Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book provides an overview of the use of toroidal moments. This includes methods of excitation, numerical analysis, and experimental measurements of associating structures. Special emphasis is placed on understanding the fundamental physics, characteristics, and real-world applications of toroidal multipoles.
This book also covers a variety of both planar and 3D meta-atom and metamolecule schemes capable to sustain toroidal moments across a wide range of spectrum. It discusses the implementation of innovative approaches, for exploring the spectral features and excitation methodologies, predicting the properties of the correlating metasystems in their excited states.
An applicable text for undergraduate, graduate, and postgraduate students, this book is also of interest to researchers, theorizers, and experimentalists working in optical physics, photonics, and nanotechnology.
Arash Ahmadivand received his Ph.D. degree in electrical engineering in 2018 from Florida International University, Miami, Florida, United States. He also received his M.Sc. and B.Sc. degrees in electrical engineering in 2011 and 2007, respectively, from Islamic Azad University of Iran. In 2018, he joined as a postdoctoral fellow to the Department of Physics and Astronomy at Rice University, Houston, Texas, United States. He also continued his career as a postdoctoral research associate in the Department of Electrical and Computer Engineering at Rice University. Since 2014, he received several scholarships and fellowships from SPIE, Florida International University, and Rice University. His research interests include plasmonics, nanophotonics, metamaterials, optoelectronics, nonlinear meta-optics, and metasensors. He is presently a Guest Editor of MDPI Sensors journal.
Burak Gerislioglu received his first M.S. in Electrical Engineering from Florida International University (2018) and his second M.S. in Applied Physics from Rice University (2020). Currently, he is a Robert A. Welch fellowship Ph.D. candidate in Applied Physics in Smalley-Curl Institute at Rice University, where he is contributing to theoretical and experimental light-matter interactions to develop next-generation technologies, and serving as a Guest Editor to MDPI Biosensors. His research interests include plasmonics, metamaterials, photonics, phase-change materials, nonlinear photonics, optical biosensors, and reconfigurable antennas. He holds 2 U.S. patents.
Zeinab Ramezani received her M.Sc. and Ph.D. (Hons.) degrees in Electronic Engineering from Semnan University in 2013 and 2017, respectively. Her current research is on developing new materials and electronic tools which have applications in health at Northeastern University. She has been working on the modeling and characterization of novel structures, micro- and nanoelectronics, nanotechnology and nanophotonic, power semiconductor devices, wide bandgap semiconductors, optoelectronic devices, plasmonics, bioelectronics and biosensors.
1. Introduction and Overview
1.1. The History of Light and Matter
1.2. The History of Light-Matter Interactions
1.3. The Discovery and Properties of Artificial Media
References
2. Classical Electromagnetics
2.1. Fundamental Principles of Static Electromagnetics
2.1.1. Coulomb's and Gauss's Laws
2.1.2. Biot-Savart and Ampère's Laws
2.1.3. The Lorentz Force
2.2. Equations for Static Fields
2.3. Fundamental Principles of Dynamic Electromagnetics
2.3.1. Maxwell's Equations in Vacuum
2.3.2. Maxwell's Equations in Macroscopic Media
2.4. The Electric Dipole
2.4.1. Multipole Expansion and Electric Multipoles
2.4.2. The Dipole and Quadrupole Potentials
2.5. Magnetic Multipoles
2.6. Unconventional Multipoles
2.6.2. Dynamic Toroidal Multipoles
2.6.3. Dynamic Anapoles
3. Expansion of Electromagnetic Multipoles
3.1. Debye Potentials
3.2. Electromagnetic Radiations of Toroidal Solenoids
3.2.1. The Multipole Decomposition
3.2.2. The Dynamic Toroidal Multipoles
3.2.3. The Long Wavelength Regime
3.2.4. The Magnetostatic Regime
3.2.5. The Point Source Regime
4. Physical Mechanism Behind the Toroidal Multipoles
4.1. Defining the Problem
4.1.1. Potentials and Fields of a General Source
4.1.2. Fields at Far Distances
4.2. Radiation Intensity
4.3. Angular Momentum Loss.
4.4. Recoil Force
4.5. The Connection between Cartesian and Spherical Components of the First Multipoles
5. Toroidal Excitations in Metamaterials
5.1. Toroidal Excitations in 3D Artificial Media
5.2. Toroidal Multipoles in Planar Artificial Media
6. Toroidal Metadevices
6.1. Photodetection: Enhancing the Responsivity Performance
6.2. Nonlinear Lasing: Deep Ultraviolet Source
6.3. Immunosensors: Beyond Conventional Detection Limits
6.4. Plexciton Dynamics: Intensifying Ultrastrong Coupling
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.