug candidates and brief discussions are given of their pharmaceutical activities in the treatment of cancers, allergies, pain states, inflammatory diseases, and erectile dysfunction.
Keywords: pyridopyridazine · heterocycles · pyridine · pyridazine · pyridopyridazinone · hydrazine · dicarbonyl
Y.-J. Wu
This chapter in an update to the previous Science of Synthesis contribution describing the the synthesis of all four isomeric pyridopyrimidines and their saturated derivatives. It covers syntheses described from 2002 until 2011.
Keywords: pyrido[2,3-d]pyrimidine · pyrido[3,2-d]pyrimidine · pyrido[3,4-d]pyrimidine · pyrido[4,3-d]pyrimidine
T. Ishikawa
This review is an update to the earlier Science of Synthesis contribution describing the synthesis of pteridines and pteridinones. It focuses on syntheses described since 2003.
Keywords: pteridine · pteridinone · ring closure · ring transformation · substituent modification
T. Ishikawa
This review is an update to the earlier Science of Synthesis contribution describing the synthesis of diazinodiazines other than pteridines. It focuses on syntheses described since 2003.
Keywords: diazinodiazine · pyridazinopyridazine · pyrimidopyridazine · pyrimidopyrimidine · addition · ring closure · substituent modification
P. Aggarwal and M. W. P. Bebbington
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,3-triazines. The reported diazotization method is of particular note, as the substrate scope has broadened in recent years.
Keywords: alkylation · arylation · condensation reactions · cyclization · diazotization · dipolar cycloaddition · nucleophilic aromatic substitution · nucleophilic addition · ring-closure reactions · triazines
P. Aggarwal and M. W. P. Bebbington
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,4-triazines. Of particular note are the microwave-assisted reactions that have emerged in recent years in addition to more conventional methods.
Keywords: condensation reactions · cyclization · dehydration · diazo compounds · microwave-assisted reactions · multicomponent reactions · nucleophilic addition · ring closure · ring formation · 1,2,4-triazines
P. Aggarwal and M. W. P. Bebbington
This manuscript is an update to the earlier Science of Synthesis edition describing methods for the synthesis of 1,3,5-triazines. A number of transition-metal-catalyzed techniques have emerged in recent years to complement traditional methods.
Keywords: condensation reactions · cross-coupling reactions · multicomponent reactions · nucleophilic aromatic substitution · ring closure · ring formation · transition metals · 1,3,5-triazines
G. Sandford
Recent methods for the selective fluorination of sp3-hybridized...