This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei- demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.
Rezensionen / Stimmen
"[The book] contains much of the needed background material in topology and algebra.Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
13
13 s/w Abbildungen
VIII, 124 p. 13 illus.
Maße
Höhe: 244 mm
Breite: 170 mm
Dicke: 8 mm
Gewicht
ISBN-13
978-3-7643-6403-8 (9783764364038)
DOI
10.1007/978-3-0348-8321-4
Schweitzer Klassifikation
I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.- 6 The Reidemeister-Franz torsion.- 7 The Whitehead torsion.- 8 Simple homotopy equivalences.- 9 Reidemeister torsions and homotopy equivalences.- 10 The torsion of lens spaces.- 11 Milnor's torsion and Alexander's function.- 12 Group rings of finitely generated abelian groups.- 13 The maximal abelian torsion.- 14 Torsions of manifolds.- 15 Links.- 16 The Fox Differential Calculus.- 17 Computing ?(M3) from the Alexander polynomial of links.- III Refined Torsions.- 18 The sign-refined torsion.- 19 The Conway link function.- 20 Euler structures.- 21 Torsion versus Seiberg-Witten invariants.- References.