1. Some Preliminaries; 2. Coordinates, Vectors , Tensors; 3. Riemannian Metric; 4. Christoffel's Three-Index Symbols. Covariant Differentiation; 5. Curvature of a Curve. Geodeics, Parallelism of Vectors; 6. Congruences and Orthogonal Ennuples; 7. Riemann Symbols. Curvature of a Riemannian Space; 8. Hypersurfaces; 9. Hypersurfaces in Euclidean Space. Spaces of Constant Curvature; 10. Subspaces of a Riemannian Space.