Mathematical Control Theory: An Introduction presents, in a mathematically precise manner, a unified introduction to deterministic control theory. In addition to classical concepts and ideas, the author covers the stabilization of nonlinear systems using topological methods, realization theory for nonlinear systems, impulsive control and positive systems, the control of rigid bodies, the stabilization of infinite dimensional systems, and the solution of minimum energy problems.
"Covers a remarkable number of topics....The book presents a large amount of material very well, and its use is highly recommended." --Bulletin of the AMS
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Maße
Höhe: 23.5 cm
Breite: 15.5 cm
Dicke: 19 mm
Gewicht
ISBN-13
978-0-8176-3645-6 (9780817636456)
DOI
10.1007/978-0-8176-4733-9
Schweitzer Klassifikation
Preface.- Introduction.- Part I. Elements of classical control theory.- Controllability and observability.- Stability and stabilizability.- Realization theory.- Systems with constraints.- Part II. Nonlinear control systems.- Controllability and observability of nonlinear systems.- Stability and stabilizability.- Realization theory.- Part III. Optimal control.- Dynamic programming.- Dynamic programming for impulse control.- The maximum principle.- The existence of optimal strategies.- Part IV. Infinite dimensional linear systems.- Linear control systems.- Controllability.- Stability and stabilizability.- Linear regulators in Hilbert spaces.- Appendix.- Metric spaces.- Banach spaces.- Hilbert spaces.- Bochner's integral.- Spaces of continuous functions.- Spaces of measurable functions.- References.- Notations.- Index