Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision.
Audience: Researchers studying mathematics, computers and robotics.
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 24 mm
Gewicht
ISBN-13
978-0-7923-3548-1 (9780792335481)
DOI
10.1007/978-94-015-8402-9
Schweitzer Klassifikation
The Power of Positive Thinking.- to Chow Forms.- Capelli's Method of Variability Ausiliarie, Superalgebras, and Geometric Calculus.- Letterplace Algebra and Symmetric Functions.- A Tutorial on Grassmann-Cayley Algebra.- Computational Symbolic Geometry.- Invariant Theory and the Projective Plane.- Automatic Proving of Geometric Theorems.- The Resolving Bracket.- Computation of the Invariants of a Point Set in P3 P3 from Its Projections in P2 P2.- Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory.- Invariants on G/U × G/U × G/U, G = SL(4,C).- On A Certain Complex Related to the Notion of Hyperdeterminant.- On Cayley's Projective Configurations - An Algorithmic Study.- On the Contruction of Equifacetted 3-Speres.- Depths and Betti Numbers of Homology Manifolds.