A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and related techniques. The book focuses on physical principles and the impact of spectroscopy on our understanding of the building blocks of matter, while examining applications to chemical analysis, photochemistry, surface characterization, environmental and medical diagnostics, remote sensing, and astrophysics. This Third Edition includes the most up-to-date developments.
Reihe
Auflage
Softcover reprint of the original 3rd ed. 2001
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Produkt-Hinweis
Illustrationen
14
14 s/w Tabellen
black & white illustrations
Maße
Höhe: 23.5 cm
Breite: 15.5 cm
Dicke: 31 mm
Gewicht
ISBN-13
978-3-642-98109-8 (9783642981098)
DOI
10.1007/978-3-642-98107-4
Schweitzer Klassifikation
1.Introduction.- 2. Atomic Structure.- 2.1 One-Electron Systems.- 2.2 Alkali Atoms.- 2.3 Magnetic Effects.- 2.3.1 Precessional Motion.- 2.3.2 Spin-Orbit Interaction.- 2.4 General Many-Electron Systems.- 2.5 The Influence of External Fields.- 2.5.1 Magnetic Fields.- 2.5.2 Electric Fields.- 2.6 Hyperfine Structure.- 2.6.1 Magnetic Hyperfine Structure.- 2.6.2 Electric Hyperfine Structure.- 2.7 The Influence of External Fields (hfs).- 2.8 Isotopic Shifts.- 3. Molecular Structure.- 3.1 Electronic Levels.- 3.2 Rotational Energy.- 3.3 Vibrational Energy.- 3.4 Polyatomic Molecules.- 3.5 Clusters.- 3.6 Other Molecular Structures.- 4. Radiation and Scattering Processes.- 4.1 Resonance Radiation.- 4.2 Spectra Generated by Dipole Transitions.- 4.2.1 Atoms.- 4.2.2 Molecules.- 4.3 Rayleigh and Raman Scattering.- 4.4 Raman Spectra.- 4.4.1 Vibrational Raman Spectra.- 4.4.2 Rotational Raman Spectra.- 4.4.3 Vibrational-Rotational Raman Spectra.- 4.5 Mie Scattering.- 4.6 Atmospheric Scattering Phenomena.- 4.7 Comparison Between Different Radiation and Scattering Processes.- 4.8 Collision-Induced Processes.- 5. Spectroscopy of Inner Electrons.- 5.1 X-Ray Spectroscopy.- 5.1.1 X-Ray Emission Spectroscopy.- 5.1.2 X-Ray Absorption Spectroscopy.- 5.1.3 X-Ray Imaging Applications.- 5.2 Photoelectron Spectroscopy.- 5.2.1 XPS Techniques and Results.- 5.2.2 Chemical Shifts.- 5.3 Auger Electron Spectroscopy.- 6. Optical Spectroscopy.- 6.1 Light Sources.- 6.1.1 Line Light Sources.- 6.1.2 Continuum Light Sources.- 6.1.3 Synchrotron Radiation.- 6.1.4 Natural Radiation Sources.- 6.2 Spectral Resolution Instruments.- 6.2.1 Prism Spectrometers.- 6.2.2 Grating Spectrometers.- 6.2.3 The Fabry-Pérot Interferometer.- 6.2.4 The Fourier Transform Spectrometer.- 6.3 Detectors.- 6.4 Optical Components and Materials.- 6.4.1 Interference Filters and Mirrors.- 6.4.2 Absorption Filters.- 6.4.3 Polarizers.- 6.4.4 Optical Materials.- 6.4.5 Influence of the Transmission Medium.- 6.5 Optical Methods of Chemical Analysis.- 6.5.1 The Beer-Lambert Law.- 6.5.2 Atomic Absorption/Emission Spectrophotometry.- 6.5.3 Burners, Flames, Sample Preparation and Measurements.- 6.5.4 Modified Methods of Atomization.- 6.5.5 Multi-Element Analysis.- 6.5.6 Molecular Spectrophotometry.- 6.5.7 Raman Spectroscopy.- 6.6 Optical Remote Sensing.- 6.6.1 Atmospheric Monitoring with Passive Techniques.- 6.6.2 Land and Water Measurements with Passive Techniques.- 6.7 Astrophysical Spectroscopy.- 7. Radio-Frequency Spectroscopy.- 7.1 Resonance Methods.- 7.1.1 Magnetic Resonance.- 7.1.2 Atomic-Beam Magnetic Resonance.- 7.1.3 Optical Pumping.- 7.1.4 Optical Double Resonance.- 7.1.5 Level-Crossing Spectroscopy.- 7.1.6 Resonance Methods for Liquids and Solids.- 7.2 Microwave Radiometry.- 7.3 Radio Astronomy.- 8. Lasers.- 8.1 Basic Principles.- 8.2 Coherence.- 8.3 Resonators and Mode Structure.- 8.4 Fixed-Frequency Lasers.- 8.4.1 The Ruby Laser.- 8.4.2 Four-Level Lasers.- 8.4.3 Pulsed Gas Lasers.- 8.4.4 The He-Ne Laser.- 8.4.5 Gaseous Ion Lasers.- 8.5 Tunable Lasers.- 8.5.1 Dye Lasers.- 8.5.2 Colour-Centre Lasers.- 8.5.3 Tunable Solid-State Lasers.- 8.5.4 Tunable CO2 Lasers.- 8.5.5 Semiconductor Lasers.- 8.6 Nonlinear Optical Phenomena.- 8.7 Ultra-short and Ultra-high-Power Laser Pulse Generation.- 8.7.1 Short-Pulse Generation by Mode-Locking.- 8.7.2 Generation of Ultra-high Power Pulses.- 9. Laser Spectroscopy.- 9.1 Basic Principles.- 9.1.1 Comparison Between Conventional Light Sources and Lasers.- 9.1.2 Saturation.- 9.1.3 Excitation Methods.- 9.1.4 Detection Methods.- 9.1.5 Laser Wavelength Setting.- 9.2 Doppler-Limited Techniques.- 9.2.1 Absorption Measurements.- 9.2.2 Intracavity Absorption Measurements.- 9.2.3 Absorption Measurements on Excited States.- 9.2.4 Level Labelling.- 9.2.5 Two-Photon Absorption Measurements.- 9.2.6 Opto-Galvanic Spectroscopy.- 9.2.7 Single-Atom and Single-Molecule Detection.- 9.2.8 Opto-Acoustic Spectroscopy.- 9.3 Optical Double-Resonance and Level-Crossing Experiments with Laser Excitation.- 9.4 Time-Resolved Atomic and Molecular Spectroscopy.- 9.4.1 Generation of Short Optical Pulses.- 9.4.2 Measurement Techniques for Optical Transients.- 9.4.3 Background to Lifetime Measurements.- 9.4.4 Survey of Methods of Measurement for Radiative Properties.- 9.4.5 Quantum-Beat Spectroscopy.- 9.5 Ultrafast Spectroscopy.- 9.5.1 Ultrafast Measurement Techniques.- 9.5.2 Molecular Reaction Dynamics (Femtochemistry).- 9.5.3 Coherent Control.- 9.6 High-Power Laser Experiments.- 9.6.1 Above Threshold Ionization (ATI).- 9.6.2 High Harmonic Generation.- 9.6.3 X-Ray Laser Pumping.- 9.6.4 Broadband X-Ray Generation.- 9.6.5 Relativistic Effects and Laser Accelerators.- 9.6.6 Laser-Nuclear Interactions and Laser-Driven Fusion.- 9.7 High-Resolution Laser Spectroscopy.- 9.7.1 Spectroscopy on Collimated Atomic and Ionic Beams.- 9.7.2 Saturation Spectroscopy and Related Techniques.- 9.7.3 Doppler-Free Two-Photon Absorption.- 9.8 Cooling and Trapping of Ions and Atoms.- 9.8.1 Introduction.- 9.8.2 Ion Traps.- 9.8.3 Basic Laser Cooling in Traps.- 9.8.4 Trapped Ion Spectroscopy.- 9.8.5 Atom Cooling and Trapping.- 9.8.6 Sub-Recoil Cooling.- 9.8.7 Atom Optics.- 9.8.8 Bose -Einstein Condensation and "Atom Lasers".- 9.8.9 Fermionic "Condensation".- 10. Laser-Spectroscopic Applications.- 10.1 Diagnostics of Combustion Processes.- 10.1.1 Background.- 10.1.2 Laser-Induced Fluorescence and Related Techniques.- 10.1.3 Raman Spectroscopy.- 10.1.4 Coherent Anti-Stokes Raman Scattering.- 10.1.5 Velocity Measurements.- 10.2 Laser Remote Sensing of the Atmosphere.- 10.2.1 Optical Heterodyne Detection.- 10.2.2 Long-Path Absorption Techniques.- 10.2.3 Lidar Techniques.- 10.3 Laser-Induced Fluorescence and Raman Spectroscopy in Liquids and Solids.- 10.3.1 Hydrospheric Remote Sensing.- 10.3.2 Vegetation Monitoring.- 10.3.3 Monitoring of Surface Layers.- 10.4 Laser-Induced Chemical Processes.- 10.4.1 Laser-Induced Chemistry.- 10.4.2 Laser Isotope Separation.- 10.5 Spectroscopic Aspects of Lasers in Medicine.- 10.5.1 Thermal Interaction of Laser Light with Tissue.- 10.5.2 Photodynamic Tumour Therapy.- 10.5.3 Tissue Diagnostics with Laser-Induced Fluorescence.- 10.5.4 Scattering Spectroscopy and Tissue Transillumination.- Questions and Exercises.- References.