The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 10 mm
Gewicht
ISBN-13
978-3-540-63970-1 (9783540639701)
DOI
Schweitzer Klassifikation
Some ideas around 3n+1 iterations.- Analysis of the Collatz graph.- 3-adic averages of counting functions.- An asymptotically homogeneous Markov chain.- Mixing and predecessor density.