Scanning Tunneling Microscopy II, like its predecessor,
presents detailed and comprehensive accounts of the basic
principles and broad range of applications of STM and
related scanning probe techniques. The applications
discussed in this volume come predominantly from the fields
of electrochemistry and biology. In contrast to those
described in Vol. I, these sudies may be performed in air
and in liquids. The extensions of the basic technique to
map other interactions are described inchapters on scanning
force microscopy, magnetic force microscopy, scanning
near-field optical microscopy, together with a survey of
other related techniques. Also described here is the use of
a scanning proximal probe for surface modification.
Togehter, the two volumes give a comprehensive account of
experimental aspcets of STM. They provide essentialreading
and reference material for all students and researchers
involvedin this field.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
Maße
Höhe: 23.5 cm
Breite: 15.5 cm
Gewicht
ISBN-13
978-3-540-54555-2 (9783540545552)
DOI
10.1007/978-3-642-97363-5
Schweitzer Klassifikation
1. Introduction.- 1.1 STM in Electrochemistry and Biology.- 1.2 Probing Small Forces on a Small Scale.- 1.3 Related Scanning Probe Microscopies.- 1.4 Nanotechnology.- References.- 2. STM in Electrochemistry.- 2.1 Principal Aspects.- 2.2 Experimental Concepts for Electrolytic STM at Potential-Controlled Electrodes.- 2.2.1 Potential Control Circuitry, STM Cell Design, Counter and Reference Electrodes.- 2.2.2 Tunneling Tips.- 2.2.3 Sample Preparation and Transfer Procedures.- 2.3 Electrochemical Applications of In Situ STM at Potential-Controlled Electrodes.- 2.3.1 STM Studies at Metal Electrodes.- 2.3.2 STM Studies at Carbon and Semiconductor Electrodes.- 2.3.3 Miscellaneous Investigations.- 2.4 Outlook.- References.- 3. The Scanning Tunneling Microscope in Biology.- 3.1 Instrumentation.- 3.1.1 The STM Head.- 3.1.2 Auxiliary Microscopes.- 3.1.3 Electronics.- 3.1.4 Controlling the Environment of the STM Head.- 3.1.5 Tunneling Tips.- 3.2 Processing of STM Images.- 3.2.1 Correction of Imaging Faults.- 3.2.2 Evaluation of STM Images.- 3.2.3 Representation of the Images.- 3.3 Preparation.- 3.3.1 Substrates.- 3.3.2 Specimen Deposition.- 3.3.3 Specimen Dehydration.- 3.3.4 Coating with Conductive Films.- 3.3.5 Examining the Quality of Preparations.- 3.4 Applications.- 3.4.1 Nucleic Acids.- 3.4.2 Proteins.- 3.4.3 Biological Membranes.- 3.5 Imaging and Conduction Mechanisms.- 3.5.1 Practical Observations in STM Imaging of Uncoated Biological Material.- 3.5.2 Measurements of Conductivity and Related Parameters.- 3.5.3 Basic Electron Transfer Mechanisms.- 3.5.4 Intrinsic Conduction in Organic and Biological Material: Theoretical Considerations.- 3.5.5 External Conduction Mechanisms.- 3.5.6 Image Formation.- 3.6 Conclusions.- References.- 4. Scanning Force Microscopy (SFM).- 4.1 Experimental Aspects of Force Microscopy.- 4.1.1 Preparations of Cantilevers.- 4.1.2 Techniques to Measure Small Cantilever Deflections.- 4.1.3 Modes of Operation.- 4.2 Forces and Their Relevance to Force Microscopy.- 4.2.1 Forces Between Atoms and Molecules.- 4.2.2 Forces in Relation to Scanning Force Microscopy.- 4.3 Microscopic Description of the Tip-Sample Contact.- 4.3.1 Empirical Potentials.- 4.3.2 Molecular Dynamics.- 4.3.3 Continuum Elasticity Theory.- 4.3.4 Ab Initio Calculations.- 4.4 Imaging with the Force Microscope.- 4.4.1 SFM on Layered Materials.- 4.4.2 Ionic Crystals.- 4.4.3 Organic Molecules.- 4.4.4 Applications of SFM on a Nanometer Scale.- 4.5 Conclusions and Outlook.- References.- 5. Magnetic Force Microscopy (MFM).- 5.1 Basic Principles of MFM.- 5.2 Measurement Techniques.- 5.2.1 Force Detection.- 5.2.2 Force Gradient Detection.- 5.2.3 Deflection Sensors.- 5.2.4 Servo Considerations.- 5.3 Force Sensors.- 5.3.1 Basic Properties.- 5.3.2 Electrochemically Etched Tips.- 5.3.3 Tips Coated with Magnetic Thin Films.- 5.4 Theory of MFM Response.- 5.4.1 Magnetic Interaction.- 5.4.2 Image Simulation.- 5.4.3 Mutual Disturbance of Tip and Sample.- 5.5 Imaging Data Storage Media.- 5.5.1 Longitudinal Magnetic Recording Media.- 5.5.2 Modeling Longitudinal Media.- 5.5.3 Magnetic Recording Studies.- 5.5.4 Magneto-Optic Recording Media.- 5.6 Imaging Soft Magnetic Materials.- 5.6.1 Iron Whiskers.- 5.6.2 NiFe (Permalloy).- 5.6.3 Tip-Sample Interactions.- 5.7 Resolution.- 5.7.1 Experimental Results.- 5.7.2 Theoretical Considerations.- 5.8 Separation of Magnetic and Topographic Signals.- 5.9 Comparison with Other Magnetic Imaging Techniques.- 5.10 Conclusions and Outlook.- References.- 6. Related Scanning Techniques.- 6.1 Historical Background.- 6.2 STM and Electrical Measurements.- 6.2.1 Basic Principle of STM.- 6.2.2 Scanning Noise Microscopy and Scanning Tunneling Potentiometry.- 6.3 STM and Optical Effects.- 6.3.1 Optical Rectification and Scanning Photon Microscope.- 6.3.2 STM and Inverse Photoemission Microscopy.- 6.4 Near-Field Thermal Microscopy.- 6.5 Scanning Force Microscopy and Extensions.- 6.6 Conclusion.- References.- 7. Nano-optics and Scanning Near-Field Optical Microscopy.- 7.1 Nano-optics: Optics of Nanometer-Size Structures.- 7.1.1 General Considerations.- 7.1.2 Theoretical Approach.- 7.1.3 Gap Fields and Tip Plasmons.- 7.1.4 Pointed Tips as Near-Field Optical Probes.- 7.1.5 Spherical Particle Above Substrate.- 7.1.6 Nano-Apertures.- 7.1.7 Dipole Above Ground.- 7.2 Experimental Work.- 7.2.1 SNOM Designs.- 7.2.2 Aperture/Transmission.- 7.2.3 Aperture/Reflection.- 7.2.4 Protrusion/Reflection.- 7.2.5 Pointed Transparent Fiber/Transmission.- 7.2.6 The Photon-Emitting STM.- 7.2.7 Basic NFO Experiments.- 7.2.8 Aperture/Transmission.- 7.2.9 Aperture/Reflection.- 7.2.10 Protrusion/Reflection.- 7.2.11 Pointed Optical Fiber (PSTM, STOM).- 7.2.12 Pointed Metal Tip.- 7.3 Plasmons and Spectroscopic Effects.- 7.3.1 Protrusions: Influence of Particle Size.- 7.3.2 Apertures: Enhanced Spectroscopy.- 7.4 Imaging by SNOM.- 7.4.1 Transmission.- 7.4.2 Reflection/Aperture.- 7.4.3 Reflection/Protrusion.- 7.4.4 Optical Fiber (PSTM, STOM).- 7.4.5 SNOM-Type Imaging with the STM.- 7.5 Discussion, Outlook, Conclusions.- 7.5.1 Problems Solved.- 7.5.2 Open Questions, Comparison of Different Methods.- 7.5.3 Outlook.- References.- 8. Surface Modification with a Scanning Proximity Probe Microscope.- 8.1 Overview.- 8.2 Microfabrication with a Scanning Probe Microscope.- 8.2.1 A Universal Approach.- 8.2.2 Discussion of the Basic Parameters.- 8.3 Investigation of the Fabrication Process.- 8.3.1 Indirect Investigations.- 8.3.2 Direct Investigations.- 8.3.3 Response of Different Samples and Environments.- 8.4 Review of SXM Lithography.- 8.4.1 Exposure of an Electron or Photo-Resist.- 8.4.2 Mechanical Machining.- 8.4.3 Deposition.- 8.4.4 Thermal Treatment.- 8.4.5 Decomposition of Organometallic Gases.- 8.4.6 Manipulation of Molecules and Atoms.- 8.4.7 Electrochemical and Photoelectrochemical Processes.- 8.4.8 Ion and Electron Etching.- 8.4.9 Modifications of Indeterminate Origin.- References.