Die Simulation technischer Prozesse erfordert in der Regel die Lösung von linearen Gleichungssystemen großer Dimension. Hierfür werden moderne vorkonditionierte Iterationsverfahren (z.B. CG, GMRES, BiCGStab) hergeleitet und die zur Realisierung notwendigen Algorithmen beschrieben. Für Systeme mit strukturierten Matrizen werden effiziente direkte Lösungsverfahren angegeben. Numerische Beispiele für praktische Problemstellungen illustrieren die Effizienz der vorgestellten Verfahren.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Upper undergraduate
Illustrationen
Maße
Höhe: 240 mm
Breite: 170 mm
Dicke: 12 mm
Gewicht
ISBN-13
978-3-519-00502-5 (9783519005025)
DOI
10.1007/978-3-322-80080-0
Schweitzer Klassifikation
Prof. Dr. Olaf Steinbach, Institut für Mathematik, TU Graz
1 Grundlagen.- 1.1 Normen von Vektoren und Matrizen.- 1.2 Eigenwerte und Singulärwerte.- 1.3 Orthogonalisierung von Vektorsystemen.- 1.4 Tschebyscheff-Polynome.- 2 Lineare Gleichungssysteme.- 2.1 Interpolation.- 2.2 Projektionsmethoden.- 2.3 Finite Element Methoden.- 2.4 Randelementmethoden.- 3 Strukturierte Matrizen.- 3.1 Schnelle Fouriertransformation.- 3.2 Zirkulante Matrizen.- 3.3 Toeplitz Matrizen.- 3.4 Niedrig-Rang-Störung regulärer Matrizen.- 4 Klassische Iterationsverfahren.- 4.1 Stationäre Iterationsverfahren.- 4.2 Gradientenverfahren.- 5 Verfahren orthogonaler Richtungen.- 5.1 Verfahren konjugierter Gradienten.- 5.2 Verfahren des minimalen Residuums.- 5.3 Verfahren biorthogonaler Richtungen.- 6 Gleichungssysteme mit Blockstruktur.- 6.1 Symmetrische Gleichungssysteme.- 6.2 Blockschiefsymmetrische Systeme.- 6.3 Zweifache Sattelpunktprobleme.- 7 Hierarchische Matrizen.- 7.1 Partitionierte Matrizen.- 7.2 Approximation mit Niedrigrang-Matrizen.- 7.3 Arithmetik von Hierarchischen Matrizen.- 7.4 Geometrische Partitionierungen.- 7.5 Niedrigrang-Approximation von Funktionen.- 7.6 Anwendungen in der FEM.- Literatur.