If a basic advance in physics has any practical applications, among the first are those in biology and medicine. This is quite striking when one considers even such unlikely things as the Mossbauer effect and X rays. Within a very short period of their discovery, they had welI-formulated biological and medical applications. The discovery of the laser is no exception. AIthough the theoretical basis for it was established in 1917 by Einstein, the techniques and materials necessary for building a laser were not then available. The laser has revitalized everything connected with optics. It has furnished the experimenter and the teacher with a pseudo-point source. It has translated many a theoretical experiment into one that can be realized practicalIy. The highly monochromatic and coherent aspects of the light, in addition to the high power levels that can be attained, add greatly to the usefulness in this regard. The industrial applictions range from punching holes in baby bottle nipples to a surveyor's instrument of such accuracy that it can plot tlie position of the moon relative to the earth within a few feet.
Many years of very informal meeting on the subject of lasers in medicine and biology have been sponsored by the Gordon Research Conferences. The present book is an outgrowth of the discussions that took place at these meetings, aIthough it is in no sense a symposium report.
Sprache
Verlagsort
Verlagsgruppe
Springer Science+Business Media
Zielgruppe
Illustrationen
Maße
Höhe: 240 mm
Breite: 160 mm
ISBN-13
978-0-306-37161-5 (9780306371615)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
1 Laser Characteristics that Might be Useful in Biology.- 1. Introduction.- 2. Characteristics of Laser Output.- 2.1. Energy.- 2.2. Temporal Distribution of Laser Output.- 2.3. Coherence and Modes.- 2.4. Angular Distribution.- 2.5. Spectral Distribution.- 2.6. Polarization.- 2.7. Physical Size of a Laser System.- 2.8. Experimental Parameters.- 3. Applications in Biology and Medicine.- 3.1. Use of High Energy.- 3.2. Use of Coherence.- 3.3. Use of Monochromaticity.- 3.4. Use of High Power Density.- References.- 2 Calibration of Lasers-Necessity and Techniques.- 1. Introduction.- 2. Measurement in Living Tissue.- 3. Measurement of Laser Parameters.- 3.1. General Considerations.- 3.2. Energy and Power Measurement.- 4. The Problems Associated with a Specific Case of Energy Measurement.- 4.1. Introduction.- 4.2. A Laser Energy Monitor.- 4.3. A Particular Case of Systematic Error.- 5. Pulse Monitoring.- 5.1. The Need for Monitoring.- 5.2. Methods of Monitoring.- 5.3. Standards.- References.- 3 Laser Effects on Normal and Tumor Tissue.- 1. Introduction.- 2. Reaction of Normal and Tumor Tissue.- 2.1. High Energy.- 2.2. High Power.- 2.3. Gas Lasers.- 3. Energy Levels Necessary for Cellular Destruction.- 4. Effect of Adjuvant Agents.- 4.1. X-Irradiation.- 4.2. Chemotherapeutic Agents.- 5. Adverse Reactions to Laser Treatment.- 5.1. Free Radicals.- 5.2. Pressure.- 5.3. Splatter.- 5.4. Temperature.- 6. Histological Findings.- 6.1. Liver Preparation.- 6.2. Examination of Normal Liver.- 6.3. Vx2 Carcinoma Treatment in Liver.- 6.4. Tumor Examination.- 6.5. Thermal Effects.- 7. Current Studies.- 8. Laser's Future.- References.- 4 Cell Biology by Laser Light.- 1. Introduction.- 2. Macromolecule Studies.- 2.1. Amino Acids.- 2.2. Proteins.- 2.3. Nucleic Acids.- 3. Organelle Studies.- 3.1. Cell Walls.- 3.2. Nuclei.- 3.3. Cytoplasm.- 3.4. Mitochondria.- 3.5. Chloroplasts.- 4. Metabolism Studies.- 4.1. Respiration.- 4.2. Photosynthesis.- 5. Continuity and Development Studies.- 5.1. Cell Division.- 5.2. Growth.- 5.3. Differentiation.- 6. Summary.- References.- 5 Dentistry and the Laser.- 1. Introduction.- 1.1. Anatomy of Dental Structures.- 1.2. Dental Diseases.- 2. Early Investigations.- 3. Current Investigations.- 3.1. Hard Tissues.- 3.2. Soft Tissues.- 4. Potential Applications.- 5. Summary.- References.- 6 Ocular Damage from Laser Radiation.- 1. Introduction.- 2. Interaction of Radiation and Matter.- 2.1. Interaction at Low Levels of Radiation.- 2.2. Interaction at High Levels of Radiation.- 2.3. Effects of Light on Biological Systems.- 3. Effects of Laser Radiation on Biological Systems.- 3.1. General Remarks.- 3.2. Photochemical Processes.- 3.3. Thermal Processes.- 3.4. Acoustic and Nonlinear Effects.- 3.5. Ocular Damage from Laser Radiation.- 4. Models for Ocular Damage.- 4.1. Introduction.- 4.2. Corneal Damage from CO2 Laser.- 4.3. Retinal Damage from Lasers.- 5. Summary and Conclusions.- Appendix-Heat Flow Problems.- References.- 7 The Development of Laser Safety Criteria-Biological Considerations.- 1. Introduction.- 1.1. The Basis for Hazard Criteria-Potential Ocular Injury.- 1.2. Threshold for Ocular Damage-Physical Considerations.- 1.3. Physical Terminology.- 1.4. Mathematical Relationships.- 2. Establishing Safe Exposure Levels for Health and Safety.- 2.1. Background.- 2.2. Examples of Exposure Levels.- 2.3. Regulatory Standards.- 3. Laser Safe Levels.- 3.1. General Considerations.- 3.2. Present Status of Recommended Laser Safe Levels.- 3.3. Biologic Basis for Ocular Exposure Levels.- 4. Probability of Injury, Applicability of Laser Safe Levels, and Accident Experience.- 4.1. General.- 4.2. Considerations of Space.- 4.3. Consideration of Accommodation of the Emmetropic Eye.- 4.4. Consideration of Ocular Orientation.- 4.5. Accident Experience.- 4.6. Summary.- 5. Pupil Size.- 6. Spectral Considerations.- 7. The Retinal Image Size.- 8. Biological Data of Retinal Damage.- 8.1. Retinal Burns from Non-Laser Sources, Early Studies.- 8.2. Solar Retinitis-Quantitative Aspects.- 8.3. Solar Retinitis-Qualitative Aspects..- 8.4. The Nuclear Fireball.- 8.5. High-Intensity Arcs and Incandescent Lamps.- 8.6. Laser Studies.- 8.7. Interpretation of the Influence of Image Size on Retinal Damage Thresholds.- 8.8. Theories of Injury Mechanism and Mathematical Models.- 9. The Ultraviolet and Far-Infrared Regions of the Spectrum.- 9.1. Ultraviolet.- 9.2. Far-Infrared.- 10. The Skin.- 11. Summary of Safe Levels.- 11.1. Future Requirements.- 11.2. Diffuse Levels.- 11.3. Repetitive Pulse Lasers.- 12. Laser Hazard Controls-Practical Considerations.- References.- 8 Lasers in Ophthalmology.- 1. Introduction.- 2. Use of Photocoagulation in Treating Ocular Diseases.- 3. Development of Laser Use in Ophthalmology.- 4. Laser Photocoagulators.- 5. Techniques of Laser Photocoagulation.- 6. Diseases of the Macula.- 6.1. Use of Fluorescein Retinal Angiography.- 6.2. Use of Laser Photocoagulation in the Treatment of Macular Diseases.- 6.3. Conclusions as to the Usefulness of Laser Photocoagulation in the Treatment of Some Macular Diseases.- 7. Diabetic Retinopathy.- 8. Protocol for Eye Examination of Laser Workers.- References.- 9 Models in Pathology-Mechanisms of Action of Laser Energy with Biological Tissues.- 1. Introduction.- 2. The Nature of Models.- 3. Types of Models.- 4. Application of Models Through Interpretation of Pathology.- 4.1. Physical Effects.- 4.2. Biological Effects.- 4.3. Skin as a Model System.- 4.4. The Concept of Threshold.- 4.5. Biological Amplification.- 4.6. Physical Amplification.- 4.7. Functional Damage and the Eye.- 4.8. The Correlation of Pathology with Models as Related to Retinal Damage.- 5. Detailed Examination of a Simple Thermal Model for the Retinal Image.- 5.1. Pathology of a Threshold Lesion to be Explained by a Thermal Model.- 5.2. Physical Consequences of the Thermal Model.- 6. Conclusions.- References.- Author Index.