This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects.
Rezensionen / Stimmen
'The author gives a comprehensive treatment of invariant potential theory. The exposition is clear and elementary. This book is recommended to graduate students and researchers interested in this field. It is a very good addition to the mathematical literature.' Hiroaki Aikawa, MathSciNet
Reihe
Sprache
Verlagsort
Zielgruppe
Produkt-Hinweis
Illustrationen
Worked examples or Exercises
Maße
Höhe: 226 mm
Breite: 148 mm
Dicke: 15 mm
Gewicht
ISBN-13
978-1-107-54148-1 (9781107541481)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Manfred Stoll is Distinguished Professor Emeritus in the Department of Mathematics at the University of South Carolina. His books include Invariant Potential Theory in the Unit Ball of Cn (Cambridge, 1994) and Introduction to Real Analysis (1997).
Autor*in
University of South Carolina
Preface; 1. Moebius transformations; 2. Moebius self-maps of the unit ball; 3. Invariant Laplacian, gradient and measure; 4. H-harmonic and H-subharmonic functions; 5. The Poisson kernel; 6. Spherical harmonic expansions; 7. Hardy-type spaces; 8. Boundary behavior of Poisson integrals; 9. The Riesz decomposition theorem; 10. Bergman and Dirichlet spaces; References; Index of symbols; Index.