Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or "core models", satisfying them. Since Gödel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. Here the author extends this theory so that it can produce core models satisfying "There is a Woodin cardinal", a large cardinal hypothesis which is the focus of much current research. The book is intended for advanced graduate students and reseachers in set theory.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 8 mm
Gewicht
ISBN-13
978-3-540-61938-3 (9783540619383)
DOI
10.1007/978-3-662-22485-4
Schweitzer Klassifikation
§0. Introduction.- §1. The construction of Kc.- §2. Iterability.- §3. Thick classes and universal weasels.- §4. The hull and definability properties.- §5. The construction of true K.- §6. An inductive definition of K.- §7. Some applications.- §8. Embeddings of K.- §9. A general iterability theorem.- References.- Index of definitions.