Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Springer Science+Business Media
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 157 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-0-306-46097-5 (9780306460975)
DOI
Schweitzer Klassifikation
Elliptic Genera.- Cohomology Theory Ell*(X).- Work of M. Hopkins, N. Kuhn, and D. Ravenel.- Mathieu Groups.- Cohomology of Certain Simple Groups.- Ell*(BG) - Algebraic Approach.- Completion Theorems.- Elliptic Objects.- Variants of Elliptic Cohomology.- K3-Cohomology.