The authoritative reference on time-dependent (mechanical) catalysis, as employed by many enzymes and sought in their man-made mimics
This book examines the principles of mechanics as they apply to chemistry and, more particularly, catalysis. It's a unique, comprehensive resource focusing on unconventional time-dependent (mechanical) catalysis, instead of the more familiar energy-dependent (thermodynamic) catalysis. To help practitioners envision how catalyst-reactant dynamism leads to time-dependent catalysis, it:
* Demonstrates the existence of two fundamentally different forms of "reaction-limited" catalysis, namely time-dependent (mechanical) and energy-dependent (thermodynamic) catalysis
* Describes their physical manifestation in heterogeneous and homogeneous systems
* Shows how many enzymes use time-dependent catalytic reactions
* Unravels the mystery of enzymatic catalysis, including: the fundamental processes at work, the origin of its general and physical features, the way it has evolved, and how it relates to catalysis in man-made systems
* Unifies homogeneous, heterogeneous, and enzymatic catalysis, and explains how the thirty or so general theories of enzymatic catalysis are knit together into a conceptually coherent whole
* Describes how to authentically mimic the underlying principles of enzymatic catalysis in man-made systems, including: the design requirements for such catalysts, the difficulties in duplicating the natural process, and the approaches that may be used to overcome these challenges
* Describes the role of catalysis in the emerging field of complex systems science
A key resource for chemists, biochemists, and chemical engineers, this is also a reference for students of complex systems science and researchers in a variety of fields, including economics, evolution, weather forecasting, traffic management, and networking.
Rezensionen / Stimmen
?This book is a useful addition to the library of any individual working with functionalized catalysts, especially those that may undergo conformational changes during the reaction process. This text is especially informative for those working with enzymes, biomimetic, and organometallic-based catalysts. It also unifies many of the kinetic models that have been put forth to describe heterogeneous, homogeneous, and enzymatic catalysis.? (Journal of the American Chemical Society, October 2009)
Produkt-Info
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Produkt-Hinweis
Maße
Höhe: 241 mm
Breite: 159 mm
Dicke: 25 mm
Gewicht
ISBN-13
978-0-470-26202-3 (9780470262023)
Schweitzer Klassifikation
Gerhard F. Swiegers, PhD, earned his doctorate at the University of Connecticut in 1991 and then worked at the Australian National University and the University of Wollongong, Australia. In 1998, he joined the Commonwealth Scientific and Industrial Research Organization (CSIRO), the major government laboratory in Australia. From 1998 to 2006, he was involved with designing anti-counterfeiting devices for bank notes. In 2005, one of his inventions was commercialized as a spin-off company known as Datatrace DNA Pty Ltd, and in 2006, Dr. Swiegers joined the firm as Vice President, Strategic Research. Several of Dr. Swiegers's inventions are currently used by national governments and major companies around the world.
PREFACE.
CONTRIBUTORS.
GLOSSARY.
1. Introduction to Thermodynamic (Energy-Dependent) and Mechanical (Time-Dependent) Processes: What Are They and How Are They Manifested in Chemistry and Catalysis? (Gerhard F. Swiegers).
2. Heterogeneous, Homogeneous, and Enzymatic Catalysis. A Shared Terminology and Conceptual Platform. The Alternative of Time-Dependence in Catalysis (Gerhard F. Swiegers).
3. A Conceptual Description of Energy-Dependent ("Thermodynamic") and Time-Dependent ("Mechanical") Processes in Chemistry and Catalysis (Gerhard F. Swiegers).
4. Time-Dependence in Heterogeneous Catalysis. Sabatier's Principle Describes Two Independent Catalytic Realms: Time-Dependent ("Mechanical") Catalysis and Energy-Dependent ("Thermodynamic") Catalysis (Gerhard F. Swiegers).
5. Time-Dependence in Homogeneous Catalysis. 1. Many Enzymes Display the Hallmarks of Time-Dependent ("Mechanical") Catalysis. Nonbiological Homogeneous Catalysts Are Typically Energy-Dependent ("Thermodynamic") Catalysts (Robin Brimblecombe, Jun Chen, Junhua Huang, Ulrich T. Mueller-Westerhoff and Gerhard F. Swiegers).
6. Time-Dependence in Homogeneous Catalysis. 2. The General Actions of Time-Dependent ("Mechanical") and Energy-Dependent ("Thermodynamic") Catalysts (Robin Brimblecombe, Jun Chen, Junhua Huang, Ulrich T. Mueller-Westerhoff, and Gerhard F. Swiegers).
7. Unifying the Many Theories of Enzymatic Catalysis. Theories of Enzymatic Catalysis Fall into Two Camps: Energy-Dependent ("Thermodynamic") and Time-Dependent ("Mechanical") Catalysis (Gerhard F. Swiegers).
8. Synergy in Heterogeneous, Homogeneous, and Enzymatic Catalysis. The "Ideal" Catalyst (Gerhard F. Swiegers).
9. A Conceptual Unification of Heterogeneous, Homogeneous, and Enzymatic Catalysis (Gerhard F. Swiegers).
10. The Rational Design of Time-Dependent ("Mechanical") Homogeneous Catalysts. A Literature Survey of Multicentered Homogeneous Catalysis (Junhua Huang and Gerhard F. Swiegers).
11. Time-Dependent ("Mechanical"), Nonbiological Catalysis. 1. A Fully Functional Mimic of the Water-Oxidizing Center (WOC) in Photosystem II (PSII) (Robin Brimblecombe, G. Charles Dismukes, Greg A. Felton, Leone Spiccia, and Gerhard F. Swiegers).
12. Time-Dependent ("Mechanical"), Nonbiological Catalysis. 2. Highly Efficient, "Biomimetic" Hydrogen-Generating Electrocatalysts (Jun Chen, Junhua Huang, Gerhard F. Swiegers, Chee O. Too, and Gordon G. Wallace).
13. Time-Dependent ("Mechanical"), Nonbiological Catalysis. 3. A Readily Prepared, Convergent, Oxygen-Reduction Electrocatalyst (Jun Chen, Gerhard F. Swiegers, Gordon G. Wallace, and Weimin Zhang).
Appendix A Why Is Saturation Not Observed in Catalysts that Display Conventional Kinetics?
Appendix B Graphical Illustration of the Processes Involved in the Saturation of Molecular Catalysts.
Index.