Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches.
To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the general theory, but the substance of the book remains the same.
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Intermediate undergraduate students in mathematics
Editions-Typ
Illustrationen
13 s/w Photographien bzw. Rasterbilder, 40 s/w Abbildungen
13 Halftones, black and white; 40 Illustrations, black and white
Maße
Höhe: 235 mm
Breite: 156 mm
Gewicht
ISBN-13
978-1-58488-393-7 (9781584883937)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Autor*in
University of Warwick, Coventry, UK
Historical Introduction
Classical Algebra
The Fundamental Theorem of Algebra
Factorization of Polynomials
Field Extensions
Simple Extensions
The Degree of an Extension
Ruler-and-Compass Constructions
The Idea Behind Galois Theory
Normality and Separability
Counting Principles
Field Automorphisms
The Galois Correspondence
A Worked Example
Solubility and Simplicity
Solution by Radicals
Abstract Rings and Fields
Abstract Field Extensions
The General Polynomial
Regular Polygons
Finite Fields
Circle Division
Calculating Galois Groups
Algebraically Closed Fields
Transcendental Numbers
References
Index