Offering a more robust WebAssign course, Stewart's CALCULUS: CONCEPTS AND CONTEXTS, Enhanced Edition, 4th Edition, helps you learn the major concepts of calculus using precise definitions, patient explanations, and a variety of examples and exercises.
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Maße
Höhe: 40 mm
Breite: 220 mm
Dicke: 256 mm
Gewicht
ISBN-13
978-1-337-68766-9 (9781337687669)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
James Stewart received the M.S. degree from Stanford University and the Ph.D. from the University of Toronto. After two years as a postdoctoral fellow at the University of London, he became Professor of Mathematics at McMaster University. His research has been in harmonic analysis and functional analysis. Stewart's books include a series of high school textbooks as well as a best-selling series of calculus textbooks published by Cengage Learning. He is also co-author, with Lothar Redlin and Saleem Watson, of a series of college algebra and precalculus textbooks. Translations of his books include those into Spanish, Portuguese, French, Italian, Korean, Chinese, Greek, Indonesian and Japanese. A talented violinist, Stewart was concertmaster of the McMaster Symphony Orchestra for many years and played professionally in the Hamilton Philharmonic Orchestra. He has given more than 20 talks worldwide on mathematics and music. Stewart was named a Fellow of the Fields Institute in 2002 and was awarded an honorary D.Sc. in 2003 by McMaster University. The library of the Fields Institute is named after him. The James Stewart Mathematics Centre was opened in October, 2003, at McMaster University.
Autor*in
McMaster University
Preface.
To the Student.
Diagnostic Tests.
A Preview of Calculus.
1. FUNCTIONS AND MODELS.
Four Ways to Represent a Function. Mathematical Models: A Catalog of Essential Functions. New Functions from Old Functions. Graphing Calculators and Computers. Exponential Functions. Inverse Functions and Logarithms. Parametric Curves. Laboratory Project: Running Circles around Circles. Review. Principles of Problem Solving.
2. LIMITS AND DERIVATIVES.
The Tangent and Velocity Problems. The Limit of a Function. Calculating Limits Using the Limit Laws. Continuity. Limits Involving Infinity. Derivatives and Rates of Change. Writing Project: Early Methods for Finding Tangents. The Derivative as a Function. What Does f? ? Say about f ? Review. Focus on Problem Solving.
3. DIFFERENTIATION RULES.
Derivatives of Polynomials and Exponential Functions. Applied Project: Building a Better Roller Coaster. The Product and Quotient Rules. Derivatives of Trigonometric Functions. The Chain Rule. Laboratory Project: Bezier Curves. Applied Project: Where Should a Pilot Start Descent? Implicit Differentiation. Inverse Trigonometric Functions and their Derivatives. Derivatives of Logarithmic Functions. Discovery Project: Hyperbolic Functions. Rates of Change in the Natural and Social Sciences. Linear Approximations and Differentials. Laboratory Project: Taylor Polynomials. Review. Focus on Problem Solving.
4. APPLICATIONS OF DIFFERENTIATION.
Related Rates. Maximum and Minimum Values. Applied Project: The Calculus of Rainbows. Derivatives and the Shapes of Curves. Graphing with Calculus and Calculators. Indeterminate Forms and l'Hospital's Rule. Writing Project: The Origins of l'Hospital's Rule. Optimization Problems. Applied Project: The Shape of a Can. Newton's Method. Antiderivatives. Review. Focus on Problem Solving.
5. INTEGRALS.
Areas and Distances. The Definite Integral. Evaluating Definite Integrals. Discovery Project: Area Functions. The Fundamental Theorem of Calculus. Writing Project: Newton, Leibniz, and the Invention of Calculus. The Substitution Rule. Integration by Parts. Additional Techniques of Integration. Integration Using Tables and Computer Algebra Systems. Discovery Project: Patterns in Integrals. Approximate Integration. Improper Integrals. Review. Focus on Problem Solving.
6. APPLICATIONS OF INTEGRATION.
More about Areas. Volumes. Discovery Project: Rotating on a Slant. Volumes by Cylindrical Shells. Arc Length. Discovery Project: Arc Length Contest. Average Value of a Function. Applied Project: Where to Sit at the Movies. Applications to Physics and Engineering. Discovery Project: Complementary Coffee Cups. Applications to Economics and Biology. Probability. Review. Focus on Problem Solving.
7. DIFFERENTIAL EQUATIONS.
Modeling with Differential Equations. Direction Fields and Euler's Method. Separable Equations. Applied Project: How Fast Does a Tank Drain? Applied Project: Which Is Faster, Going Up or Coming Down? Exponential Growth and Decay. Applied Project: Calculus and Baseball. The Logistic Equation. Predator-Prey Systems. Review. Focus on Problem Solving.
8. INFINTE SEQUENCES AND SERIES.
Sequences. Laboratory Project: Logistic Sequences. Series. The Integral and Comparison Tests; Estimating Sums. Other Convergence Tests. Power Series. Representations of Functions as Power Series. Taylor and Maclaurin Series. Laboratory Project: An Elusive Limit. Writing Project: How Newton Discovered the Binomial Series. Applications of Taylor Polynomials. Applied Project: Radiation from the Stars. Review. Focus on Problem Solving.
9. VECTORS AND THE GEOMETRY OF SPACE.
Three-Dimensional Coordinate Systems. Vectors. The Dot Product. The Cross Product. Discovery Project: The Geometry of a Tetrahedron. Equations of Lines and Planes. Laboratory Project: Putting 3D in Perspective. Functions and Surfaces. Cylindrical and Spherical Coordinates. Laboratory Project: Families of Surfaces. Review. Focus on Problem Solving.
10. VECTOR FUNCTIONS.
Vector Fun