Starting from Borcherds' fake monster Lie algebra we construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including $AE_3$.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
Gewicht
ISBN-13
978-0-8218-2888-5 (9780821828885)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Introduction Generalized Kac-Moody algebras Modular forms Lattices and their Theta-functions The proof of Theorem 1.7 The real simple roots Hyperbolic Lie algebras Appendix A Appendix B Bibliography Notation.